-
1
-
-
66449093171
-
Minireview: Meeting the demand for insulin: Molecular mechanisms of adaptive postnatal β-cell mass expansion
-
Sachdeva MM, Stoffers DA. Minireview: meeting the demand for insulin: molecular mechanisms of adaptive postnatal β-cell mass expansion. MolEndocrinol. 2009;23:747-758.
-
(2009)
MolEndocrinol.
, vol.23
, pp. 747-758
-
-
Sachdeva, M.M.1
Stoffers, D.A.2
-
2
-
-
33745863033
-
Islet β cell failure in type 2 diabetes
-
Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116:1802-1812.
-
(2006)
J Clin Invest.
, vol.116
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
3
-
-
84879583340
-
Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression
-
Stamateris RE, Sharma RB, Hollern DA, Alonso LC. Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression. Am J Physiol Endocrinol Metab. 2013;305:E149-E159.
-
(2013)
Am J Physiol Endocrinol Metab.
, vol.305
, pp. E149-E159
-
-
Stamateris, R.E.1
Sharma, R.B.2
Hollern, D.A.3
Alonso, L.C.4
-
4
-
-
34347392646
-
Glucose infusion in mice: A new model to induce β-cell replication
-
Alonso LC, Yokoe T, Zhang P, et al. Glucose infusion in mice: a new model to induce β-cell replication. Diabetes. 2007;56:1792-1801.
-
(2007)
Diabetes
, vol.56
, pp. 1792-1801
-
-
Alonso, L.C.1
Yokoe, T.2
Zhang, P.3
-
5
-
-
37149013990
-
Dynamics of insulin sensitivity, -cell function, and -cell mass during the development of diabetes in fa/fa rats
-
Topp BG, Atkinson LL, Finegood DT. Dynamics of insulin sensitivity, -cell function, and -cell mass during the development of diabetes in fa/fa rats. Am J Physiol Endocrinol Metab. 2007;293:E1730-E1735.
-
(2007)
Am J Physiol Endocrinol Metab.
, vol.293
, pp. E1730-E1735
-
-
Topp, B.G.1
Atkinson, L.L.2
Finegood, D.T.3
-
6
-
-
0037219411
-
β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes
-
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102-110.
-
(2003)
Diabetes
, vol.52
, pp. 102-110
-
-
Butler, A.E.1
Janson, J.2
Bonner-Weir, S.3
Ritzel, R.4
Rizza, R.A.5
Butler, P.C.6
-
7
-
-
0024508097
-
Compensatory growth of pancreatic β-cells in adult rats after short-term glucose infusion
-
Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic β-cells in adult rats after short-term glucose infusion. Diabetes. 1989;38:49-53.
-
(1989)
Diabetes
, vol.38
, pp. 49-53
-
-
Bonner-Weir, S.1
Deery, D.2
Leahy, J.L.3
Weir, G.C.4
-
8
-
-
5644251769
-
Metabolic adaptations to chronic glucose infusion in rats
-
Topp BG, McArthur MD, Finegood DT. Metabolic adaptations to chronic glucose infusion in rats. Diabetologia. 2004;47:1602-1610.
-
(2004)
Diabetologia
, vol.47
, pp. 1602-1610
-
-
Topp, B.G.1
McArthur, M.D.2
Finegood, D.T.3
-
9
-
-
62849084110
-
Blood glucose levels regulate pancreatic β-cell proliferation during experimentally-induced and spontaneous autoimmune diabetes in mice
-
Pechhold K, Koczwara K, Zhu X, et al. Blood glucose levels regulate pancreatic β-cell proliferation during experimentally-induced and spontaneous autoimmune diabetes in mice. PLoS One. 2009;4:e4827.
-
(2009)
PLoS One
, vol.4
, pp. e4827
-
-
Pechhold, K.1
Koczwara, K.2
Zhu, X.3
-
10
-
-
79953752183
-
Glucose stimulates human β cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice
-
Levitt HE, Cyphert TJ, Pascoe JL, et al. Glucose stimulates human β cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia. 2011;54:572-582.
