-
1
-
-
33645658773
-
Os produtos naturais e a química medicinal moderna
-
Viegas C Jr, Bolzani VDS, Barreiro EJ. Os produtos naturais e a química medicinal moderna. Química Nova. 2006;29(2):326-337. doi:10.1590/S0100-40422006000200025.
-
(2006)
Química Nova.
, vol.29
, Issue.2
, pp. 326-337
-
-
Viegas, C.1
Bolzani, V.D.S.2
Barreiro, E.J.3
-
2
-
-
39049094335
-
Virtual screening and its integration with modern drug design technologies
-
Guido RVC, Oliva G, Andricopulo AD. Virtual screening and its integration with modern drug design technologies. Curr Med Chem. 2008;15(1):37-46. doi:10.2174/092986708783330683.
-
(2008)
Curr Med Chem.
, vol.15
, Issue.1
, pp. 37-46
-
-
Guido, R.V.C.1
Oliva, G.2
Andricopulo, A.D.3
-
3
-
-
33645887230
-
Critical review of the role of HTS in drug discovery
-
Macarron R. Critical review of the role of HTS in drug discovery. Drug Discov Today. 2006;11(7-8):277-279. doi:10.1016/j.drudis.2006. 02.001.
-
(2006)
Drug Discov Today.
, vol.11
, Issue.7-8
, pp. 277-279
-
-
Macarron, R.1
-
4
-
-
84930211844
-
Active-learning strategies in computer-assisted drug discovery
-
Reker D, Schneider G. Active-learning strategies in computer-assisted drug discovery. Drug Discov Today. 2015;20(4):458-465. doi:10.1016/ j.drudis.2014.12.004.
-
(2015)
Drug Discov Today.
, vol.20
, Issue.4
, pp. 458-465
-
-
Reker, D.1
Schneider, G.2
-
5
-
-
0034677966
-
Drug discovery: A historical perspective
-
Drews J. Drug discovery: a historical perspective. Science. 2000;287(5460):1960-1964. doi:10.1126/science.287.5460.1960.
-
(2000)
Science.
, vol.287
, Issue.5460
, pp. 1960-1964
-
-
Drews, J.1
-
7
-
-
73549086984
-
Computational systems approach for drug target discovery
-
Chandra N. Computational systems approach for drug target discovery. Expert Opin Drug Discov. 2009;4(12):1221-1236. doi:10.1517/ 17460440903380422.
-
(2009)
Expert Opin Drug Discov.
, vol.4
, Issue.12
, pp. 1221-1236
-
-
Chandra, N.1
-
8
-
-
4043062916
-
De novo drug design: Integration of structure-based and ligand-based methods
-
Dean PM, Lloyd DG, Todorov NP. De novo drug design: integration of structure-based and ligand-based methods. Curr Opin Drug Discov Devel. 2004;7(3):347-353.
-
(2004)
Curr Opin Drug Discov Devel.
, vol.7
, Issue.3
, pp. 347-353
-
-
Dean, P.M.1
Lloyd, D.G.2
Todorov, N.P.3
-
9
-
-
84925343037
-
Maximizing computational tools for successful drug discovery
-
Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov. 2015;10(4):321-329. doi:10.1517/17460441.2015.1016497.
-
(2015)
Expert Opin Drug Discov.
, vol.10
, Issue.4
, pp. 321-329
-
-
Nantasenamat, C.1
Prachayasittikul, V.2
-
10
-
-
77953707142
-
Advances in computational methods to predict the biological activity of compounds
-
Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Discov. 2010;5(7):633-654. doi:10.1517/17460441.2010.492827.
-
(2010)
Expert Opin Drug Discov.
, vol.5
, Issue.7
, pp. 633-654
-
-
Nantasenamat, C.1
Isarankura-Na-Ayudhya, C.2
Prachayasittikul, V.3
-
11
-
-
80054923170
-
Modern drug discovery technologies: Opportunities and challenges in lead discovery
-
Guido RVC, Oliva G, Andricopulo AD. Modern drug discovery technologies: opportunities and challenges in lead discovery. Comb Chem High Throughput Screen. 2011;14(10):830-839. doi:10.2174/ 138620711797537067.
-
(2011)
Comb Chem High Throughput Screen.
, vol.14
, Issue.10
, pp. 830-839
-
-
Guido, R.V.C.1
Oliva, G.2
Andricopulo, A.D.3
-
12
-
-
84555218838
-
Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: Oportunidades e desafios em P&D de fármacos
-
Ferreira RS, Glaucius O, Andricopulo AD. Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: oportunidades e desafios em P&D de fármacos. Química Nova. 2011;34(10):1770-1778. doi:10.1590/S0100-40422011001000010.
-
(2011)
Química Nova.
, vol.34
, Issue.10
, pp. 1770-1778
-
-
Ferreira, R.S.1
Glaucius, O.2
Andricopulo, A.D.3
-
13
-
-
33748849648
-
Machine learning in bioinformatics
-
Larrañaga P, Calvo B, Santana R, et al. Machine learning in bioinformatics. Brief Bioinform. 2006;7(1):86-112. doi:10.1093/bib/bbk007.
-
(2006)
Brief Bioinform.
, vol.7
, Issue.1
, pp. 86-112
-
-
Larrañaga, P.1
Calvo, B.2
Santana, R.3
-
14
-
-
0033044637
-
Machine learning approaches for the prediction of signal peptides and other protein sorting signals
-
Nielsen H, Brunak S, Von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng Des Selection. 1999;12(1):3-9. doi:10.1093/protein/12.1.3.
-
(1999)
Protein Eng des Selection.
, vol.12
, Issue.1
, pp. 3-9
-
-
Nielsen, H.1
Brunak, S.2
Von Heijne, G.3
-
15
-
-
0025633838
-
Machine learning approach for the prediction of protein secondary structure
-
King RD, Sternberg MJ. Machine learning approach for the prediction of protein secondary structure. J Mol Biol. 1990;216(2):441-457. doi:10.1016/S0022-2836(05)80333-X.
-
(1990)
J Mol Biol.
, vol.216
, Issue.2
, pp. 441-457
-
-
King, R.D.1
Sternberg, M.J.2
-
16
-
-
69549097716
-
Identification of protein functions using a machine-learning approach based on sequence-derived properties
-
Lee BJ, Shin MS, Oh YJ, et al. Identification of protein functions using a machine-learning approach based on sequence-derived properties. Proteome Sci. 2009;7:27. doi:10.1186/1477-5956-7-27.
-
(2009)
Proteome Sci.
, vol.7
, pp. 27
-
-
Lee, B.J.1
Shin, M.S.2
Oh, Y.J.3
-
18
-
-
0002116138
-
New approaches to QSAR: Neural networks and machine learning
-
King RD, Hirst JD, Sternberg MJE. New approaches to QSAR: neural networks and machine learning. Perspect Drug Discov Des. 1993;1(2):279-290. doi:10.1007/BF02174529.
-
(1993)
Perspect Drug Discov Des.
, vol.1
, Issue.2
, pp. 279-290
-
-
King, R.D.1
Hirst, J.D.2
Sternberg, M.J.E.3
-
19
-
-
79952178127
-
A machine learning-based method to improve docking scoring functions and its application to drug repurposing
-
Kinnings SL, Liu N, Tonge PJ, et al. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model. 2011;51(2):408-419. doi:10.1021/ ci100369f.
-
(2011)
J Chem Inf Model.
, vol.51
, Issue.2
, pp. 408-419
-
-
Kinnings, S.L.1
Liu, N.2
Tonge, P.J.3
-
20
-
-
33847207834
-
Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
-
Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today. 2007;12(5-6):225-233. doi:10.1016/j.drudis.2007.01.011.
-
(2007)
Drug Discov Today.
, vol.12
, Issue.5-6
, pp. 225-233
-
-
Eckert, H.1
Bajorath, J.2
-
21
-
-
33748124863
-
Machine learning techniques for in silico modeling of drug metabolism
-
Fox T, Kriegl JM. Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem. 2006;6(15):1579-1591. doi:10.2174/156802606778108915.
