메뉴 건너뛰기




Volumn 11, Issue 3, 2016, Pages 225-239

Use of machine learning approaches for novel drug discovery

Author keywords

Drug Design; LBDD; Machine Learning; SBDD

Indexed keywords

LIGAND; NEW DRUG;

EID: 84958543290     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1517/17460441.2016.1146250     Document Type: Review
Times cited : (203)

References (158)
  • 1
    • 33645658773 scopus 로고    scopus 로고
    • Os produtos naturais e a química medicinal moderna
    • Viegas C Jr, Bolzani VDS, Barreiro EJ. Os produtos naturais e a química medicinal moderna. Química Nova. 2006;29(2):326-337. doi:10.1590/S0100-40422006000200025.
    • (2006) Química Nova. , vol.29 , Issue.2 , pp. 326-337
    • Viegas, C.1    Bolzani, V.D.S.2    Barreiro, E.J.3
  • 2
    • 39049094335 scopus 로고    scopus 로고
    • Virtual screening and its integration with modern drug design technologies
    • Guido RVC, Oliva G, Andricopulo AD. Virtual screening and its integration with modern drug design technologies. Curr Med Chem. 2008;15(1):37-46. doi:10.2174/092986708783330683.
    • (2008) Curr Med Chem. , vol.15 , Issue.1 , pp. 37-46
    • Guido, R.V.C.1    Oliva, G.2    Andricopulo, A.D.3
  • 3
    • 33645887230 scopus 로고    scopus 로고
    • Critical review of the role of HTS in drug discovery
    • Macarron R. Critical review of the role of HTS in drug discovery. Drug Discov Today. 2006;11(7-8):277-279. doi:10.1016/j.drudis.2006. 02.001.
    • (2006) Drug Discov Today. , vol.11 , Issue.7-8 , pp. 277-279
    • Macarron, R.1
  • 4
    • 84930211844 scopus 로고    scopus 로고
    • Active-learning strategies in computer-assisted drug discovery
    • Reker D, Schneider G. Active-learning strategies in computer-assisted drug discovery. Drug Discov Today. 2015;20(4):458-465. doi:10.1016/ j.drudis.2014.12.004.
    • (2015) Drug Discov Today. , vol.20 , Issue.4 , pp. 458-465
    • Reker, D.1    Schneider, G.2
  • 5
    • 0034677966 scopus 로고    scopus 로고
    • Drug discovery: A historical perspective
    • Drews J. Drug discovery: a historical perspective. Science. 2000;287(5460):1960-1964. doi:10.1126/science.287.5460.1960.
    • (2000) Science. , vol.287 , Issue.5460 , pp. 1960-1964
    • Drews, J.1
  • 7
    • 73549086984 scopus 로고    scopus 로고
    • Computational systems approach for drug target discovery
    • Chandra N. Computational systems approach for drug target discovery. Expert Opin Drug Discov. 2009;4(12):1221-1236. doi:10.1517/ 17460440903380422.
    • (2009) Expert Opin Drug Discov. , vol.4 , Issue.12 , pp. 1221-1236
    • Chandra, N.1
  • 8
    • 4043062916 scopus 로고    scopus 로고
    • De novo drug design: Integration of structure-based and ligand-based methods
    • Dean PM, Lloyd DG, Todorov NP. De novo drug design: integration of structure-based and ligand-based methods. Curr Opin Drug Discov Devel. 2004;7(3):347-353.
    • (2004) Curr Opin Drug Discov Devel. , vol.7 , Issue.3 , pp. 347-353
    • Dean, P.M.1    Lloyd, D.G.2    Todorov, N.P.3
  • 9
    • 84925343037 scopus 로고    scopus 로고
    • Maximizing computational tools for successful drug discovery
    • Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov. 2015;10(4):321-329. doi:10.1517/17460441.2015.1016497.
    • (2015) Expert Opin Drug Discov. , vol.10 , Issue.4 , pp. 321-329
    • Nantasenamat, C.1    Prachayasittikul, V.2
  • 10
    • 77953707142 scopus 로고    scopus 로고
    • Advances in computational methods to predict the biological activity of compounds
    • Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Discov. 2010;5(7):633-654. doi:10.1517/17460441.2010.492827.
    • (2010) Expert Opin Drug Discov. , vol.5 , Issue.7 , pp. 633-654
    • Nantasenamat, C.1    Isarankura-Na-Ayudhya, C.2    Prachayasittikul, V.3
  • 11
    • 80054923170 scopus 로고    scopus 로고
    • Modern drug discovery technologies: Opportunities and challenges in lead discovery
    • Guido RVC, Oliva G, Andricopulo AD. Modern drug discovery technologies: opportunities and challenges in lead discovery. Comb Chem High Throughput Screen. 2011;14(10):830-839. doi:10.2174/ 138620711797537067.
    • (2011) Comb Chem High Throughput Screen. , vol.14 , Issue.10 , pp. 830-839
    • Guido, R.V.C.1    Oliva, G.2    Andricopulo, A.D.3
  • 12
    • 84555218838 scopus 로고    scopus 로고
    • Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: Oportunidades e desafios em P&D de fármacos
    • Ferreira RS, Glaucius O, Andricopulo AD. Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: oportunidades e desafios em P&D de fármacos. Química Nova. 2011;34(10):1770-1778. doi:10.1590/S0100-40422011001000010.
    • (2011) Química Nova. , vol.34 , Issue.10 , pp. 1770-1778
    • Ferreira, R.S.1    Glaucius, O.2    Andricopulo, A.D.3
  • 13
    • 33748849648 scopus 로고    scopus 로고
    • Machine learning in bioinformatics
    • Larrañaga P, Calvo B, Santana R, et al. Machine learning in bioinformatics. Brief Bioinform. 2006;7(1):86-112. doi:10.1093/bib/bbk007.
    • (2006) Brief Bioinform. , vol.7 , Issue.1 , pp. 86-112
    • Larrañaga, P.1    Calvo, B.2    Santana, R.3
  • 14
    • 0033044637 scopus 로고    scopus 로고
    • Machine learning approaches for the prediction of signal peptides and other protein sorting signals
    • Nielsen H, Brunak S, Von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng Des Selection. 1999;12(1):3-9. doi:10.1093/protein/12.1.3.
    • (1999) Protein Eng des Selection. , vol.12 , Issue.1 , pp. 3-9
    • Nielsen, H.1    Brunak, S.2    Von Heijne, G.3
  • 15
    • 0025633838 scopus 로고
    • Machine learning approach for the prediction of protein secondary structure
    • King RD, Sternberg MJ. Machine learning approach for the prediction of protein secondary structure. J Mol Biol. 1990;216(2):441-457. doi:10.1016/S0022-2836(05)80333-X.
    • (1990) J Mol Biol. , vol.216 , Issue.2 , pp. 441-457
    • King, R.D.1    Sternberg, M.J.2
  • 16
    • 69549097716 scopus 로고    scopus 로고
    • Identification of protein functions using a machine-learning approach based on sequence-derived properties
    • Lee BJ, Shin MS, Oh YJ, et al. Identification of protein functions using a machine-learning approach based on sequence-derived properties. Proteome Sci. 2009;7:27. doi:10.1186/1477-5956-7-27.