-
(2011)
Diabetologia
, vol.54
, pp. 572-582
-
-
Levitt, H.E.1
Cyphert, T.J.2
Pascoe, J.L.3
-
11
-
-
79953734660
-
Control of pancreatic β cell regeneration by glucose metabolism
-
Porat S, Weinberg-Corem N, Tornovsky-Babaey S, et al. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 2011;13:440-449.
-
(2011)
Cell Metab.
, vol.13
, pp. 440-449
-
-
Porat, S.1
Weinberg-Corem, N.2
Tornovsky-Babaey, S.3
-
12
-
-
33846024011
-
Glucokinase and IRS-2 are required for compensatory β cell hyperplasia in response to high-fat diet-induced insulin resistance
-
Terauchi Y, Takamoto I, Kubota N, et al. Glucokinase and IRS-2 are required for compensatory β cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest. 2007;117:246-257.
-
(2007)
J Clin Invest.
, vol.117
, pp. 246-257
-
-
Terauchi, Y.1
Takamoto, I.2
Kubota, N.3
-
13
-
-
0032567937
-
Disruption of IRS-2 causes type 2 diabetes in mice
-
Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900-904.
-
(1998)
Nature
, vol.391
, pp. 900-904
-
-
Withers, D.J.1
Gutierrez, J.S.2
Towery, H.3
-
14
-
-
0033755408
-
Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia
-
Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes. 2000;49:1880-1889.
-
(2000)
Diabetes
, vol.49
, pp. 1880-1889
-
-
Kubota, N.1
Tobe, K.2
Terauchi, Y.3
-
15
-
-
2342496712
-
FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
-
Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421-426.
-
(2004)
Cell
, vol.117
, pp. 421-426
-
-
Accili, D.1
Arden, K.C.2
-
16
-
-
84884594284
-
Theroleof FOXO1 inβ-cell failure and type 2 diabetes mellitus
-
Kitamura T. Theroleof FOXO1 inβ-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol. 2013;9:615-623.
-
(2013)
Nat Rev Endocrinol.
, vol.9
, pp. 615-623
-
-
Kitamura, T.1
-
17
-
-
65249159171
-
Association of common genetic variation in the FOXO1 gene with β-cell dysfunction, impaired glucose tolerance, and type 2 diabetes
-
Müssig K, Staiger H, Machicao F, et al. Association of common genetic variation in the FOXO1 gene with β-cell dysfunction, impaired glucose tolerance, and type 2 diabetes. J Clin Endocrinol Metab. 2009;94:1353-1360.
-
(2009)
J Clin Endocrinol Metab.
, vol.94
, pp. 1353-1360
-
-
Müssig, K.1
Staiger, H.2
Machicao, F.3
-
18
-
-
84964697562
-
Legacy effect of Foxo1 in pancreatic endocrine progenitors on adult β-cell mass and function
-
Talchai SC, Accili D. Legacy effect of Foxo1 in pancreatic endocrine progenitors on adult β-cell mass and function. Diabetes. 2015;64:2868-2879.
-
(2015)
Diabetes
, vol.64
, pp. 2868-2879
-
-
Talchai, S.C.1
Accili, D.2
-
19
-
-
84907994036
-
Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice
-
Kim-Muller JY, Zhao S, Srivastava S, et al. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice. Cell Metab. 2014;20:593-602.
-
(2014)
Cell Metab.
, vol.20
, pp. 593-602
-
-
Kim-Muller, J.Y.1
Zhao, S.2
Srivastava, S.3
-
20
-
-
84866389264
-
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
-
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150:1223-1234.
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
21
-
-
0036950665
-
The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth
-
Kitamura T, Nakae J, Kitamura Y, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J Clin Invest. 2002;110:1839-1847.
-
(2002)
J Clin Invest.
, vol.110
, pp. 1839-1847
-
-
Kitamura, T.1
Nakae, J.2
Kitamura, Y.3
-
22
-
-
33644660954
-
Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance
-
Okamoto H, Hribal ML, Lin HV, Bennett WR, Ward A, Accili D. Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance. J Clin Invest. 2006;116:775-782.
-
(2006)
J Clin Invest.