-
(2006)
Curr Top Med Chem.
, vol.6
, Issue.15
, pp. 1579-1591
-
-
Fox, T.1
Kriegl, J.M.2
-
23
-
-
33644959172
-
Metabolomics, modelling and machine learning in systems biology-towards an understanding of the languages of cells
-
Kell DB. Metabolomics, modelling and machine learning in systems biology-towards an understanding of the languages of cells. FEBS J. 2006;273(5):873-894.
-
(2006)
FEBS J.
, vol.273
, Issue.5
, pp. 873-894
-
-
Kell, D.B.1
-
24
-
-
84893627199
-
Applications of artificial neural networks in chemical problems
-
Suzuki K, editor. 1st ed. InTech; [cited 2015 Dec 2]. Available at:
-
Maltarollo VG, Honório KM, Da Silva ABF. Applications of artificial neural networks in chemical problems. In: Suzuki K, editor. Artificial neural networks-architectures and applications. 1st ed. InTech; 2013. p. 203-223. [cited 2015 Dec 2]. Available at: http://www.intechopen. com/books/artificial-neural-networks-architectures-and-applications/ applications-of-artificial-neural-networks-in-chemical-problems
-
(2013)
Artificial Neural Networks-architectures and Applications
, pp. 203-223
-
-
Maltarollo, V.G.1
Honório, K.M.2
Da Silva, A.B.F.3
-
25
-
-
84925400066
-
Machine-learning approaches in drug discovery: Methods and applications
-
Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318-331. doi:10.1016/j.drudis.2014.10.012.
-
(2015)
Drug Discov Today.
, vol.20
, Issue.3
, pp. 318-331
-
-
Lavecchia, A.1
-
26
-
-
84903739566
-
Virtual screening strategies in medicinal chemistry: The state of the art and current challenges
-
Braga RC, Alves VM, Silva AC, et al. Virtual screening strategies in medicinal chemistry: the state of the art and current challenges. Curr Top Med Chem. 2014;14(16):1899-1912.
-
(2014)
Curr Top Med Chem.
, vol.14
, Issue.16
, pp. 1899-1912
-
-
Braga, R.C.1
Alves, V.M.2
Silva, A.C.3
-
27
-
-
33846020557
-
Similarity metrics and descriptor spaces-which combinations to choose?
-
Glen RC, Adams SE. Similarity metrics and descriptor spaces-which combinations to choose? QSAR Comb Sci. 2006;25(12):1133-1142. doi:10.1002/(ISSN)1611-0218.
-
(2006)
QSAR Comb Sci.
, vol.25
, Issue.12
, pp. 1133-1142
-
-
Glen, R.C.1
Adams, S.E.2
-
28
-
-
84927730179
-
Molecular fingerprint similarity search in virtual screening
-
Cereto-Massagué A, Ojeda MJ, Valls C, et al. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58-63. doi:10.1016/j.ymeth.2014.08.005.
-
(2015)
Methods.
, vol.71
, pp. 58-63
-
-
Cereto-Massagué, A.1
Ojeda, M.J.2
Valls, C.3
-
30
-
-
84937761914
-
Fingerprint-based consensus virtual screening towards structurally new 5-HT(6)R ligands
-
Smusz S, Kurczab R, Sata?a G, et al. Fingerprint-based consensus virtual screening towards structurally new 5-HT(6)R ligands. Bioorg Med Chem Lett. 2015;25(9):1827-1830. doi:10.1016/j.bmcl.2015.03.049.
-
(2015)
Bioorg Med Chem Lett.
, vol.25
, Issue.9
, pp. 1827-1830
-
-
Smusz, S.1
Kurczab, R.2
Sataa, G.3
-
31
-
-
77956964002
-
Best practices for QSAR model development, validation, and exploitation
-
Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29(6-7):476-488. doi:10.1002/ minf.201000061.
-
(2010)
Mol Inform.
, vol.29
, Issue.6-7
, pp. 476-488
-
-
Tropsha, A.1
-
32
-
-
34250628103
-
Principles of QSAR models validation: Internal and external
-
Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007;26(5):694-701. doi:10.1002/(ISSN) 1611-0218.
-
(2007)
QSAR Comb Sci.
, vol.26
, Issue.5
, pp. 694-701
-
-
Gramatica, P.1
-
34
-
-
70450181710
-
How to recognize and workaround pitfalls in QSAR studies: A critical review
-
Scior T, Medina-Franco JL, Do Q-T, et al. How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem. 2009;16(32):4297-4313. doi:10.2174/092986709789578213.
-
(2009)
Curr Med Chem.
, vol.16
, Issue.32
, pp. 4297-4313
-
-
Scior, T.1
Medina-Franco, J.L.2
Do, Q.-T.3
-
35
-
-
84862848391
-
Machine learning methods for property prediction in chemoinformatics: Quo vadis?
-
Varnek A, Baskin I. Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model. 2012;52(6):1413-1437.
-
(2012)
J Chem Inf Model.
, vol.52
, Issue.6
, pp. 1413-1437
-
-
Varnek, A.1
Baskin, I.2
-
36
-
-
84911446995
-
In silico machine learning methods in drug development
-
Dobchev DA, Pillai GG, Karelson M. In silico machine learning methods in drug development. Curr Top Med Chem. 2014;14(16):1913-1922.
-
(2014)
Curr Top Med Chem.
, vol.14
, Issue.16
, pp. 1913-1922
-
-
Dobchev, D.A.1
Pillai, G.G.2
Karelson, M.3
-
37
-
-
84958558504
-
-
Guidance Document On The Validation Of(Quantitative) Structure-Activity Relationship [(Q)SAR] Models. Paris, France: Organisation for Economic Co-operation and Development(OECD); 2007. [cited 2016 Jan 4] OECD Environment Health and Safety Publications-Series on Testing and Assessment No 69
-
Guidance Document On The Validation Of(Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Environment Health and Safety Publications-Series on Testing and Assessment No. 69. Paris, France: Organisation for Economic Co-operation and Development(OECD); 2007. [cited 2016 Jan 4]. Available from: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/ ?cote=env/jm/mono%282007%292&doclanguage=en
-
-
-
-
38
-
-
0010465904
-
Proposição, validação e análise dos modelos que correlacionam estrutura química e atividade biológica
-
Gaudio AC, Zandonade E. Proposição, validação e análise dos modelos que correlacionam estrutura química e atividade biológica. Química Nova. 2001;24(5):658-671. doi:10.1590/S0100-40422001000500013.
-
(2001)
Química Nova.
, vol.24
, Issue.5
, pp. 658-671
-
-
Gaudio, A.C.1
Zandonade, E.2
-
39
-
-
84930241958
-
Applications of genetic algorithms in QSAR/QSPR modeling
-
Valadi J, Siarry P, editors. Cham: Springer International Publishing
-
Sukumar N, Prabhu G, Saha P. Applications of genetic algorithms in QSAR/QSPR modeling. In: Valadi J, Siarry P, editors. Applications of metaheuristics in process engineering. Cham: Springer International Publishing; 2014. p. 315-324.
-
(2014)
Applications of Metaheuristics in Process Engineering
, pp. 315-324
-
-
Sukumar, N.1
Prabhu, G.2
Saha, P.3
-
40
-
-
84862773642
-
Genetic algorithms in chemometrics
-
Niazi A, Leardi R. Genetic algorithms in chemometrics. J Chemom. 2012;26(6):345-351. doi:10.1002/cem.2426.
-
(2012)
J Chemom.
, vol.26
, Issue.6
, pp. 345-351
-
-
Niazi, A.1
Leardi, R.2
-
41
-
-
66149108701
-
Influence relevance voting: An accurate and interpretable virtual high throughput screening method
-
Swamidass SJ, Azencott C-A, Lin T-W, et al. Influence relevance voting: an accurate and interpretable virtual high throughput screening method. J Chem Inf Model. 2009;49(4):756-766.