    • (2009) Proteome Sci. , vol.7 , pp. 27
    • Lee, B.J.1    Shin, M.S.2    Oh, Y.J.3
  • 18
    • 0002116138 scopus 로고
    • New approaches to QSAR: Neural networks and machine learning
    • King RD, Hirst JD, Sternberg MJE. New approaches to QSAR: neural networks and machine learning. Perspect Drug Discov Des. 1993;1(2):279-290. doi:10.1007/BF02174529.
    • (1993) Perspect Drug Discov Des. , vol.1 , Issue.2 , pp. 279-290
    • King, R.D.1    Hirst, J.D.2    Sternberg, M.J.E.3
  • 19
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning-based method to improve docking scoring functions and its application to drug repurposing
    • Kinnings SL, Liu N, Tonge PJ, et al. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model. 2011;51(2):408-419. doi:10.1021/ ci100369f.
    • (2011) J Chem Inf Model. , vol.51 , Issue.2 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3
  • 20
    • 33847207834 scopus 로고    scopus 로고
    • Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
    • Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today. 2007;12(5-6):225-233. doi:10.1016/j.drudis.2007.01.011.
    • (2007) Drug Discov Today. , vol.12 , Issue.5-6 , pp. 225-233
    • Eckert, H.1    Bajorath, J.2
  • 21
    • 33748124863 scopus 로고    scopus 로고
    • Machine learning techniques for in silico modeling of drug metabolism
    • Fox T, Kriegl JM. Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem. 2006;6(15):1579-1591. doi:10.2174/156802606778108915.
    • (2006) Curr Top Med Chem. , vol.6 , Issue.15 , pp. 1579-1591
    • Fox, T.1    Kriegl, J.M.2
  • 23
    • 33644959172 scopus 로고    scopus 로고
    • Metabolomics, modelling and machine learning in systems biology-towards an understanding of the languages of cells
    • Kell DB. Metabolomics, modelling and machine learning in systems biology-towards an understanding of the languages of cells. FEBS J. 2006;273(5):873-894.
    • (2006) FEBS J. , vol.273 , Issue.5 , pp. 873-894
    • Kell, D.B.1
  • 24
    • 84893627199 scopus 로고    scopus 로고
    • Applications of artificial neural networks in chemical problems
    • Suzuki K, editor. 1st ed. InTech; [cited 2015 Dec 2]. Available at:
    • Maltarollo VG, Honório KM, Da Silva ABF. Applications of artificial neural networks in chemical problems. In: Suzuki K, editor. Artificial neural networks-architectures and applications. 1st ed. InTech; 2013. p. 203-223. [cited 2015 Dec 2]. Available at: http://www.intechopen. com/books/artificial-neural-networks-architectures-and-applications/ applications-of-artificial-neural-networks-in-chemical-problems
    • (2013) Artificial Neural Networks-architectures and Applications , pp. 203-223
    • Maltarollo, V.G.1    Honório, K.M.2    Da Silva, A.B.F.3
  • 25
    • 84925400066 scopus 로고    scopus 로고
    • Machine-learning approaches in drug discovery: Methods and applications
    • Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318-331. doi:10.1016/j.drudis.2014.10.012.
    • (2015) Drug Discov Today. , vol.20 , Issue.3 , pp. 318-331
    • Lavecchia, A.1
  • 26
    • 84903739566 scopus 로고    scopus 로고
    • Virtual screening strategies in medicinal chemistry: The state of the art and current challenges
    • Braga RC, Alves VM, Silva AC, et al. Virtual screening strategies in medicinal chemistry: the state of the art and current challenges. Curr Top Med Chem. 2014;14(16):1899-1912.
    • (2014) Curr Top Med Chem. , vol.14 , Issue.16 , pp. 1899-1912
    • Braga, R.C.1    Alves, V.M.2    Silva, A.C.3
  • 27
    • 33846020557 scopus 로고    scopus 로고
    • Similarity metrics and descriptor spaces-which combinations to choose?
    • Glen RC, Adams SE. Similarity metrics and descriptor spaces-which combinations to choose? QSAR Comb Sci. 2006;25(12):1133-1142. doi:10.1002/(ISSN)1611-0218.
    • (2006) QSAR Comb Sci. , vol.25 , Issue.12 , pp. 1133-1142
    • Glen, R.C.1    Adams, S.E.2
  • 28
    • 84927730179 scopus 로고    scopus 로고
    • Molecular fingerprint similarity search in virtual screening
    • Cereto-Massagué A, Ojeda MJ, Valls C, et al. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58-63. doi:10.1016/j.ymeth.2014.08.005.
    • (2015) Methods. , vol.71 , pp. 58-63
    • Cereto-Massagué, A.1    Ojeda, M.J.2    Valls, C.3
  • 30
    • 84937761914 scopus 로고    scopus 로고
    • Fingerprint-based consensus virtual screening towards structurally new 5-HT(6)R ligands
    • Smusz S, Kurczab R, Sata?a G, et al. Fingerprint-based consensus virtual screening towards structurally new 5-HT(6)R ligands. Bioorg Med Chem Lett. 2015;25(9):1827-1830. doi:10.1016/j.bmcl.2015.03.049.
    • (2015) Bioorg Med Chem Lett. , vol.25 , Issue.9 , pp. 1827-1830
    • Smusz, S.1    Kurczab, R.2    Sataa, G.3
  • 31
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29(6-7):476-488. doi:10.1002/ minf.201000061.
    • (2010) Mol Inform. , vol.29 , Issue.6-7 , pp. 476-488
    • Tropsha, A.1
  • 32
    • 34250628103 scopus 로고    scopus 로고
    • Principles of QSAR models validation: Internal and external
    • Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007;26(5):694-701. doi:10.1002/(ISSN) 1611-0218.
    • (2007) QSAR Comb Sci. , vol.26 , Issue.5 , pp. 694-701
    • Gramatica, P.1
  • 33
    • 84866686849 scopus 로고    scopus 로고
    • Machine learning techniques and drug design
    • Gertrudes JC, Maltarollo VG, Silva RA, et al. Machine learning techniques and drug design. Curr Med Chem. 2012;19(25):4289-4297.
    • (2012) Curr Med Chem. , vol.19 , Issue.25 , pp. 4289-4297
    • Gertrudes, J.C.1    Maltarollo, V.G.2    Silva, R.A.3
  • 34
    • 70450181710 scopus 로고    scopus 로고
    • How to recognize and workaround pitfalls in QSAR studies: A critical review
    • Scior T, Medina-Franco JL, Do Q-T, et al. How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem. 2009;16(32):4297-4313. doi:10.2174/092986709789578213.
    • (2009) Curr Med Chem. , vol.16 , Issue.32 , pp. 4297-4313
    • Scior, T.1    Medina-Franco, J.L.2    Do, Q.-T.3
  • 35
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: Quo vadis?
    • Varnek A, Baskin I. Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model. 2012;52(6):1413-1437.
    • (2012) J Chem Inf Model. , vol.52 , Issue.6 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2
  • 36
    • 84911446995 scopus 로고    scopus 로고
    • In silico machine learning methods in drug development
    • Dobchev DA, Pillai GG, Karelson M. In silico machine learning methods in drug development. Curr Top Med Chem. 2014;14(16):1913-1922.