, vol.116
, pp. 775-782
-
-
Okamoto, H.1
Hribal, M.L.2
Lin, H.V.3
Bennett, W.R.4
Ward, A.5
Accili, D.6
-
23
-
-
68949157228
-
Regulation of pancreatic juxtaductal endocrine cell formation by FoxO1
-
Kitamura T, Kitamura YI, Kobayashi M, et al. Regulation of pancreatic juxtaductal endocrine cell formation by FoxO1. Mol Cell Biol. 2009;29:4417-4430.
-
(2009)
Mol Cell Biol.
, vol.29
, pp. 4417-4430
-
-
Kitamura, T.1
Kitamura, Y.I.2
Kobayashi, M.3
-
24
-
-
33846975788
-
Metabolic diapause in pancreatic β-cells expressing a gain-of-function mutant of the forkhead protein Foxo1
-
Buteau J, Shlien A, Foisy S, Accili D. Metabolic diapause in pancreatic β-cells expressing a gain-of-function mutant of the forkhead protein Foxo1. J Biol Chem. 2007;282:287-293.
-
(2007)
J Biol Chem.
, vol.282
, pp. 287-293
-
-
Buteau, J.1
Shlien, A.2
Foisy, S.3
Accili, D.4
-
25
-
-
33644865024
-
The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation
-
Kawamori D, Kaneto H, Nakatani Y, et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem. 2006;281:1091-1098.
-
(2006)
J Biol Chem.
, vol.281
, pp. 1091-1098
-
-
Kawamori, D.1
Kaneto, H.2
Nakatani, Y.3
-
26
-
-
77949272720
-
Effect of forkhead box O1 (FOXO1) on β cell development in the human fetal pancreas
-
Al-Masri M, Krishnamurthy M, Li J, et al. Effect of forkhead box O1 (FOXO1) on β cell development in the human fetal pancreas. Diabetologia. 2010;53:699-711.
-
(2010)
Diabetologia.
, vol.53
, pp. 699-711
-
-
Al-Masri, M.1
Krishnamurthy, M.2
Li, J.3
-
27
-
-
27744518040
-
FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction
-
Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2005;2:153-163.
-
(2005)
Cell Metab.
, vol.2
, pp. 153-163
-
-
Kitamura, Y.I.1
Kitamura, T.2
Kruse, J.P.3
-
28
-
-
77954949431
-
FoxO1 links hepatic insulin action to endoplasmic reticulum stress
-
Kamagate A, Kim DH, Zhang T, et al. FoxO1 links hepatic insulin action to endoplasmic reticulum stress. Endocrinology. 2010;151:3521-3535.
-
(2010)
Endocrinology
, vol.151
, pp. 3521-3535
-
-
Kamagate, A.1
Kim, D.H.2
Zhang, T.3
-
29
-
-
42449126643
-
Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis
-
Martinez SC, Tanabe K, Cras-Méneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA. Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846-859.
-
(2008)
Diabetes
, vol.57
, pp. 846-859
-
-
Martinez, S.C.1
Tanabe, K.2
Cras-Méneur, C.3
Abumrad, N.A.4
Bernal-Mizrachi, E.5
Permutt, M.A.6
-
30
-
-
80755148700
-
FoxO6 integrates insulin signaling with gluconeogenesis in the liver
-
Kim DH, Perdomo G, Zhang T, et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes. 2011;60:2763-2774.
-
(2011)
Diabetes
, vol.60
, pp. 2763-2774
-
-
Kim, D.H.1
Perdomo, G.2
Zhang, T.3
-
31
-
-
33751507689
-
Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism
-
Qu S, Altomonte J, Perdomo G, He J, et al. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology. 2006;147:5641-5652.
-
(2006)
Endocrinology
, vol.147
, pp. 5641-5652
-
-
Qu, S.1
Altomonte, J.2
Perdomo, G.3
He, J.4
-
32
-
-
34548438601
-
Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis
-
Su D, Zhang N, He J, et al. Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis. Diabetes. 2007;56:2274-2283.
-
(2007)
Diabetes
, vol.56
, pp. 2274-2283
-
-
Su, D.1
Zhang, N.2
He, J.3
-
33
-
-
77954291466
-
Redox modulation protects islets from transplant-related injury
-
Sklavos MM, Bertera S, Tse HM, et al. Redox modulation protects islets from transplant-related injury. Diabetes. 2010;59:1731-1738.