-
(2009)
J Chem Inf Model.
, vol.49
, Issue.4
, pp. 756-766
-
-
Swamidass, S.J.1
Azencott, C.-A.2
Lin, T.-W.3
-
42
-
-
84875212996
-
Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor
-
Piir G, Sild S, Maran U. Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor. SAR QSAR Environ Res. 2013;24(3):175-199. doi:10.1080/1062936X.2012.762426.
-
(2013)
SAR QSAR Environ Res.
, vol.24
, Issue.3
, pp. 175-199
-
-
Piir, G.1
Sild, S.2
Maran, U.3
-
43
-
-
84861227331
-
Development of multiple QSAR models for consensus predictions and unified mechanistic interpretations of the free-radical scavenging activities of chromone derivatives
-
Mitra I, Saha A, Roy K. Development of multiple QSAR models for consensus predictions and unified mechanistic interpretations of the free-radical scavenging activities of chromone derivatives. J Mol Model. 2012;18(5):1819-1840. doi:10.1007/s00894-011-1198-x.
-
(2012)
J Mol Model.
, vol.18
, Issue.5
, pp. 1819-1840
-
-
Mitra, I.1
Saha, A.2
Roy, K.3
-
44
-
-
84938879159
-
Statistical methods in QSAR/QSPR
-
Cham: Springer International Publishing
-
Roy K, Kar S, Das RN. Statistical methods in QSAR/QSPR. In: A primer on QSAR/QSPR modeling. Cham: Springer International Publishing; 2015. p. 37-35.
-
(2015)
A Primer on QSAR/QSPR Modeling
, pp. 37-35
-
-
Roy, K.1
Kar, S.2
Das, R.N.3
-
45
-
-
84903288879
-
Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination
-
Norinder U, Carlsson L, Boyer S, et al. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. J Chem Inf Model. American Chemical Society. 2014;54(6):1596-1603.
-
(2014)
J Chem Inf Model. American Chemical Society
, vol.54
, Issue.6
, pp. 1596-1603
-
-
Norinder, U.1
Carlsson, L.2
Boyer, S.3
-
46
-
-
84935007308
-
The relative importance of domain applicability metrics for estimating prediction errors in QSAR varies with training set diversity
-
Sheridan RP. The relative importance of domain applicability metrics for estimating prediction errors in QSAR varies with training set diversity. J Chem Inf Model. 2015;55(6):1098-1107. doi:10.1021/acs. jcim.5b00110.
-
(2015)
J Chem Inf Model.
, vol.55
, Issue.6
, pp. 1098-1107
-
-
Sheridan, R.P.1
-
47
-
-
0036982903
-
Multivariate QSAR
-
Ferreira MMC. Multivariate QSAR. J Braz Chem Soc. 2002;13(6):742-753. doi:10.1590/S0103-50532002000600004.
-
(2002)
J Braz Chem Soc.
, vol.13
, Issue.6
, pp. 742-753
-
-
Ferreira, M.M.C.1
-
48
-
-
1642380461
-
The problem of overfitting
-
Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44(1):1-12. doi:10.1021/ci0342472.
-
(2004)
J Chem Inf Comput Sci.
, vol.44
, Issue.1
, pp. 1-12
-
-
Hawkins, D.M.1
-
49
-
-
84857273599
-
Benchmarking variable selection in QSAR
-
Eklund M, Norinder U, Boyer S, et al. Benchmarking variable selection in QSAR. Mol Inform. 2012;31(2):173-179. doi:10.1002/minf.201100142.
-
(2012)
Mol Inform.
, vol.31
, Issue.2
, pp. 173-179
-
-
Eklund, M.1
Norinder, U.2
Boyer, S.3
-
50
-
-
84865407521
-
A review of variable selection methods in partial least squares regression
-
Mehmood T, Liland KH, Snipen L, et al. A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst. 2012;118:62-69. doi:10.1016/j.chemolab.2012.07.010.
-
(2012)
Chemom Intell Lab Syst.
, vol.118
, pp. 62-69
-
-
Mehmood, T.1
Liland, K.H.2
Snipen, L.3
-
51
-
-
84941562827
-
ALK-5 inhibition: A molecular interpretation of the main physicochemical properties related to bioactive ligands
-
Araujo SC, Maltarollo VG, Silva DC, et al. ALK-5 inhibition: a molecular interpretation of the main physicochemical properties related to bioactive ligands. J Braz Chem Soc. 2015;26(9):1936-1946.
-
(2015)
J Braz Chem Soc.
, vol.26
, Issue.9
, pp. 1936-1946
-
-
Araujo, S.C.1
Maltarollo, V.G.2
Silva, D.C.3
-
52
-
-
58549092572
-
Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression
-
Teófilo RF, Martins JPA, Ferreira MMC. Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. J Chemom. 2009;23(1):32-48. doi:10.1002/ cem.1192.
-
(2009)
J Chemom.
, vol.23
, Issue.1
, pp. 32-48
-
-
Teófilo, R.F.1
Martins, J.P.A.2
Ferreira, M.M.C.3
-
53
-
-
0003368229
-
A comparative evaluation of sequential feature selection algorithms
-
Fisher D, Lenz H-J, editors. New York, NY: Springer-Verlag
-
Aha D, Bankert RL. A comparative evaluation of sequential feature selection algorithms. In: Fisher D, Lenz H-J, editors. Learning from data. New York, NY: Springer-Verlag; 1996. p. 199-206.
-
(1996)
Learning from Data
, pp. 199-206
-
-
Aha, D.1
Bankert, R.L.2
-
54
-
-
84896980988
-
Choosing feature selection and learning algorithms in QSAR
-
Eklund M, Norinder U, Boyer S, et al. Choosing feature selection and learning algorithms in QSAR. J Chem Inf Model. 2014;54(3):837-843. doi:10.1021/ci400573c.
-
(2014)
J Chem Inf Model.
, vol.54
, Issue.3
, pp. 837-843
-
-
Eklund, M.1
Norinder, U.2
Boyer, S.3
-
55
-
-
84911482812
-
A review of recent variable selection methods in industrial and chemometrics applications
-
Anzanello MJ, Fogliatto FS. A review of recent variable selection methods in industrial and chemometrics applications. Eur J Ind Eng. 2014;8(5):619-645. doi:10.1504/EJIE.2014.065731.
-
(2014)
Eur J Ind Eng.
, vol.8
, Issue.5
, pp. 619-645
-
-
Anzanello, M.J.1
Fogliatto, F.S.2
-
56
-
-
84879586153
-
Quantitative structure-activity relationship study of influenza virus neuraminidase A/PR/8/34(H1N1) inhibitors by genetic algorithm feature selection and support vector regression
-
Cong Y, Li B, Yang X, et al. Quantitative structure-activity relationship study of influenza virus neuraminidase A/PR/8/34(H1N1) inhibitors by genetic algorithm feature selection and support vector regression. Chemom Intell Lab Syst. 2013;127:35-42. doi:10.1016/j.chemolab.2013.05.012.
-
(2013)
Chemom Intell Lab Syst.
, vol.127
, pp. 35-42
-
-
Cong, Y.1
Li, B.2
Yang, X.3
-
57
-
-
61449101715
-
Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
-
Vasanthanathan P, Taboureau O, Oostenbrink C, et al. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos. 2009;37(3):658-664. doi:10.1124/dmd.108.023507.
-
(2009)
Drug Metab Dispos.
, vol.37
, Issue.3
, pp. 658-664
-
-
Vasanthanathan, P.1
Taboureau, O.2
Oostenbrink, C.3
-
58
-
-
84907969343
-
Drug/nondrug classification using support vector machines with various feature selection strategies
-
Korkmaz S, Zararsiz G, Goksuluk D. Drug/nondrug classification using support vector machines with various feature selection strategies. Comput Methods Programs Biomed. 2014;117(2):51-60 doi:10.1016/j.cmpb.2014.08.009.