    • (2014) Curr Top Med Chem. , vol.14 , Issue.16 , pp. 1913-1922
    • Dobchev, D.A.1    Pillai, G.G.2    Karelson, M.3
  • 37
    • 84958558504 scopus 로고    scopus 로고
    • Guidance Document On The Validation Of(Quantitative) Structure-Activity Relationship [(Q)SAR] Models. Paris, France: Organisation for Economic Co-operation and Development(OECD); 2007. [cited 2016 Jan 4] OECD Environment Health and Safety Publications-Series on Testing and Assessment No 69
    • Guidance Document On The Validation Of(Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Environment Health and Safety Publications-Series on Testing and Assessment No. 69. Paris, France: Organisation for Economic Co-operation and Development(OECD); 2007. [cited 2016 Jan 4]. Available from: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/ ?cote=env/jm/mono%282007%292&doclanguage=en
  • 38
    • 0010465904 scopus 로고    scopus 로고
    • Proposição, validação e análise dos modelos que correlacionam estrutura química e atividade biológica
    • Gaudio AC, Zandonade E. Proposição, validação e análise dos modelos que correlacionam estrutura química e atividade biológica. Química Nova. 2001;24(5):658-671. doi:10.1590/S0100-40422001000500013.
    • (2001) Química Nova. , vol.24 , Issue.5 , pp. 658-671
    • Gaudio, A.C.1    Zandonade, E.2
  • 39
    • 84930241958 scopus 로고    scopus 로고
    • Applications of genetic algorithms in QSAR/QSPR modeling
    • Valadi J, Siarry P, editors. Cham: Springer International Publishing
    • Sukumar N, Prabhu G, Saha P. Applications of genetic algorithms in QSAR/QSPR modeling. In: Valadi J, Siarry P, editors. Applications of metaheuristics in process engineering. Cham: Springer International Publishing; 2014. p. 315-324.
    • (2014) Applications of Metaheuristics in Process Engineering , pp. 315-324
    • Sukumar, N.1    Prabhu, G.2    Saha, P.3
  • 40
    • 84862773642 scopus 로고    scopus 로고
    • Genetic algorithms in chemometrics
    • Niazi A, Leardi R. Genetic algorithms in chemometrics. J Chemom. 2012;26(6):345-351. doi:10.1002/cem.2426.
    • (2012) J Chemom. , vol.26 , Issue.6 , pp. 345-351
    • Niazi, A.1    Leardi, R.2
  • 41
    • 66149108701 scopus 로고    scopus 로고
    • Influence relevance voting: An accurate and interpretable virtual high throughput screening method
    • Swamidass SJ, Azencott C-A, Lin T-W, et al. Influence relevance voting: an accurate and interpretable virtual high throughput screening method. J Chem Inf Model. 2009;49(4):756-766.
    • (2009) J Chem Inf Model. , vol.49 , Issue.4 , pp. 756-766
    • Swamidass, S.J.1    Azencott, C.-A.2    Lin, T.-W.3
  • 42
    • 84875212996 scopus 로고    scopus 로고
    • Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor
    • Piir G, Sild S, Maran U. Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor. SAR QSAR Environ Res. 2013;24(3):175-199. doi:10.1080/1062936X.2012.762426.
    • (2013) SAR QSAR Environ Res. , vol.24 , Issue.3 , pp. 175-199
    • Piir, G.1    Sild, S.2    Maran, U.3
  • 43
    • 84861227331 scopus 로고    scopus 로고
    • Development of multiple QSAR models for consensus predictions and unified mechanistic interpretations of the free-radical scavenging activities of chromone derivatives
    • Mitra I, Saha A, Roy K. Development of multiple QSAR models for consensus predictions and unified mechanistic interpretations of the free-radical scavenging activities of chromone derivatives. J Mol Model. 2012;18(5):1819-1840. doi:10.1007/s00894-011-1198-x.
    • (2012) J Mol Model. , vol.18 , Issue.5 , pp. 1819-1840
    • Mitra, I.1    Saha, A.2    Roy, K.3
  • 44
    • 84938879159 scopus 로고    scopus 로고
    • Statistical methods in QSAR/QSPR
    • Cham: Springer International Publishing
    • Roy K, Kar S, Das RN. Statistical methods in QSAR/QSPR. In: A primer on QSAR/QSPR modeling. Cham: Springer International Publishing; 2015. p. 37-35.
    • (2015) A Primer on QSAR/QSPR Modeling , pp. 37-35
    • Roy, K.1    Kar, S.2    Das, R.N.3
  • 45
    • 84903288879 scopus 로고    scopus 로고
    • Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination
    • Norinder U, Carlsson L, Boyer S, et al. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. J Chem Inf Model. American Chemical Society. 2014;54(6):1596-1603.
    • (2014) J Chem Inf Model. American Chemical Society , vol.54 , Issue.6 , pp. 1596-1603
    • Norinder, U.1    Carlsson, L.2    Boyer, S.3
  • 46
    • 84935007308 scopus 로고    scopus 로고
    • The relative importance of domain applicability metrics for estimating prediction errors in QSAR varies with training set diversity
    • Sheridan RP. The relative importance of domain applicability metrics for estimating prediction errors in QSAR varies with training set diversity. J Chem Inf Model. 2015;55(6):1098-1107. doi:10.1021/acs. jcim.5b00110.
    • (2015) J Chem Inf Model. , vol.55 , Issue.6 , pp. 1098-1107
    • Sheridan, R.P.1
  • 47
    • 0036982903 scopus 로고    scopus 로고
    • Multivariate QSAR
    • Ferreira MMC. Multivariate QSAR. J Braz Chem Soc. 2002;13(6):742-753. doi:10.1590/S0103-50532002000600004.
    • (2002) J Braz Chem Soc. , vol.13 , Issue.6 , pp. 742-753
    • Ferreira, M.M.C.1
  • 48
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44(1):1-12. doi:10.1021/ci0342472.
    • (2004) J Chem Inf Comput Sci. , vol.44 , Issue.1 , pp. 1-12
    • Hawkins, D.M.1
  • 49
    • 84857273599 scopus 로고    scopus 로고
    • Benchmarking variable selection in QSAR
    • Eklund M, Norinder U, Boyer S, et al. Benchmarking variable selection in QSAR. Mol Inform. 2012;31(2):173-179. doi:10.1002/minf.201100142.
    • (2012) Mol Inform. , vol.31 , Issue.2 , pp. 173-179
    • Eklund, M.1    Norinder, U.2    Boyer, S.3
  • 50
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in partial least squares regression
    • Mehmood T, Liland KH, Snipen L, et al. A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst. 2012;118:62-69. doi:10.1016/j.chemolab.2012.07.010.
    • (2012) Chemom Intell Lab Syst. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3
  • 51
    • 84941562827 scopus 로고    scopus 로고
    • ALK-5 inhibition: A molecular interpretation of the main physicochemical properties related to bioactive ligands
    • Araujo SC, Maltarollo VG, Silva DC, et al. ALK-5 inhibition: a molecular interpretation of the main physicochemical properties related to bioactive ligands. J Braz Chem Soc. 2015;26(9):1936-1946.
    • (2015) J Braz Chem Soc. , vol.26 , Issue.9 , pp. 1936-1946
    • Araujo, S.C.1    Maltarollo, V.G.2    Silva, D.C.3
  • 52
    • 58549092572 scopus 로고    scopus 로고
    • Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression
    • Teófilo RF, Martins JPA, Ferreira MMC. Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. J Chemom. 2009;23(1):32-48. doi:10.1002/ cem.1192.