-
(2010)
Diabetes
, vol.59
, pp. 1731-1738
-
-
Sklavos, M.M.1
Bertera, S.2
Tse, H.M.3
-
34
-
-
45749133797
-
FoxO1 mediates insulindependent regulation of hepatic VLDL production in mice
-
Kamagate A, Qu S, Perdomo G, et al. FoxO1 mediates insulindependent regulation of hepatic VLDL production in mice. J Clin Invest. 2008;118:2347-2364.
-
(2008)
J Clin Invest.
, vol.118
, pp. 2347-2364
-
-
Kamagate, A.1
Qu, S.2
Perdomo, G.3
-
35
-
-
21044433282
-
The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet β cells
-
Schisler JC, Jensen PB, Taylor DG, et al. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet β cells. Proc Natl Acad Sci USA. 2005;102:7297-7302.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 7297-7302
-
-
Schisler, J.C.1
Jensen, P.B.2
Taylor, D.G.3
-
36
-
-
85047688974
-
Human pancreatic β-cell G1/S molecule cell cycle atlas
-
Fiaschi-Taesch NM, Kleinberger JW, Salim FG, et al. Human pancreatic β-cell G1/S molecule cell cycle atlas. Diabetes. 2013;62:2450-2459.
-
(2013)
Diabetes
, vol.62
, pp. 2450-2459
-
-
Fiaschi-Taesch, N.M.1
Kleinberger, J.W.2
Salim, F.G.3
-
37
-
-
26944461217
-
Transcriptional feedback control of insulin receptor by dFOXO/FOXO1
-
Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 2005;19:2435-2446.
-
(2005)
Genes Dev.
, vol.19
, pp. 2435-2446
-
-
Puig, O.1
Tjian, R.2
-
38
-
-
44749088201
-
β-Cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans
-
Meier JJ, Butler AE, Saisho Y, et al. β-Cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes. 2008;57:1584-1594.
-
(2008)
Diabetes
, vol.57
, pp. 1584-1594
-
-
Meier, J.J.1
Butler, A.E.2
Saisho, Y.3
-
39
-
-
77951152217
-
Cyclin D2 is essential for the compensatory β-cell hyperplastic response to insulin resistance in rodents
-
Georgia S, Hinault C, Kawamori D, et al. Cyclin D2 is essential for the compensatory β-cell hyperplastic response to insulin resistance in rodents. Diabetes. 2010;59:987-996.
-
(2010)
Diabetes
, vol.59
, pp. 987-996
-
-
Georgia, S.1
Hinault, C.2
Kawamori, D.3
-
40
-
-
65549130128
-
MTORC1 activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability
-
Balcazar N, Sathyamurthy A, Elghazi L, et al. mTORC1 activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem. 2009;284:7832-7842.
-
(2009)
J Biol Chem.
, vol.284
, pp. 7832-7842
-
-
Balcazar, N.1
Sathyamurthy, A.2
Elghazi, L.3
-
41
-
-
20044390365
-
Functional and molecular defects ofpancreatic islets in human type 2 diabetes
-
Del Guerra S, Lupi R, Marselli L, et al. Functional and molecular defects ofpancreatic islets in human type 2 diabetes. Diabetes. 2005;54:727-735.
-
(2005)
Diabetes
, vol.54
, pp. 727-735
-
-
Del Guerra, S.1
Lupi, R.2
Marselli, L.3
-
42
-
-
0026656503
-
The loss of GLUT2 expression by glucose-unresponsive β cells of db/db mice is reversible and is induced by the diabetic environment
-
Thorens B, Wu YJ, Leahy JL, Weir GC. The loss of GLUT2 expression by glucose-unresponsive β cells of db/db mice is reversible and is induced by the diabetic environment. J Clin Invest. 1992;90:77-85.
-
(1992)
J Clin Invest.
, vol.90
, pp. 77-85
-
-
Thorens, B.1
Wu, Y.J.2
Leahy, J.L.3
Weir, G.C.4
-
43
-
-
84881218353
-
Inactivation of specific β cell transcription factors in type 2 diabetes
-
Guo S, Dai C, Guo M, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest. 2013;123:3305-3316.
-
(2013)
J Clin Invest.