-
(2014)
Comput Methods Programs Biomed.
, vol.117
, Issue.2
, pp. 51-60
-
-
Korkmaz, S.1
Zararsiz, G.2
Goksuluk, D.3
-
59
-
-
84877347625
-
The influence of the inactives subset generation on the performance of machine learning methods
-
Smusz S, Kurczab R, Bojarski AJ. The influence of the inactives subset generation on the performance of machine learning methods. J Cheminform. 2013;5(1):17. doi:10.1186/1758-2946-5-17.
-
(2013)
J Cheminform.
, vol.5
, Issue.1
, pp. 17
-
-
Smusz, S.1
Kurczab, R.2
Bojarski, A.J.3
-
60
-
-
84902782765
-
The influence of negative training set size on machine learning-based virtual screening
-
Kurczab R, Smusz S, Bojarski AJ. The influence of negative training set size on machine learning-based virtual screening. J Cheminform. 2014;6:32. doi:10.1186/1758-2946-6-6.
-
(2014)
J Cheminform.
, vol.6
, pp. 32
-
-
Kurczab, R.1
Smusz, S.2
Bojarski, A.J.3
-
61
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf B, Burges CJC, Smola AJ, editors. Cambridge, MA: MIT Press
-
Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ, editors. Advances in Kernel methods: support vector learning. Cambridge, MA: MIT Press; 1999. p. 185-208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
62
-
-
0025268321
-
Rational design of peptide-based HIV proteinase inhibitors
-
Roberts NA, Martin JA, Kinchington D, et al. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990;248(4953):358-361. doi:10.1126/science.2183354.
-
(1990)
Science.
, vol.248
, Issue.4953
, pp. 358-361
-
-
Roberts, N.A.1
Martin, J.A.2
Kinchington, D.3
-
63
-
-
0141676629
-
The process of structure-based drug design
-
Anderson AC. The process of structure-based drug design. Chem Biol. 2003;10(9):787-797. doi:10.1016/j.chembiol.2003.09.002.
-
(2003)
Chem Biol.
, vol.10
, Issue.9
, pp. 787-797
-
-
Anderson, A.C.1
-
65
-
-
84938316204
-
Molecular docking and structurebased drug design strategies
-
Ferreira L, Dos Santos R, Oliva G, et al. Molecular docking and structurebased drug design strategies. Molecules. 2015;20(7):13384-13421. doi:10.3390/molecules200713384.
-
(2015)
Molecules.
, vol.20
, Issue.7
, pp. 13384-13421
-
-
Ferreira, L.1
Dos Santos, R.2
Oliva, G.3
-
66
-
-
0027136282
-
Comparative protein modelling by satisfaction of spatial restraints
-
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779-815.
-
(1993)
J Mol Biol.
, vol.234
, Issue.3
, pp. 779-815
-
-
Sali, A.1
Blundell, T.L.2
-
67
-
-
84898027858
-
Fundamentals of homology modeling steps and comparison among important bioinformatics tools: An overview
-
Saxena A, Sangwan RS, Mishra S. Fundamentals of homology modeling steps and comparison among important bioinformatics tools: an overview. Sci Int. 2013;1(7):237-252.
-
(2013)
Sci Int.
, vol.1
, Issue.7
, pp. 237-252
-
-
Saxena, A.1
Sangwan, R.S.2
Mishra, S.3
-
68
-
-
0032506030
-
Large-scale protein structure modeling of the Saccharomyces cerevisiae genome
-
Sánchez R, Sali A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A. 1998;95(23):13597-13602. doi:10.1073/pnas.95.23.13597.
-
(1998)
Proc Natl Acad Sci U S A.
, vol.95
, Issue.23
, pp. 13597-13602
-
-
Sánchez, R.1
Sali, A.2
-
69
-
-
77952753917
-
Machine learning methods for protein structure prediction
-
Cheng J, Tegge AN, Baldi P. Machine learning methods for protein structure prediction. IEEE Rev Biomed Eng. 2008;1(8):41-49. doi:10.1109/RBME.2008.2008239.
-
(2008)
IEEE Rev Biomed Eng.
, vol.1
, Issue.8
, pp. 41-49
-
-
Cheng, J.1
Tegge, A.N.2
Baldi, P.3
-
70
-
-
84935499471
-
PCP-ML: Protein characterization package for machine learning
-
Eickholt J, Wang Z. PCP-ML: protein characterization package for machine learning. BMC Res Notes. 2014;7(1):810. doi:10.1186/1756-0500-7-810.
-
(2014)
BMC Res Notes.
, vol.7
, Issue.1
, pp. 810
-
-
Eickholt, J.1
Wang, Z.2
-
71
-
-
0015967881
-
Conformational parameters for amino acids in helical, ?-sheet, and random coil regions calculated from proteins
-
Chou PY, Fasman GD. Conformational parameters for amino acids in helical, ?-sheet, and random coil regions calculated from proteins. Biochemistry. 1974;13(2):211-222. doi:10.1021/bi00699a001.
-
(1974)
Biochemistry.
, vol.13
, Issue.2
, pp. 211-222
-
-
Chou, P.Y.1
Fasman, G.D.2
-
72
-
-
0027291015
-
Prediction of protein secondary structure at better than 70% accuracy
-
Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993;232(2):584-599. doi:10.1006/ jmbi.1993.1413.
-
(1993)
J Mol Biol.
, vol.232
, Issue.2
, pp. 584-599
-
-
Rost, B.1
Sander, C.2
-
73
-
-
0029889988
-
PHD: Predicting one-dimensional protein structure by profilebased neural networks
-
Rost B. PHD: predicting one-dimensional protein structure by profilebased neural networks. Methods Enzymol. 1996;266:525-539.
-
(1996)
Methods Enzymol.
, vol.266
, pp. 525-539
-
-
Rost, B.1
-
74
-
-
0033578684
-
Protein secondary structure prediction based on positionspecific scoring matrices
-
Jones DT. Protein secondary structure prediction based on positionspecific scoring matrices. J Mol Biol. 1999;292(2):195-202. doi:10.1006/jmbi.1999.3091.
-
(1999)
J Mol Biol.
, vol.292
, Issue.2
, pp. 195-202
-
-
Jones, D.T.1
-
75
-
-
0034308131
-
Prediction of protein secondary structure at 80% accuracy
-
Petersen TN, Lundegaard C, Nielsen M, et al. Prediction of protein secondary structure at 80% accuracy. Proteins. 2000;41(1):17-20.
-
(2000)
Proteins.
, vol.41
, Issue.1
, pp. 17-20
-
-
Petersen, T.N.1
Lundegaard, C.2
Nielsen, M.3
-
76
-
-
0032900496
-
Prediction of the location and type of ?-turns in proteins using neural networks
-
Shepherd AJ, Gorse D, Thornton JM. Prediction of the location and type of ?-turns in proteins using neural networks. Protein Sci. 1999;8(5):1045-1055. doi:10.1110/(ISSN)1469-896X.
-
(1999)
Protein Sci.
, vol.8
, Issue.5
, pp. 1045-1055
-
-
Shepherd, A.J.1
Gorse, D.2
Thornton, J.M.3
-
77
-
-
0037372098
-
Prediction of beta-turns in proteins from multiple alignment using neural network
-
Kaur H, Raghava GPS. Prediction of beta-turns in proteins from multiple alignment using neural network. Protein Sci. 2003;12(3):627-634. doi:10.1110/ps.0301903.
-
(2003)
Protein Sci.
, vol.12
, Issue.3
, pp. 627-634
-
-
Kaur, H.1
Raghava, G.P.S.2
-
78
-
-
8844252295
-
A neural network method for prediction of betaturn types in proteins using evolutionary information
-
Kaur H, Raghava GPS. A neural network method for prediction of betaturn types in proteins using evolutionary information. Bioinformatics. 2004;20(16):2751-2758. doi:10.1093/bioinformatics/bth322.