    • (2009) J Chemom. , vol.23 , Issue.1 , pp. 32-48
    • Teófilo, R.F.1    Martins, J.P.A.2    Ferreira, M.M.C.3
  • 53
    • 0003368229 scopus 로고    scopus 로고
    • A comparative evaluation of sequential feature selection algorithms
    • Fisher D, Lenz H-J, editors. New York, NY: Springer-Verlag
    • Aha D, Bankert RL. A comparative evaluation of sequential feature selection algorithms. In: Fisher D, Lenz H-J, editors. Learning from data. New York, NY: Springer-Verlag; 1996. p. 199-206.
    • (1996) Learning from Data , pp. 199-206
    • Aha, D.1    Bankert, R.L.2
  • 54
    • 84896980988 scopus 로고    scopus 로고
    • Choosing feature selection and learning algorithms in QSAR
    • Eklund M, Norinder U, Boyer S, et al. Choosing feature selection and learning algorithms in QSAR. J Chem Inf Model. 2014;54(3):837-843. doi:10.1021/ci400573c.
    • (2014) J Chem Inf Model. , vol.54 , Issue.3 , pp. 837-843
    • Eklund, M.1    Norinder, U.2    Boyer, S.3
  • 55
    • 84911482812 scopus 로고    scopus 로고
    • A review of recent variable selection methods in industrial and chemometrics applications
    • Anzanello MJ, Fogliatto FS. A review of recent variable selection methods in industrial and chemometrics applications. Eur J Ind Eng. 2014;8(5):619-645. doi:10.1504/EJIE.2014.065731.
    • (2014) Eur J Ind Eng. , vol.8 , Issue.5 , pp. 619-645
    • Anzanello, M.J.1    Fogliatto, F.S.2
  • 56
    • 84879586153 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship study of influenza virus neuraminidase A/PR/8/34(H1N1) inhibitors by genetic algorithm feature selection and support vector regression
    • Cong Y, Li B, Yang X, et al. Quantitative structure-activity relationship study of influenza virus neuraminidase A/PR/8/34(H1N1) inhibitors by genetic algorithm feature selection and support vector regression. Chemom Intell Lab Syst. 2013;127:35-42. doi:10.1016/j.chemolab.2013.05.012.
    • (2013) Chemom Intell Lab Syst. , vol.127 , pp. 35-42
    • Cong, Y.1    Li, B.2    Yang, X.3
  • 57
    • 61449101715 scopus 로고    scopus 로고
    • Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
    • Vasanthanathan P, Taboureau O, Oostenbrink C, et al. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos. 2009;37(3):658-664. doi:10.1124/dmd.108.023507.
    • (2009) Drug Metab Dispos. , vol.37 , Issue.3 , pp. 658-664
    • Vasanthanathan, P.1    Taboureau, O.2    Oostenbrink, C.3
  • 58
    • 84907969343 scopus 로고    scopus 로고
    • Drug/nondrug classification using support vector machines with various feature selection strategies
    • Korkmaz S, Zararsiz G, Goksuluk D. Drug/nondrug classification using support vector machines with various feature selection strategies. Comput Methods Programs Biomed. 2014;117(2):51-60 doi:10.1016/j.cmpb.2014.08.009.
    • (2014) Comput Methods Programs Biomed. , vol.117 , Issue.2 , pp. 51-60
    • Korkmaz, S.1    Zararsiz, G.2    Goksuluk, D.3
  • 59
    • 84877347625 scopus 로고    scopus 로고
    • The influence of the inactives subset generation on the performance of machine learning methods
    • Smusz S, Kurczab R, Bojarski AJ. The influence of the inactives subset generation on the performance of machine learning methods. J Cheminform. 2013;5(1):17. doi:10.1186/1758-2946-5-17.
    • (2013) J Cheminform. , vol.5 , Issue.1 , pp. 17
    • Smusz, S.1    Kurczab, R.2    Bojarski, A.J.3
  • 60
    • 84902782765 scopus 로고    scopus 로고
    • The influence of negative training set size on machine learning-based virtual screening
    • Kurczab R, Smusz S, Bojarski AJ. The influence of negative training set size on machine learning-based virtual screening. J Cheminform. 2014;6:32. doi:10.1186/1758-2946-6-6.
    • (2014) J Cheminform. , vol.6 , pp. 32
    • Kurczab, R.1    Smusz, S.2    Bojarski, A.J.3
  • 61
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf B, Burges CJC, Smola AJ, editors. Cambridge, MA: MIT Press
    • Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ, editors. Advances in Kernel methods: support vector learning. Cambridge, MA: MIT Press; 1999. p. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 62
    • 0025268321 scopus 로고
    • Rational design of peptide-based HIV proteinase inhibitors
    • Roberts NA, Martin JA, Kinchington D, et al. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990;248(4953):358-361. doi:10.1126/science.2183354.
    • (1990) Science. , vol.248 , Issue.4953 , pp. 358-361
    • Roberts, N.A.1    Martin, J.A.2    Kinchington, D.3
  • 63
    • 0141676629 scopus 로고    scopus 로고
    • The process of structure-based drug design
    • Anderson AC. The process of structure-based drug design. Chem Biol. 2003;10(9):787-797. doi:10.1016/j.chembiol.2003.09.002.
    • (2003) Chem Biol. , vol.10 , Issue.9 , pp. 787-797
    • Anderson, A.C.1
  • 65
    • 84938316204 scopus 로고    scopus 로고
    • Molecular docking and structurebased drug design strategies
    • Ferreira L, Dos Santos R, Oliva G, et al. Molecular docking and structurebased drug design strategies. Molecules. 2015;20(7):13384-13421. doi:10.3390/molecules200713384.
    • (2015) Molecules. , vol.20 , Issue.7 , pp. 13384-13421
    • Ferreira, L.1    Dos Santos, R.2    Oliva, G.3
  • 66
    • 0027136282 scopus 로고
    • Comparative protein modelling by satisfaction of spatial restraints
    • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779-815.
    • (1993) J Mol Biol. , vol.234 , Issue.3 , pp. 779-815
    • Sali, A.1    Blundell, T.L.2
  • 67
    • 84898027858 scopus 로고    scopus 로고
    • Fundamentals of homology modeling steps and comparison among important bioinformatics tools: An overview
    • Saxena A, Sangwan RS, Mishra S. Fundamentals of homology modeling steps and comparison among important bioinformatics tools: an overview. Sci Int. 2013;1(7):237-252.
    • (2013) Sci Int. , vol.1 , Issue.7 , pp. 237-252
    • Saxena, A.1    Sangwan, R.S.2    Mishra, S.3
  • 68
    • 0032506030 scopus 로고    scopus 로고
    • Large-scale protein structure modeling of the Saccharomyces cerevisiae genome
    • Sánchez R, Sali A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A. 1998;95(23):13597-13602. doi:10.1073/pnas.95.23.13597.
    • (1998) Proc Natl Acad Sci U S A. , vol.95 , Issue.23 , pp. 13597-13602
    • Sánchez, R.1    Sali, A.2
  • 69
    • 77952753917 scopus 로고    scopus 로고
    • Machine learning methods for protein structure prediction
    • Cheng J, Tegge AN, Baldi P. Machine learning methods for protein structure prediction. IEEE Rev Biomed Eng. 2008;1(8):41-49. doi:10.1109/RBME.2008.2008239.