, vol.123
, pp. 3305-3316
-
-
Guo, S.1
Dai, C.2
Guo, M.3
-
44
-
-
84866085184
-
SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion
-
Sansbury FH, Flanagan SE, Houghton JA, et al. SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia. 2012;55:2381-2385.
-
(2012)
Diabetologia
, vol.55
, pp. 2381-2385
-
-
Sansbury, F.H.1
Flanagan, S.E.2
Houghton, J.A.3
-
46
-
-
84881461824
-
FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic β cells
-
Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic β cells. J Biol Chem. 2013;288:23194-23202.
-
(2013)
J Biol Chem.
, vol.288
, pp. 23194-23202
-
-
Kibbe, C.1
Chen, J.2
Xu, G.3
Jing, G.4
Shalev, A.5
-
47
-
-
18844382368
-
Functional interaction between β-catenin and FOXO in oxidative stress signaling
-
Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science. 2005;308:1181-1184.
-
(2005)
Science
, vol.308
, pp. 1181-1184
-
-
Essers, M.A.1
De Vries-Smits, L.M.2
Barker, N.3
Polderman, P.E.4
Burgering, B.M.5
Korswagen, H.C.6
-
48
-
-
5644248079
-
Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet β cells in diabetes
-
Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet β cells in diabetes. J Biol Chem. 2004;279:42351-42354.
-
(2004)
J Biol Chem.
, vol.279
, pp. 42351-42354
-
-
Robertson, R.P.1
-
49
-
-
35848957485
-
Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword?
-
Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9:2277-2293.
-
(2007)
Antioxid Redox Signal.
, vol.9
, pp. 2277-2293
-
-
Malhotra, J.D.1
Kaufman, R.J.2
-
50
-
-
43549108142
-
Glucolipotoxicity: Fuel excess and β-cell dysfunction
-
Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev. 2008;29:351-366.
-
(2008)
Endocr Rev.
, vol.29
, pp. 351-366
-
-
Poitout, V.1
Robertson, R.P.2
-
51
-
-
84877276240
-
Differential responses ofpancreatic β-cells to ROS and RNS
-
Meares GP, Fontanilla D, Broniowska KA, Andreone T, Lancaster JR Jr, Corbett JA. Differential responses ofpancreatic β-cells to ROS and RNS. Am J Physiol Endocrinol Metab. 2013;304:E614-E622.
-
(2013)
Am J Physiol Endocrinol Metab.
, vol.304
, pp. E614-E622
-
-
Meares, G.P.1
Fontanilla, D.2
Broniowska, K.A.3
Andreone, T.4
Lancaster, J.R.5
Corbett, J.A.6
-
52
-
-
84863129902
-
FTY720 normalizes hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice through regulation of cyclin D3 and p57 (KIP2)
-
Zhao Z, Choi J, Zhao C, Ma ZA. FTY720 normalizes hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice through regulation of cyclin D3 and p57 (KIP2). J Biol Chem. 2012;287:5562-5573.
-
(2012)
J Biol Chem.
, vol.287
, pp. 5562-5573
-
-
Zhao, Z.1
Choi, J.2
Zhao, C.3
Ma, Z.A.4
-
53
-
-
78650778644
-
Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas
-
Köhler CU, Olewinski M, Tannapfel A, Schmidt WE, Fritsch H, Meier JJ. Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am J Physiol Endocrinol Metab. 2011;300:E221-E230.
-
(2011)
Am J Physiol Endocrinol Metab.
, vol.300
, pp. E221-E230
-
-
Köhler, C.U.1
Olewinski, M.2
Tannapfel, A.3
Schmidt, W.E.4
Fritsch, H.5
Meier, J.J.6
-
54
-
-
73449131230
-
Overexpression of FoxO1 causes proliferation of cultured pancreatic β cells exposed to low nutrition
-
Ai J, Duan J, Lv X, et al. Overexpression of FoxO1 causes proliferation of cultured pancreatic β cells exposed to low nutrition. Biochemistry. 2010;49:218-225.
-
(2010)
Biochemistry
, vol.49
, pp. 218-225
-
-
Ai, J.1
Duan, J.2
Lv, X.3
-
55
-
-
84943253417
-
Insulin demand regulates β cell number via the unfolded protein response
-
Sharma RB, O'Donnell AC, Stamateris RE, et al. Insulin demand regulates β cell number via the unfolded protein response. J Clin Invest. 2015;125:3831-3846.