-
(2004)
Bioinformatics.
, vol.20
, Issue.16
, pp. 2751-2758
-
-
Kaur, H.1
Raghava, G.P.S.2
-
79
-
-
84979854249
-
JPred4: A protein secondary structure prediction server
-
Drozdetskiy A, Cole C, Procter J, et al. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015;43(W1):W389-94. doi:10.1093/nar/gkv332.
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.W1
, pp. W389-W394
-
-
Drozdetskiy, A.1
Cole, C.2
Procter, J.3
-
80
-
-
0034663597
-
Application of multiple sequence alignment profiles to improve protein secondary structure prediction
-
Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000;40(3):502-511. doi:10.1002/(ISSN)1097-0134.
-
(2000)
Proteins.
, vol.40
, Issue.3
, pp. 502-511
-
-
Cuff, J.A.1
Barton, G.J.2
-
81
-
-
0033369033
-
Exploiting the past and the future in protein secondary structure prediction
-
Baldi P, Brunak S, Frasconi P, et al. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics. 1999;15(11):937-946. doi:10.1093/bioinformatics/15.11.937.
-
(1999)
Bioinformatics.
, vol.15
, Issue.11
, pp. 937-946
-
-
Baldi, P.1
Brunak, S.2
Frasconi, P.3
-
82
-
-
0036568279
-
Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
Pollastri G, Przybylski D, Rost B, et al. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins. 2002;47(2):228-235. doi:10.1002/prot.10082.
-
(2002)
Proteins.
, vol.47
, Issue.2
, pp. 228-235
-
-
Pollastri, G.1
Przybylski, D.2
Rost, B.3
-
83
-
-
23144465987
-
SCRATCH: A protein structure and structural feature prediction server
-
(Web Server issue)
-
Cheng J, Randall AZ, Sweredoski MJ, et al. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res. 2005;33(Web Server issue):W72-6. doi:10.1093/nar/gki396.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. W72-W76
-
-
Cheng, J.1
Randall, A.Z.2
Sweredoski, M.J.3
-
84
-
-
0034786532
-
The HMMTOP transmembrane topology prediction server
-
Tusnády GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17(9):849-850. doi:10.1093/bioinformatics/ 17.9.849.
-
(2001)
Bioinformatics.
, vol.17
, Issue.9
, pp. 849-850
-
-
Tusnády, G.E.1
Simon, I.2
-
85
-
-
0032561132
-
Principles governing amino acid composition of integral membrane proteins: Application to topology prediction
-
Tusnády GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998;283(2):489-506. doi:10.1006/jmbi.1998.2107.
-
(1998)
J Mol Biol.
, vol.283
, Issue.2
, pp. 489-506
-
-
Tusnády, G.E.1
Simon, I.2
-
86
-
-
0035910270
-
Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
-
Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567-580. doi:10.1006/ jmbi.2000.4339.
-
(2001)
J Mol Biol.
, vol.305
, Issue.3
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
Von Heijne, G.3
-
87
-
-
2942522711
-
A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins
-
Bagos PG, Liakopoulos TD, Spyropoulos IC, et al. A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinformatics. 2004;5:29. doi:10.1186/1471-2105-5-29.
-
(2004)
BMC Bioinformatics.
, vol.5
, pp. 29
-
-
Bagos, P.G.1
Liakopoulos, T.D.2
Spyropoulos, I.C.3
-
88
-
-
0027199670
-
Protein secondary structure prediction using nearestneighbor methods
-
Yi TM, Lander ES. Protein secondary structure prediction using nearestneighbor methods. J Mol Biol. 1993;232(4):1117-1129. doi:10.1006/ jmbi.1993.1464.
-
(1993)
J Mol Biol.
, vol.232
, Issue.4
, pp. 1117-1129
-
-
Yi, T.M.1
Lander, E.S.2
-
89
-
-
13444266488
-
A simple and fast secondary structure prediction method using hidden neural networks
-
Lin K, Simossis VA, Taylor WR, et al. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics. 2005;21(2):152-159. doi:10.1093/bioinformatics/bth487.
-
(2005)
Bioinformatics.
, vol.21
, Issue.2
, pp. 152-159
-
-
Lin, K.1
Simossis, V.A.2
Taylor, W.R.3
-
90
-
-
84856489442
-
HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment
-
Remmert M, Biegert A, Hauser A, et al. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods. 2012;9(2):173-175. doi:10.1038/nmeth.1818.
-
(2012)
Nat Methods.
, vol.9
, Issue.2
, pp. 173-175
-
-
Remmert, M.1
Biegert, A.2
Hauser, A.3
-
91
-
-
16344373015
-
Protein homology detection by HMM-HMM comparison
-
Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21(7):951-960. doi:10.1093/bioinformatics/ bti125.
-
(2005)
Bioinformatics.
, vol.21
, Issue.7
, pp. 951-960
-
-
Söding, J.1
-
92
-
-
23144452044
-
The HHpred interactive server for protein homology detection and structure prediction
-
(Web Server)
-
Söding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33(Web Server):W244-8. doi:10.1093/nar/gki408.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. W244-W248
-
-
Söding, J.1
Biegert, A.2
Lupas, A.N.3
-
93
-
-
0023803244
-
Predicting the secondary structure of globular proteins using neural network models
-
Qian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol. 1988;202(4):865-884 doi:10.1016/0022-2836(88)90564-5.
-
(1988)
J Mol Biol.
, vol.202
, Issue.4
, pp. 865-884
-
-
Qian, N.1
Sejnowski, T.J.2
-
94
-
-
0036467068
-
Alignments grow, secondary structure prediction improves
-
Przybylski D, Rost B. Alignments grow, secondary structure prediction improves. Proteins. 2002;46(2):197-205. doi:10.1002/(ISSN)1097-0134.
-
(2002)
Proteins.
, vol.46
, Issue.2
, pp. 197-205
-
-
Przybylski, D.1
Rost, B.2
-
95
-
-
84883591545
-
Scalable web services for the PSIPRED protein analysis workbench
-
Buchan DW, Minneci F, Nugent TCO, et al. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 2013;41(W1):W349-57. doi:10.1093/nar/gkt381.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.W1
, pp. W349-W357
-
-
Buchan, D.W.1
Minneci, F.2
Nugent, T.C.O.3
-
96
-
-
0035957531
-
A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
-
Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol. 2001;308(2):397-407.
-
(2001)
J Mol Biol.
, vol.308
, Issue.2
, pp. 397-407
-
-
Hua, S.1
Sun, Z.2
-
97
-
-
10644246923
-
Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier
-
Hu H, Pan Y, Harrison R, et al. Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Trans Nanobioscience. 2004;3(4):265-271. doi:10.1109/TNB.2004.837906.
-
(2004)
IEEE Trans Nanobioscience.
, vol.3
, Issue.4
, pp. 265-271
-
-
Hu, H.1
Pan, Y.2
Harrison, R.3
-
98
-
-
0031585987
-
Protein secondary structure prediction using local alignments
-
Salamov AA, Solovyev VV. Protein secondary structure prediction using local alignments. J Mol Biol. 1997;268(1):31-36. doi:10.1006/ jmbi.1997.0958.
-
(1997)
J Mol Biol.
, vol.268
, Issue.1
, pp. 31-36
-
-
Salamov, A.A.1
Solovyev, V.V.2
-
99
-
-
50149097363
-
Comparative protein structure modeling using MODELLER
-
Eswar N, Webb B, Marti-Renom MA, et al. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2007;50:2.9:2.9.1-2.9.31.
-
(2007)
Curr Protoc Protein Sci.
, vol.50
, pp. 29291-32931
-
-
Eswar, N.1
Webb, B.2
Marti-Renom, M.A.3
-
100
-
-
57249116902
-
Predicting small ligand binding sites in proteins using backbone structure
-
Bordner AJ. Predicting small ligand binding sites in proteins using backbone structure. Bioinformatics. 2008;24(24):2865-2871. doi:10.1093/bioinformatics/btn543.