    • (2008) IEEE Rev Biomed Eng. , vol.1 , Issue.8 , pp. 41-49
    • Cheng, J.1    Tegge, A.N.2    Baldi, P.3
  • 70
    • 84935499471 scopus 로고    scopus 로고
    • PCP-ML: Protein characterization package for machine learning
    • Eickholt J, Wang Z. PCP-ML: protein characterization package for machine learning. BMC Res Notes. 2014;7(1):810. doi:10.1186/1756-0500-7-810.
    • (2014) BMC Res Notes. , vol.7 , Issue.1 , pp. 810
    • Eickholt, J.1    Wang, Z.2
  • 71
    • 0015967881 scopus 로고
    • Conformational parameters for amino acids in helical, ?-sheet, and random coil regions calculated from proteins
    • Chou PY, Fasman GD. Conformational parameters for amino acids in helical, ?-sheet, and random coil regions calculated from proteins. Biochemistry. 1974;13(2):211-222. doi:10.1021/bi00699a001.
    • (1974) Biochemistry. , vol.13 , Issue.2 , pp. 211-222
    • Chou, P.Y.1    Fasman, G.D.2
  • 72
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993;232(2):584-599. doi:10.1006/ jmbi.1993.1413.
    • (1993) J Mol Biol. , vol.232 , Issue.2 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 73
    • 0029889988 scopus 로고    scopus 로고
    • PHD: Predicting one-dimensional protein structure by profilebased neural networks
    • Rost B. PHD: predicting one-dimensional protein structure by profilebased neural networks. Methods Enzymol. 1996;266:525-539.
    • (1996) Methods Enzymol. , vol.266 , pp. 525-539
    • Rost, B.1
  • 74
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on positionspecific scoring matrices
    • Jones DT. Protein secondary structure prediction based on positionspecific scoring matrices. J Mol Biol. 1999;292(2):195-202. doi:10.1006/jmbi.1999.3091.
    • (1999) J Mol Biol. , vol.292 , Issue.2 , pp. 195-202
    • Jones, D.T.1
  • 75
    • 0034308131 scopus 로고    scopus 로고
    • Prediction of protein secondary structure at 80% accuracy
    • Petersen TN, Lundegaard C, Nielsen M, et al. Prediction of protein secondary structure at 80% accuracy. Proteins. 2000;41(1):17-20.
    • (2000) Proteins. , vol.41 , Issue.1 , pp. 17-20
    • Petersen, T.N.1    Lundegaard, C.2    Nielsen, M.3
  • 76
    • 0032900496 scopus 로고    scopus 로고
    • Prediction of the location and type of ?-turns in proteins using neural networks
    • Shepherd AJ, Gorse D, Thornton JM. Prediction of the location and type of ?-turns in proteins using neural networks. Protein Sci. 1999;8(5):1045-1055. doi:10.1110/(ISSN)1469-896X.
    • (1999) Protein Sci. , vol.8 , Issue.5 , pp. 1045-1055
    • Shepherd, A.J.1    Gorse, D.2    Thornton, J.M.3
  • 77
    • 0037372098 scopus 로고    scopus 로고
    • Prediction of beta-turns in proteins from multiple alignment using neural network
    • Kaur H, Raghava GPS. Prediction of beta-turns in proteins from multiple alignment using neural network. Protein Sci. 2003;12(3):627-634. doi:10.1110/ps.0301903.
    • (2003) Protein Sci. , vol.12 , Issue.3 , pp. 627-634
    • Kaur, H.1    Raghava, G.P.S.2
  • 78
    • 8844252295 scopus 로고    scopus 로고
    • A neural network method for prediction of betaturn types in proteins using evolutionary information
    • Kaur H, Raghava GPS. A neural network method for prediction of betaturn types in proteins using evolutionary information. Bioinformatics. 2004;20(16):2751-2758. doi:10.1093/bioinformatics/bth322.
    • (2004) Bioinformatics. , vol.20 , Issue.16 , pp. 2751-2758
    • Kaur, H.1    Raghava, G.P.S.2
  • 79
    • 84979854249 scopus 로고    scopus 로고
    • JPred4: A protein secondary structure prediction server
    • Drozdetskiy A, Cole C, Procter J, et al. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015;43(W1):W389-94. doi:10.1093/nar/gkv332.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.W1 , pp. W389-W394
    • Drozdetskiy, A.1    Cole, C.2    Procter, J.3
  • 80
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000;40(3):502-511. doi:10.1002/(ISSN)1097-0134.
    • (2000) Proteins. , vol.40 , Issue.3 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 81
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi P, Brunak S, Frasconi P, et al. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics. 1999;15(11):937-946. doi:10.1093/bioinformatics/15.11.937.
    • (1999) Bioinformatics. , vol.15 , Issue.11 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3
  • 82
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G, Przybylski D, Rost B, et al. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins. 2002;47(2):228-235. doi:10.1002/prot.10082.
    • (2002) Proteins. , vol.47 , Issue.2 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3
  • 83
    • 23144465987 scopus 로고    scopus 로고
    • SCRATCH: A protein structure and structural feature prediction server
    • (Web Server issue)
    • Cheng J, Randall AZ, Sweredoski MJ, et al. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res. 2005;33(Web Server issue):W72-6. doi:10.1093/nar/gki396.
    • (2005) Nucleic Acids Res. , vol.33 , pp. W72-W76
    • Cheng, J.1    Randall, A.Z.2    Sweredoski, M.J.3
  • 84
    • 0034786532 scopus 로고    scopus 로고
    • The HMMTOP transmembrane topology prediction server
    • Tusnády GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17(9):849-850. doi:10.1093/bioinformatics/ 17.9.849.
    • (2001) Bioinformatics. , vol.17 , Issue.9 , pp. 849-850
    • Tusnády, G.E.1    Simon, I.2
  • 85
    • 0032561132 scopus 로고    scopus 로고
    • Principles governing amino acid composition of integral membrane proteins: Application to topology prediction
    • Tusnády GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998;283(2):489-506. doi:10.1006/jmbi.1998.2107.
    • (1998) J Mol Biol. , vol.283 , Issue.2 , pp. 489-506
    • Tusnády, G.E.1    Simon, I.2
  • 86
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567-580. doi:10.1006/ jmbi.2000.4339.
    • (2001) J Mol Biol. , vol.305 , Issue.3 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3
  • 87
    • 2942522711 scopus 로고    scopus 로고
    • A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins
    • Bagos PG, Liakopoulos TD, Spyropoulos IC, et al. A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinformatics. 2004;5:29. doi:10.1186/1471-2105-5-29.
    • (2004) BMC Bioinformatics. , vol.5 , pp. 29
    • Bagos, P.G.1    Liakopoulos, T.D.2    Spyropoulos, I.C.3
  • 88
    • 0027199670 scopus 로고
    • Protein secondary structure prediction using nearestneighbor methods
    • Yi TM, Lander ES. Protein secondary structure prediction using nearestneighbor methods. J Mol Biol. 1993;232(4):1117-1129. doi:10.1006/ jmbi.1993.1464.
    • (1993) J Mol Biol. , vol.232 , Issue.4 , pp. 1117-1129
    • Yi, T.M.1    Lander, E.S.2
  • 89
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction method using hidden neural networks
    • Lin K, Simossis VA, Taylor WR, et al. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics. 2005;21(2):152-159. doi:10.1093/bioinformatics/bth487.