-
(2015)
J Clin Invest.
, vol.125
, pp. 3831-3846
-
-
Sharma, R.B.1
O'Donnell, A.C.2
Stamateris, R.E.3
-
56
-
-
0242580872
-
Convergence of peroxisome proliferator-activated receptory and Foxo1 signaling pathways
-
Dowell P, Otto TC, Adi S, Lane MD. Convergence of peroxisome proliferator-activated receptor y and Foxo1 signaling pathways. J Biol Chem. 2003;278:45485-45491.
-
(2003)
J Biol Chem.
, vol.278
, pp. 45485-45491
-
-
Dowell, P.1
Otto, T.C.2
Adi, S.3
Lane, M.D.4
-
57
-
-
33846878069
-
PPARα mediates the hypolipidemic action of fibrates by antagonizing FoxO1
-
Qu S, Su D, Altomonte J, Kamagate A, et al. PPARα mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab. 2007;292:E421-E434.
-
(2007)
Am J Physiol Endocrinol Metab.
, vol.292
, pp. E421-E434
-
-
Qu, S.1
Su, D.2
Altomonte, J.3
Kamagate, A.4
-
58
-
-
80755168893
-
FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes
-
Tsunekawa S, Demozay D, Briaud I, et al. FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes. Diabetes. 2011;60:2883-2891.
-
(2011)
Diabetes
, vol.60
, pp. 2883-2891
-
-
Tsunekawa, S.1
Demozay, D.2
Briaud, I.3
-
59
-
-
0036787607
-
Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1
-
Nakae J, Biggs WH 3rd, Kitamura T, et al. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet. 2002;32:245-253.
-
(2002)
Nat Genet.
, vol.32
, pp. 245-253
-
-
Nakae, J.1
Biggs, W.H.2
Kitamura, T.3
-
60
-
-
84863127126
-
FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization
-
Kikuchi O, Kobayashi M, Amano K, et al. FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization. PLoS One. 2012;7:e32249.
-
(2012)
PLoS One
, vol.7
, pp. e32249
-
-
Kikuchi, O.1
Kobayashi, M.2
Amano, K.3
-
61
-
-
84862909085
-
Overexpression of FoxO1 in the hypothalamus and pancreas causes obesity and glucose intolerance
-
Kim HJ, Kobayashi M, Sasaki T, et al. Overexpression of FoxO1 in the hypothalamus and pancreas causes obesity and glucose intolerance. Endocrinology. 2012;153:659-671.
-
(2012)
Endocrinology
, vol.153
, pp. 659-671
-
-
Kim, H.J.1
Kobayashi, M.2
Sasaki, T.3
-
62
-
-
84859350525
-
Generation of functional insulin-producing cells in the gut by Foxo1 ablation
-
S1
-
Talchai C, Xuan S, Kitamura T, De Pinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet. 2012;44:406-412, S1.
-
(2012)
Nat Genet.
, vol.44
, pp. 406-412
-
-
Talchai, C.1
Xuan, S.2
Kitamura, T.3
De Pinho, R.A.4
Accili, D.5
-
63
-
-
84903639116
-
FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures
-
Bouchi R, Foo KS, Hua H, et al. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat Commun. 2014;5:4242.
-
(2014)
Nat Commun.
, vol.5
, pp. 4242
-
-
Bouchi, R.1
Foo, K.S.2
Hua, H.3
-
64
-
-
33745576798
-
Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
-
Kim MS, Pak YK, Jang PG, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9:901-906.
-
(2006)
Nat Neurosci.
, vol.9
, pp. 901-906
-
-
Kim, M.S.1
Pak, Y.K.2
Jang, P.G.3
-
65
-
-
84861976352
-
FoxO1 target Gpr17 activates AgRP neurons to regulate food intake
-
Ren H, Orozco IJ, Su Y, et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell. 2012;149:1314-1326.
-
(2012)
Cell
, vol.149
, pp. 1314-1326
-
-
Ren, H.1
Orozco, I.J.2
Su, Y.3
|