-
(2008)
Bioinformatics.
, vol.24
, Issue.24
, pp. 2865-2871
-
-
Bordner, A.J.1
-
101
-
-
33646757492
-
On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites
-
Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins. 2006;63(4):892-906. doi:10.1002/prot.20897.
-
(2006)
Proteins.
, vol.63
, Issue.4
, pp. 892-906
-
-
Nayal, M.1
Honig, B.2
-
102
-
-
84865132980
-
DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment
-
Volkamer A, Kuhn D, Rippmann F, et al. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28(15):2074-2075. doi:10.1093/ bioinformatics/bts310.
-
(2012)
Bioinformatics.
, vol.28
, Issue.15
, pp. 2074-2075
-
-
Volkamer, A.1
Kuhn, D.2
Rippmann, F.3
-
103
-
-
84928563231
-
Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features
-
Krivák R, Hoksza D. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. J Cheminform. 2015;7(1):12. doi:10.1186/s13321-015-0059-5.
-
(2015)
J Cheminform.
, vol.7
, Issue.1
, pp. 12
-
-
Krivák, R.1
Hoksza, D.2
-
104
-
-
77958585233
-
NNScore: A neural-network-based scoring function for the characterization of protein-ligand complexes
-
Durrant JD, McCammon JA. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J Chem Inf Model. American Chemical Society. 2010;50(10):1865-1871. doi:10.1021/ci100244v.
-
(2010)
J Chem Inf Model. American Chemical Society.
, vol.50
, Issue.10
, pp. 1865-1871
-
-
Durrant, J.D.1
McCammon, J.A.2
-
105
-
-
82355186299
-
NNScore 2.0: A neural-network receptorligand scoring function
-
Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptorligand scoring function. J Chem Inf Model. 2011;51(11):2897-2903. doi:10.1021/ci2003889.
-
(2011)
J Chem Inf Model.
, vol.51
, Issue.11
, pp. 2897-2903
-
-
Durrant, J.D.1
McCammon, J.A.2
-
106
-
-
78649499434
-
Analyzing the topology of active sites: On the prediction of pockets and subpockets
-
Volkamer A, Griewel A, Grombacher T, et al. Analyzing the topology of active sites: on the prediction of pockets and subpockets. J Chem Inf Model. 2010;50(11):2041-2052.
-
(2010)
J Chem Inf Model.
, vol.50
, Issue.11
, pp. 2041-2052
-
-
Volkamer, A.1
Griewel, A.2
Grombacher, T.3
-
107
-
-
77955397914
-
Understanding and predicting druggability. A high-throughput method for detection of drug binding sites
-
Schmidtke P, Barril X. Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem. 2010;53(15):5858-5867. doi:10.1021/jm100574m.
-
(2010)
J Med Chem.
, vol.53
, Issue.15
, pp. 5858-5867
-
-
Schmidtke, P.1
Barril, X.2
-
108
-
-
84857531280
-
Combining global and local measures for structure-based druggability predictions
-
Volkamer A, Kuhn D, Grombacher T, et al. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(2):360-372. doi:10.1021/ci200321u.
-
(2012)
J Chem Inf Model.
, vol.52
, Issue.2
, pp. 360-372
-
-
Volkamer, A.1
Kuhn, D.2
Grombacher, T.3
-
109
-
-
67649422714
-
Fpocket: An open source platform for ligand pocket detection
-
Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10(1):168. doi:10.1186/1471-2105-10-168.
-
(2009)
BMC Bioinformatics.
, vol.10
, Issue.1
, pp. 168
-
-
Le Guilloux, V.1
Schmidtke, P.2
Tuffery, P.3
-
110
-
-
74549149999
-
Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure
-
Capra JA, Laskowski RA, Thornton JM, et al. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol. 2009;5(12):e1000585. doi:10.1371/ journal.pcbi.1000509.
-
(2009)
PLoS Comput Biol.
, vol.5
, Issue.12
, pp. e1000585
-
-
Capra, J.A.1
Laskowski, R.A.2
Thornton, J.M.3
-
111
-
-
79952181220
-
Challenges and advances in computational docking: 2009 in review
-
Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit. 2011;24(2):149-164. doi:10.1002/jmr.v24.2.
-
(2011)
J Mol Recognit.
, vol.24
, Issue.2
, pp. 149-164
-
-
Yuriev, E.1
Agostino, M.2
Ramsland, P.A.3
-
112
-
-
33748276474
-
Protein-ligand docking: Current status and future challenges
-
Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins. 2006;65(1):15-26. doi:10.1002/ prot.21130.
-
(2006)
Proteins.
, vol.65
, Issue.1
, pp. 15-26
-
-
Sousa, S.F.1
Fernandes, P.A.2
Ramos, M.J.3
-
113
-
-
0042353897
-
Molecular recognition and docking algorithms
-
Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003;32:335-373. doi:10.1146/ annurev.biophys.32.110601.142532.
-
(2003)
Annu Rev Biophys Biomol Struct.
, vol.32
, pp. 335-373
-
-
Brooijmans, N.1
Kuntz, I.D.2
-
115
-
-
35148843847
-
Signposts of docking and scoring in drug design
-
Gani OABSM
-
Gani OABSM. Signposts of docking and scoring in drug design. Chem Biol Drug Des. 2007;70(4):360-365. doi:10.1111/j.1747-0285.2007.00552.x.
-
(2007)
Chem Biol Drug Des.
, vol.70
, Issue.4
, pp. 360-365
-
-
-
116
-
-
84864963945
-
GANM: A protein-ligand docking approach based on genetic algorithm and normal modes
-
Lima AN, Philot EA, Perahia D, et al. GANM: A protein-ligand docking approach based on genetic algorithm and normal modes. Appl Math Comput. 2012;219(2):511-520. doi:10.1016/j.amc.2012.06.030.
-
(2012)
Appl Math Comput.
, vol.219
, Issue.2
, pp. 511-520
-
-
Lima, A.N.1
Philot, E.A.2
Perahia, D.3
-
117
-
-
0036606483
-
Principles of docking: An overview of search algorithms and a guide to scoring functions
-
Halperin I, Ma B, Wolfson H, et al. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins. 2002;47(4):409-443. doi:10.1002/prot.10115.
-
(2002)
Proteins.
, vol.47
, Issue.4
, pp. 409-443
-
-
Halperin, I.1
Ma, B.2
Wolfson, H.3
-
118
-
-
80053330055
-
CSAR benchmark exercise of 2010: Combined evaluation across all submitted scoring functions
-
Smith RD, Dunbar JB, Ung PM-U, et al. CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model. 2011;51(9):2115-2131. doi:10.1021/ci200269q.
-
(2011)
J Chem Inf Model.
, vol.51
, Issue.9
, pp. 2115-2131
-
-
Smith, R.D.1
Dunbar, J.B.2
Pm-U, U.3
-
119
-
-
84879237604
-
Proteome-scale docking: Myth and reality
-
Rognan D. Proteome-scale docking: myth and reality. Drug Discov Today Technol. 2013;10(3):e403-9. doi:10.1016/j.ddtec.2013.01.003.
-
(2013)
Drug Discov Today Technol.
, vol.10
, Issue.3
, pp. e403-e409
-
-
Rognan, D.1
-
120
-
-
40349087133
-
Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go
-
Moitessier N, Englebienne P, Lee D, et al. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008;153(Suppl):S7-26. doi:10.1038/ bjp.2008.22.
-
(2008)
Br J Pharmacol.
, vol.153
, pp. S7-26
-
-
Moitessier, N.1
Englebienne, P.2
Lee, D.3
-
121
-
-
84958545771
-
All-atom normal mode calculations of large molecular systems using iterative methods
-
Bahar QCI, editor. Boca Raton(FL): Chapman and Hall/CRC
-
Perahia LMD. All-atom normal mode calculations of large molecular systems using iterative methods. In: Bahar QCI, editor. Normal mode analysis: theory and applications to biological and chemical systems. Boca Raton(FL): Chapman and Hall/CRC; 2005. p. 17-40.