    • (2005) Bioinformatics. , vol.21 , Issue.2 , pp. 152-159
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3
  • 90
    • 84856489442 scopus 로고    scopus 로고
    • HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment
    • Remmert M, Biegert A, Hauser A, et al. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods. 2012;9(2):173-175. doi:10.1038/nmeth.1818.
    • (2012) Nat Methods. , vol.9 , Issue.2 , pp. 173-175
    • Remmert, M.1    Biegert, A.2    Hauser, A.3
  • 91
    • 16344373015 scopus 로고    scopus 로고
    • Protein homology detection by HMM-HMM comparison
    • Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21(7):951-960. doi:10.1093/bioinformatics/ bti125.
    • (2005) Bioinformatics. , vol.21 , Issue.7 , pp. 951-960
    • Söding, J.1
  • 92
    • 23144452044 scopus 로고    scopus 로고
    • The HHpred interactive server for protein homology detection and structure prediction
    • (Web Server)
    • Söding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33(Web Server):W244-8. doi:10.1093/nar/gki408.
    • (2005) Nucleic Acids Res. , vol.33 , pp. W244-W248
    • Söding, J.1    Biegert, A.2    Lupas, A.N.3
  • 93
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol. 1988;202(4):865-884 doi:10.1016/0022-2836(88)90564-5.
    • (1988) J Mol Biol. , vol.202 , Issue.4 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 94
    • 0036467068 scopus 로고    scopus 로고
    • Alignments grow, secondary structure prediction improves
    • Przybylski D, Rost B. Alignments grow, secondary structure prediction improves. Proteins. 2002;46(2):197-205. doi:10.1002/(ISSN)1097-0134.
    • (2002) Proteins. , vol.46 , Issue.2 , pp. 197-205
    • Przybylski, D.1    Rost, B.2
  • 95
    • 84883591545 scopus 로고    scopus 로고
    • Scalable web services for the PSIPRED protein analysis workbench
    • Buchan DW, Minneci F, Nugent TCO, et al. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 2013;41(W1):W349-57. doi:10.1093/nar/gkt381.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.W1 , pp. W349-W357
    • Buchan, D.W.1    Minneci, F.2    Nugent, T.C.O.3
  • 96
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol. 2001;308(2):397-407.
    • (2001) J Mol Biol. , vol.308 , Issue.2 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 97
    • 10644246923 scopus 로고    scopus 로고
    • Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier
    • Hu H, Pan Y, Harrison R, et al. Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Trans Nanobioscience. 2004;3(4):265-271. doi:10.1109/TNB.2004.837906.
    • (2004) IEEE Trans Nanobioscience. , vol.3 , Issue.4 , pp. 265-271
    • Hu, H.1    Pan, Y.2    Harrison, R.3
  • 98
    • 0031585987 scopus 로고    scopus 로고
    • Protein secondary structure prediction using local alignments
    • Salamov AA, Solovyev VV. Protein secondary structure prediction using local alignments. J Mol Biol. 1997;268(1):31-36. doi:10.1006/ jmbi.1997.0958.
    • (1997) J Mol Biol. , vol.268 , Issue.1 , pp. 31-36
    • Salamov, A.A.1    Solovyev, V.V.2
  • 99
    • 50149097363 scopus 로고    scopus 로고
    • Comparative protein structure modeling using MODELLER
    • Eswar N, Webb B, Marti-Renom MA, et al. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2007;50:2.9:2.9.1-2.9.31.
    • (2007) Curr Protoc Protein Sci. , vol.50 , pp. 29291-32931
    • Eswar, N.1    Webb, B.2    Marti-Renom, M.A.3
  • 100
    • 57249116902 scopus 로고    scopus 로고
    • Predicting small ligand binding sites in proteins using backbone structure
    • Bordner AJ. Predicting small ligand binding sites in proteins using backbone structure. Bioinformatics. 2008;24(24):2865-2871. doi:10.1093/bioinformatics/btn543.
    • (2008) Bioinformatics. , vol.24 , Issue.24 , pp. 2865-2871
    • Bordner, A.J.1
  • 101
    • 33646757492 scopus 로고    scopus 로고
    • On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites
    • Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins. 2006;63(4):892-906. doi:10.1002/prot.20897.
    • (2006) Proteins. , vol.63 , Issue.4 , pp. 892-906
    • Nayal, M.1    Honig, B.2
  • 102
    • 84865132980 scopus 로고    scopus 로고
    • DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment
    • Volkamer A, Kuhn D, Rippmann F, et al. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28(15):2074-2075. doi:10.1093/ bioinformatics/bts310.
    • (2012) Bioinformatics. , vol.28 , Issue.15 , pp. 2074-2075
    • Volkamer, A.1    Kuhn, D.2    Rippmann, F.3
  • 103
    • 84928563231 scopus 로고    scopus 로고
    • Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features
    • Krivák R, Hoksza D. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. J Cheminform. 2015;7(1):12. doi:10.1186/s13321-015-0059-5.
    • (2015) J Cheminform. , vol.7 , Issue.1 , pp. 12
    • Krivák, R.1    Hoksza, D.2
  • 104
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: A neural-network-based scoring function for the characterization of protein-ligand complexes
    • Durrant JD, McCammon JA. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J Chem Inf Model. American Chemical Society. 2010;50(10):1865-1871. doi:10.1021/ci100244v.
    • (2010) J Chem Inf Model. American Chemical Society. , vol.50 , Issue.10 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 105
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: A neural-network receptorligand scoring function
    • Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptorligand scoring function. J Chem Inf Model. 2011;51(11):2897-2903. doi:10.1021/ci2003889.
    • (2011) J Chem Inf Model. , vol.51 , Issue.11 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 106
    • 78649499434 scopus 로고    scopus 로고
    • Analyzing the topology of active sites: On the prediction of pockets and subpockets
    • Volkamer A, Griewel A, Grombacher T, et al. Analyzing the topology of active sites: on the prediction of pockets and subpockets. J Chem Inf Model. 2010;50(11):2041-2052.
    • (2010) J Chem Inf Model. , vol.50 , Issue.11 , pp. 2041-2052
    • Volkamer, A.1    Griewel, A.2    Grombacher, T.3
  • 107
    • 77955397914 scopus 로고    scopus 로고
    • Understanding and predicting druggability. A high-throughput method for detection of drug binding sites
    • Schmidtke P, Barril X. Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem. 2010;53(15):5858-5867. doi:10.1021/jm100574m.
    • (2010) J Med Chem. , vol.53 , Issue.15 , pp. 5858-5867
    • Schmidtke, P.1    Barril, X.2
  • 108
    • 84857531280 scopus 로고    scopus 로고
    • Combining global and local measures for structure-based druggability predictions
    • Volkamer A, Kuhn D, Grombacher T, et al. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(2):360-372. doi:10.1021/ci200321u.
    • (2012) J Chem Inf Model. , vol.52 , Issue.2 , pp. 360-372
    • Volkamer, A.1    Kuhn, D.2    Grombacher, T.3
  • 109
    • 67649422714 scopus 로고    scopus 로고
    • Fpocket: An open source platform for ligand pocket detection
    • Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10(1):168. doi:10.1186/1471-2105-10-168.
    • (2009) BMC Bioinformatics. , vol.10 , Issue.1 , pp. 168
    • Le Guilloux, V.1    Schmidtke, P.2    Tuffery, P.3
  • 110
    • 74549149999 scopus 로고    scopus 로고
    • Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure
    • Capra JA, Laskowski RA, Thornton JM, et al. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol. 2009;5(12):e1000585. doi:10.1371/ journal.pcbi.1000509.