-
(2005)
Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems
, pp. 17-40
-
-
Perahia, L.M.D.1
-
122
-
-
33748759844
-
Normal mode analysis as a prerequisite for drug design: Application to matrix metalloproteinases inhibitors
-
Floquet N, Marechal J-D, Badet-Denisot M-A, et al. Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors. FEBS Lett. 2006;580(22):5130-5136. doi:10.1016/j.febslet.2006.08.037.
-
(2006)
FEBS Lett.
, vol.580
, Issue.22
, pp. 5130-5136
-
-
Floquet, N.1
Marechal, J.-D.2
Badet-Denisot, M.-A.3
-
123
-
-
84865237493
-
Protein flexibility in docking and surface mapping
-
Lexa KW, Carlson HA. Protein flexibility in docking and surface mapping. Q Rev Biophys. 2012;45(3):301-343. doi:10.1017/S00335835 12000066.
-
(2012)
Q Rev Biophys.
, vol.45
, Issue.3
, pp. 301-343
-
-
Lexa, K.W.1
Carlson, H.A.2
-
124
-
-
52449135129
-
Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing
-
Da Rocha Pita SS, Fernandes TVA, Caffarena ER, et al. Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing. Int J Quantum Chem. 2008;108(13):2608-2614. doi:10.1002/qua.21731.
-
(2008)
Int J Quantum Chem.
, vol.108
, Issue.13
, pp. 2608-2614
-
-
Da Rocha Pita, S.S.1
Fernandes, T.V.A.2
Caffarena, E.R.3
-
125
-
-
84871604119
-
GalaxyDock: Protein-ligand docking with flexible protein side-chains
-
Shin W-H, Seok C. GalaxyDock: protein-ligand docking with flexible protein side-chains. J Chem Inf Model. 2012;52(12):3225-3232. doi:10.1021/ci200321u.
-
(2012)
J Chem Inf Model.
, vol.52
, Issue.12
, pp. 3225-3232
-
-
Shin, W.-H.1
Seok, C.2
-
126
-
-
78649525086
-
Evaluation of various inverse docking schemes in multiple targets identification
-
Hui-fang L, Qing S, Jian Z, et al. Evaluation of various inverse docking schemes in multiple targets identification. J Mol Graph Model. 2010;29(3):326-330. doi:10.1016/j.jmgm.2010.09.004.
-
(2010)
J Mol Graph Model.
, vol.29
, Issue.3
, pp. 326-330
-
-
Hui-Fang, L.1
Qing, S.2
Jian, Z.3
-
127
-
-
84877930474
-
Large-scale reverse docking profiles and their applications
-
Suppl 1
-
Lee M, Kim D. Large-scale reverse docking profiles and their applications. BMC Bioinformatics. 2012;13 Suppl 1(Suppl 17):S6.
-
(2012)
BMC Bioinformatics.
, vol.13
, pp. S6
-
-
Lee, M.1
Kim, D.2
-
128
-
-
79953286431
-
An inverse docking approach for identifying new potential anti-cancer targets
-
Grinter SZ, Liang Y, Huang S-Y, et al. An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model. 2011;29(6):795-799. doi:10.1016/j.jmgm.2011.01.002.
-
(2011)
J Mol Graph Model.
, vol.29
, Issue.6
, pp. 795-799
-
-
Grinter, S.Z.1
Liang, Y.2
Huang, S.-Y.3
-
129
-
-
0035342428
-
Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule
-
Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. 2001;43(2):217-226. doi:10.1002/(ISSN)1097-0134.
-
(2001)
Proteins.
, vol.43
, Issue.2
, pp. 217-226
-
-
Chen, Y.Z.1
Zhi, D.G.2
-
130
-
-
84923220780
-
Inverse docking method for new proteins targets identification: A parallel approach
-
Vasseur R, Baud S, Steffenel LA, et al. Inverse docking method for new proteins targets identification: a parallel approach. Parallel Comput. 2015;42:48-59. doi:10.1016/j.parco.2014.09.008.
-
(2015)
Parallel Comput.
, vol.42
, pp. 48-59
-
-
Vasseur, R.1
Baud, S.2
Steffenel, L.A.3
-
131
-
-
23044480075
-
Binding MOAD(Mother of All Databases)
-
Hu L, Benson ML, Smith RD, et al. Binding MOAD(Mother of All Databases). Proteins. 2005;60(3):333-340. doi:10.1002/prot.20568.
-
(2005)
Proteins.
, vol.60
, Issue.3
, pp. 333-340
-
-
Hu, L.1
Benson, M.L.2
Smith, R.D.3
-
132
-
-
2542530042
-
The PDBbind database: Collection of binding affinities for protein-ligand complexes with known threedimensional structures
-
Wang R, Fang X, Lu Y, et al. The PDBbind database: collection of binding affinities for protein-ligand complexes with known threedimensional structures. J Med Chem. 2004;47(12):2977-2980. doi:10.1021/jm030580l.
-
(2004)
J Med Chem.
, vol.47
, Issue.12
, pp. 2977-2980
-
-
Wang, R.1
Fang, X.2
Lu, Y.3
-
133
-
-
20444422149
-
The PDBbind database: Methodologies and updates
-
Wang R, Fang X, Lu Y, et al. The PDBbind database: methodologies and updates. J Med Chem. 2005;48(12):4111-4119. doi:10.1021/ jm049494r.
-
(2005)
J Med Chem.
, vol.48
, Issue.12
, pp. 4111-4119
-
-
Wang, R.1
Fang, X.2
Lu, Y.3
-
134
-
-
76149120388
-
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
-
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.
-
(2010)
J Comput Chem.
, vol.31
, Issue.2
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
135
-
-
79953277006
-
BINANA: A novel algorithm for ligandbinding characterization
-
Durrant JD, McCammon JA. BINANA: a novel algorithm for ligandbinding characterization. J Mol Graph Model. 2011;29(6):888-893. doi:10.1016/j.jmgm.2011.01.004.
-
(2011)
J Mol Graph Model.
, vol.29
, Issue.6
, pp. 888-893
-
-
Durrant, J.D.1
McCammon, J.A.2
-
136
-
-
33750991346
-
Benchmarking sets for molecular docking
-
Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49(23):6789-6801. doi:10.1021/jm0600592.
-
(2006)
J Med Chem.
, vol.49
, Issue.23
, pp. 6789-6801
-
-
Huang, N.1
Shoichet, B.K.2
Irwin, J.J.3
-
137
-
-
84880552522
-
Comparing neural-network scoring functions and the state of the art: Applications to common library screening
-
Durrant JD, Friedman AJ, Rogers KE, et al. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J Chem Inf Model. 2013;53(7):1726-1735. doi:10.1021/ci400042y.
-
(2013)
J Chem Inf Model.
, vol.53
, Issue.7
, pp. 1726-1735
-
-
Durrant, J.D.1
Friedman, A.J.2
Rogers, K.E.3
-
138
-
-
1642310340
-
Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
-
Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750-1759. doi:10.1021/ jm030644s.
-
(2004)
J Med Chem.
, vol.47
, Issue.7
, pp. 1750-1759
-
-
Halgren, T.A.1
Murphy, R.B.2
Friesner, R.A.3
-
139
-
-
12144289984
-
Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
-
Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-1749. doi:10.1021/ jm0306430.
-
(2004)
J Med Chem.
, vol.47
, Issue.7
, pp. 1739-1749
-
-
Friesner, R.A.1
Banks, J.L.2
Murphy, R.B.3
-
141
-
-
42949131067
-
Proteochemometric modeling of HIV protease susceptibility
-
Jan
-
Lapins M, Eklund M, Spjuth O, et al. Proteochemometric modeling of HIV protease susceptibility. BMC Bioinformatics. 2008 Jan;9:181.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 181
-
-
Lapins, M.1
Eklund, M.2
Spjuth, O.3
-
142
-
-
66249085197
-
Proteochemometric modeling of drug resistance over the mutational space for multiple HIV protease variants and multiple protease inhibitors
-
Lapins M, Wikberg JES. Proteochemometric modeling of drug resistance over the mutational space for multiple HIV protease variants and multiple protease inhibitors. J Chem Inf Model. 2009;49(5):1202-1210. doi:10.1021/ci800453k.
-
(2009)
J Chem Inf Model.
, vol.49
, Issue.5
, pp. 1202-1210
-
-
Lapins, M.1
Wikberg, J.E.S.2
-
143
-
-
78650736464
-
Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors
-
Jan
-
Junaid M, Lapins M, Eklund M, et al. Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors. PLoS One. 2010;Jan;5(12):e14353. doi:10.1371/ journal.pone.0014353.
-
(2010)
PLoS One.
, vol.5
, Issue.12
, pp. e14353
-
-
Junaid, M.1
Lapins, M.2
Eklund, M.3
-
144
-
-
53249113059
-
Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases
-
Prusis P, Lapins M, Yahorava S, et al. Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorganic Med Chem. 2008;16(20):9369-9377. doi:10.1016/j.bmc. 2008.08.081.
-
(2008)
Bioorganic Med Chem.
, vol.16
, Issue.20
, pp. 9369-9377
-
-
Prusis, P.1
Lapins, M.2
Yahorava, S.3
-
145
-
-
84863085673
-
Multi-target drugs: The trend of drug research and development
-
Jan
-
Lu-J-J, Pan W, Hu Y-J, et al. Multi-target drugs: the trend of drug research and development. PLoS One. 2012 Jan;7(6):e40262.
-
(2012)
PLoS One.
, vol.7
, Issue.6
, pp. e40262
-
-
Lu, J.-J.1
Pan, W.2
Hu, Y.-J.3
-
146
-
-
34548065794
-
How to design multi-target drugs
-
Jun
-
Korcsmáros T, Szalay MS, Böde C, et al. How to design multi-target drugs. Expert Opin Drug Discov. 2007 Jun;2(6):799-808. doi:10.1517/ 17460441.2.1.115.
-
(2007)
Expert Opin Drug Discov
, vol.2
, Issue.6
, pp. 799-808
-
-
Korcsmáros, T.1
Szalay, M.S.2
Böde, C.3
-
147
-
-
84957436796
-
QSAR studies in the discovery of novel type-II diabetic therapies
-
Abuhammad A, Taha MO. QSAR studies in the discovery of novel type-II diabetic therapies. Expert Opin Drug Discov. 2015;1-18. doi:10.1517/17460441.2016.1118046.
-
(2015)
Expert Opin Drug Discov.
, pp. 1-18
-
-
Abuhammad, A.1
Taha, M.O.2
-
148
-
-
15044349115
-
The efficiency of multi-target drugs: The network approach might help drug design
-
Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005;26(4):178-182. doi:10.1016/j.tips.2005.02.007.
-
(2005)
Trends Pharmacol Sci.
, vol.26
, Issue.4
, pp. 178-182
-
-
Csermely, P.1
Agoston, V.2
Pongor, S.3
-
149
-
-
30344479953
-
The benefits of the multi-target approach in drug design and discovery
-
Espinoza-Fonseca LM. The benefits of the multi-target approach in drug design and discovery. Bioorganic Med Chem. 2006;14(4):896-897 doi:10.1016/j.bmc.2005.09.011.
-
(2006)
Bioorganic Med Chem.
, vol.14
, Issue.4
, pp. 896-897
-
-
Espinoza-Fonseca, L.M.1
-
150
-
-
84871602057
-
Challenges in the design of multitarget drugs against multifactorial pathologies: A new life for medicinal chemistry?
-
Costantino L, Barlocco D. Challenges in the design of multitarget drugs against multifactorial pathologies: a new life for medicinal chemistry? Future Med Chem. 2013;5(1):5-7. doi:10.4155/fmc.12.193.
-
(2013)
Future Med Chem.
, vol.5
, Issue.1
, pp. 5-7
-
-
Costantino, L.1
Barlocco, D.2
-
151
-
-
84876577793
-
Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations
-
Heikamp K, Bajorath J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J Chem Inf Model. 2013;53(4):791-801. doi:10.1021/ ci400090t.
-
(2013)
J Chem Inf Model.
, vol.53
, Issue.4
, pp. 791-801
-
-
Heikamp, K.1
Bajorath, J.2
-
152
-
-
84864237263
-
Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors
-
Ajmani S, Kulkarni SA. Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors. Mol Inform. 2012;31(6-7):473-490. doi:10.1002/minf.201100160.
-
(2012)
Mol Inform.
, vol.31
, Issue.6-7
, pp. 473-490
-
-
Ajmani, S.1
Kulkarni, S.A.2
-
153
-
-
70049090801
-
An empirical analysis of domain adaptation algorithms for genomic sequence analysis
-
Koller D, Schuurmans D, Bengio Y, Bottou L, editors. La Jolla: NIPS Foundation
-
Schweikert G, Widmer C, Scholkopf B RG. An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in neural information processing systems 21: Proceedings of the 2008 Conference. La Jolla: NIPS Foundation; 2009. p. 1433-1440.
-
(2009)
Advances in Neural Information Processing Systems 21: Proceedings of the 2008 Conference
, pp. 1433-1440
-
-
Schweikert, G.1
Widmer, C.2
Scholkopf, B.R.G.3
-
154
-
-
84948568727
-
Quantitative structure-activity relationship: Promising advances in drug discovery platforms
-
Wang T, Wu M-B, Lin J-P, et al. Quantitative structure-activity relationship: promising advances in drug discovery platforms. Expert Opin Drug Discov. 2015;10(12):1283-1300. doi:10.1517/17460441.2015.1083006.
-
(2015)
Expert Opin Drug Discov.
, vol.10
, Issue.12
, pp. 1283-1300
-
-
Wang, T.1
Wu, M.-B.2
Lin, J.-P.3
-
155
-
-
84904733491
-
QSAR multi-target in drug discovery: A review
-
Zanni R, Gálvez-Llompart M, Gálvez J, et al. QSAR multi-target in drug discovery: a review. Curr Comput Aided Drug Des. 2014;10(2):129-136. doi:10.2174/157340991002140708105124.
-
(2014)
Curr Comput Aided Drug Des.
, vol.10
, Issue.2
, pp. 129-136
-
-
Zanni, R.1
Gálvez-Llompart, M.2
Gálvez, J.3
-
156
-
-
79960562727
-
Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: An in-silico study
-
Liu Q, Zhou H, Liu L, et al. Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study. BMC Bioinformatics. 2011;12:294. doi:10.1186/1471-2105-12-294.
-
(2011)
BMC Bioinformatics.
, vol.12
, pp. 294
-
-
Liu, Q.1
Zhou, H.2
Liu, L.3
-
157
-
-
77953286121
-
In-silico approaches to multi-target drug discovery : Computer aided multi-target drug design, multi-target virtual screening
-
Ma XH, Shi Z, Tan C, et al. In-silico approaches to multi-target drug discovery : computer aided multi-target drug design, multi-target virtual screening. Pharm Res. 2010;27(5):739-749. doi:10.1007/ s11095-010-0065-2.
-
(2010)
Pharm Res.
, vol.27
, Issue.5
, pp. 739-749
-
-
Ma, X.H.1
Shi, Z.2
Tan, C.3
-
158
-
-
84860265647
-
A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis
-
Castillo-Garit JA, Abad C, Rodríguez-Borges JE, et al. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis. Curr Top Med Chem. 2012;12(8):852-865. doi:10.2174/156802612800166756.
-
(2012)
Curr Top Med Chem.
, vol.12
, Issue.8
, pp. 852-865
-
-
Castillo-Garit, J.A.1
Abad, C.2
Rodríguez-Borges, J.E.3
|