    • (2009) PLoS Comput Biol. , vol.5 , Issue.12 , pp. e1000585
    • Capra, J.A.1    Laskowski, R.A.2    Thornton, J.M.3
  • 111
    • 79952181220 scopus 로고    scopus 로고
    • Challenges and advances in computational docking: 2009 in review
    • Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit. 2011;24(2):149-164. doi:10.1002/jmr.v24.2.
    • (2011) J Mol Recognit. , vol.24 , Issue.2 , pp. 149-164
    • Yuriev, E.1    Agostino, M.2    Ramsland, P.A.3
  • 112
    • 33748276474 scopus 로고    scopus 로고
    • Protein-ligand docking: Current status and future challenges
    • Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins. 2006;65(1):15-26. doi:10.1002/ prot.21130.
    • (2006) Proteins. , vol.65 , Issue.1 , pp. 15-26
    • Sousa, S.F.1    Fernandes, P.A.2    Ramos, M.J.3
  • 113
    • 0042353897 scopus 로고    scopus 로고
    • Molecular recognition and docking algorithms
    • Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003;32:335-373. doi:10.1146/ annurev.biophys.32.110601.142532.
    • (2003) Annu Rev Biophys Biomol Struct. , vol.32 , pp. 335-373
    • Brooijmans, N.1    Kuntz, I.D.2
  • 115
    • 35148843847 scopus 로고    scopus 로고
    • Signposts of docking and scoring in drug design
    • Gani OABSM
    • Gani OABSM. Signposts of docking and scoring in drug design. Chem Biol Drug Des. 2007;70(4):360-365. doi:10.1111/j.1747-0285.2007.00552.x.
    • (2007) Chem Biol Drug Des. , vol.70 , Issue.4 , pp. 360-365
  • 116
    • 84864963945 scopus 로고    scopus 로고
    • GANM: A protein-ligand docking approach based on genetic algorithm and normal modes
    • Lima AN, Philot EA, Perahia D, et al. GANM: A protein-ligand docking approach based on genetic algorithm and normal modes. Appl Math Comput. 2012;219(2):511-520. doi:10.1016/j.amc.2012.06.030.
    • (2012) Appl Math Comput. , vol.219 , Issue.2 , pp. 511-520
    • Lima, A.N.1    Philot, E.A.2    Perahia, D.3
  • 117
    • 0036606483 scopus 로고    scopus 로고
    • Principles of docking: An overview of search algorithms and a guide to scoring functions
    • Halperin I, Ma B, Wolfson H, et al. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins. 2002;47(4):409-443. doi:10.1002/prot.10115.
    • (2002) Proteins. , vol.47 , Issue.4 , pp. 409-443
    • Halperin, I.1    Ma, B.2    Wolfson, H.3
  • 118
    • 80053330055 scopus 로고    scopus 로고
    • CSAR benchmark exercise of 2010: Combined evaluation across all submitted scoring functions
    • Smith RD, Dunbar JB, Ung PM-U, et al. CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model. 2011;51(9):2115-2131. doi:10.1021/ci200269q.
    • (2011) J Chem Inf Model. , vol.51 , Issue.9 , pp. 2115-2131
    • Smith, R.D.1    Dunbar, J.B.2    Pm-U, U.3
  • 119
    • 84879237604 scopus 로고    scopus 로고
    • Proteome-scale docking: Myth and reality
    • Rognan D. Proteome-scale docking: myth and reality. Drug Discov Today Technol. 2013;10(3):e403-9. doi:10.1016/j.ddtec.2013.01.003.
    • (2013) Drug Discov Today Technol. , vol.10 , Issue.3 , pp. e403-e409
    • Rognan, D.1
  • 120
    • 40349087133 scopus 로고    scopus 로고
    • Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go
    • Moitessier N, Englebienne P, Lee D, et al. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008;153(Suppl):S7-26. doi:10.1038/ bjp.2008.22.
    • (2008) Br J Pharmacol. , vol.153 , pp. S7-26
    • Moitessier, N.1    Englebienne, P.2    Lee, D.3
  • 121
    • 84958545771 scopus 로고    scopus 로고
    • All-atom normal mode calculations of large molecular systems using iterative methods
    • Bahar QCI, editor. Boca Raton(FL): Chapman and Hall/CRC
    • Perahia LMD. All-atom normal mode calculations of large molecular systems using iterative methods. In: Bahar QCI, editor. Normal mode analysis: theory and applications to biological and chemical systems. Boca Raton(FL): Chapman and Hall/CRC; 2005. p. 17-40.
    • (2005) Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems , pp. 17-40
    • Perahia, L.M.D.1
  • 122
    • 33748759844 scopus 로고    scopus 로고
    • Normal mode analysis as a prerequisite for drug design: Application to matrix metalloproteinases inhibitors
    • Floquet N, Marechal J-D, Badet-Denisot M-A, et al. Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors. FEBS Lett. 2006;580(22):5130-5136. doi:10.1016/j.febslet.2006.08.037.
    • (2006) FEBS Lett. , vol.580 , Issue.22 , pp. 5130-5136
    • Floquet, N.1    Marechal, J.-D.2    Badet-Denisot, M.-A.3
  • 123
    • 84865237493 scopus 로고    scopus 로고
    • Protein flexibility in docking and surface mapping
    • Lexa KW, Carlson HA. Protein flexibility in docking and surface mapping. Q Rev Biophys. 2012;45(3):301-343. doi:10.1017/S00335835 12000066.
    • (2012) Q Rev Biophys. , vol.45 , Issue.3 , pp. 301-343
    • Lexa, K.W.1    Carlson, H.A.2
  • 124
    • 52449135129 scopus 로고    scopus 로고
    • Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing
    • Da Rocha Pita SS, Fernandes TVA, Caffarena ER, et al. Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing. Int J Quantum Chem. 2008;108(13):2608-2614. doi:10.1002/qua.21731.
    • (2008) Int J Quantum Chem. , vol.108 , Issue.13 , pp. 2608-2614
    • Da Rocha Pita, S.S.1    Fernandes, T.V.A.2    Caffarena, E.R.3
  • 125
    • 84871604119 scopus 로고    scopus 로고
    • GalaxyDock: Protein-ligand docking with flexible protein side-chains
    • Shin W-H, Seok C. GalaxyDock: protein-ligand docking with flexible protein side-chains. J Chem Inf Model. 2012;52(12):3225-3232. doi:10.1021/ci200321u.
    • (2012) J Chem Inf Model. , vol.52 , Issue.12 , pp. 3225-3232
    • Shin, W.-H.1    Seok, C.2
  • 126
    • 78649525086 scopus 로고    scopus 로고
    • Evaluation of various inverse docking schemes in multiple targets identification
    • Hui-fang L, Qing S, Jian Z, et al. Evaluation of various inverse docking schemes in multiple targets identification. J Mol Graph Model. 2010;29(3):326-330. doi:10.1016/j.jmgm.2010.09.004.
    • (2010) J Mol Graph Model. , vol.29 , Issue.3 , pp. 326-330
    • Hui-Fang, L.1    Qing, S.2    Jian, Z.3
  • 127
    • 84877930474 scopus 로고    scopus 로고
    • Large-scale reverse docking profiles and their applications
    • Suppl 1
    • Lee M, Kim D. Large-scale reverse docking profiles and their applications. BMC Bioinformatics. 2012;13 Suppl 1(Suppl 17):S6.
    • (2012) BMC Bioinformatics. , vol.13 , pp. S6
    • Lee, M.1    Kim, D.2
  • 128
    • 79953286431 scopus 로고    scopus 로고
    • An inverse docking approach for identifying new potential anti-cancer targets
    • Grinter SZ, Liang Y, Huang S-Y, et al. An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model. 2011;29(6):795-799. doi:10.1016/j.jmgm.2011.01.002.
    • (2011) J Mol Graph Model. , vol.29 , Issue.6 , pp. 795-799
    • Grinter, S.Z.1    Liang, Y.2    Huang, S.-Y.3
  • 129
    • 0035342428 scopus 로고    scopus 로고
    • Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule
    • Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. 2001;43(2):217-226. doi:10.1002/(ISSN)1097-0134.
    • (2001) Proteins. , vol.43 , Issue.2 , pp. 217-226
    • Chen, Y.Z.1    Zhi, D.G.2
  • 130
    • 84923220780 scopus 로고    scopus 로고
    • Inverse docking method for new proteins targets identification: A parallel approach
    • Vasseur R, Baud S, Steffenel LA, et al. Inverse docking method for new proteins targets identification: a parallel approach. Parallel Comput. 2015;42:48-59. doi:10.1016/j.parco.2014.09.008.
    • (2015) Parallel Comput. , vol.42 , pp. 48-59
    • Vasseur, R.1    Baud, S.2    Steffenel, L.A.3
  • 131
    • 23044480075 scopus 로고    scopus 로고
    • Binding MOAD(Mother of All Databases)
    • Hu L, Benson ML, Smith RD, et al. Binding MOAD(Mother of All Databases). Proteins. 2005;60(3):333-340. doi:10.1002/prot.20568.
    • (2005) Proteins. , vol.60 , Issue.3 , pp. 333-340
    • Hu, L.1    Benson, M.L.2    Smith, R.D.3
  • 132
    • 2542530042 scopus 로고    scopus 로고
    • The PDBbind database: Collection of binding affinities for protein-ligand complexes with known threedimensional structures
    • Wang R, Fang X, Lu Y, et al. The PDBbind database: collection of binding affinities for protein-ligand complexes with known threedimensional structures. J Med Chem. 2004;47(12):2977-2980. doi:10.1021/jm030580l.
    • (2004) J Med Chem. , vol.47 , Issue.12 , pp. 2977-2980
    • Wang, R.1    Fang, X.2    Lu, Y.3
  • 133
    • 20444422149 scopus 로고    scopus 로고
    • The PDBbind database: Methodologies and updates
    • Wang R, Fang X, Lu Y, et al. The PDBbind database: methodologies and updates. J Med Chem. 2005;48(12):4111-4119. doi:10.1021/ jm049494r.
    • (2005) J Med Chem. , vol.48 , Issue.12 , pp. 4111-4119
    • Wang, R.1    Fang, X.2    Lu, Y.3
  • 134
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.
    • (2010) J Comput Chem. , vol.31 , Issue.2 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 135
    • 79953277006 scopus 로고    scopus 로고
    • BINANA: A novel algorithm for ligandbinding characterization
    • Durrant JD, McCammon JA. BINANA: a novel algorithm for ligandbinding characterization. J Mol Graph Model. 2011;29(6):888-893. doi:10.1016/j.jmgm.2011.01.004.
    • (2011) J Mol Graph Model. , vol.29 , Issue.6 , pp. 888-893
    • Durrant, J.D.1    McCammon, J.A.2
  • 136
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking sets for molecular docking
    • Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49(23):6789-6801. doi:10.1021/jm0600592.
    • (2006) J Med Chem. , vol.49 , Issue.23 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 137
    • 84880552522 scopus 로고    scopus 로고
    • Comparing neural-network scoring functions and the state of the art: Applications to common library screening
    • Durrant JD, Friedman AJ, Rogers KE, et al. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J Chem Inf Model. 2013;53(7):1726-1735. doi:10.1021/ci400042y.
    • (2013) J Chem Inf Model. , vol.53 , Issue.7 , pp. 1726-1735
    • Durrant, J.D.1    Friedman, A.J.2    Rogers, K.E.3
  • 138
    • 1642310340 scopus 로고    scopus 로고
    • Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
    • Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750-1759. doi:10.1021/ jm030644s.
    • (2004) J Med Chem. , vol.47 , Issue.7 , pp. 1750-1759
    • Halgren, T.A.1    Murphy, R.B.2    Friesner, R.A.3
  • 139
    • 12144289984 scopus 로고    scopus 로고
    • Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
    • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-1749. doi:10.1021/ jm0306430.
    • (2004) J Med Chem. , vol.47 , Issue.7 , pp. 1739-1749
    • Friesner, R.A.1    Banks, J.L.2    Murphy, R.B.3
  • 140
  • 141
    • 42949131067 scopus 로고    scopus 로고
    • Proteochemometric modeling of HIV protease susceptibility
    • Jan
    • Lapins M, Eklund M, Spjuth O, et al. Proteochemometric modeling of HIV protease susceptibility. BMC Bioinformatics. 2008 Jan;9:181.
    • (2008) BMC Bioinformatics , vol.9 , pp. 181
    • Lapins, M.1    Eklund, M.2    Spjuth, O.3
  • 142
    • 66249085197 scopus 로고    scopus 로고
    • Proteochemometric modeling of drug resistance over the mutational space for multiple HIV protease variants and multiple protease inhibitors
    • Lapins M, Wikberg JES. Proteochemometric modeling of drug resistance over the mutational space for multiple HIV protease variants and multiple protease inhibitors. J Chem Inf Model. 2009;49(5):1202-1210. doi:10.1021/ci800453k.
    • (2009) J Chem Inf Model. , vol.49 , Issue.5 , pp. 1202-1210
    • Lapins, M.1    Wikberg, J.E.S.2
  • 143
    • 78650736464 scopus 로고    scopus 로고
    • Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors
    • Jan
    • Junaid M, Lapins M, Eklund M, et al. Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors. PLoS One. 2010;Jan;5(12):e14353. doi:10.1371/ journal.pone.0014353.
    • (2010) PLoS One. , vol.5 , Issue.12 , pp. e14353
    • Junaid, M.1    Lapins, M.2    Eklund, M.3
  • 144
    • 53249113059 scopus 로고    scopus 로고
    • Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases
    • Prusis P, Lapins M, Yahorava S, et al. Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorganic Med Chem. 2008;16(20):9369-9377. doi:10.1016/j.bmc. 2008.08.081.
    • (2008) Bioorganic Med Chem. , vol.16 , Issue.20 , pp. 9369-9377
    • Prusis, P.1    Lapins, M.2    Yahorava, S.3
  • 145
    • 84863085673 scopus 로고    scopus 로고
    • Multi-target drugs: The trend of drug research and development
    • Jan
    • Lu-J-J, Pan W, Hu Y-J, et al. Multi-target drugs: the trend of drug research and development. PLoS One. 2012 Jan;7(6):e40262.
    • (2012) PLoS One. , vol.7 , Issue.6 , pp. e40262
    • Lu, J.-J.1    Pan, W.2    Hu, Y.-J.3
  • 146
    • 34548065794 scopus 로고    scopus 로고
    • How to design multi-target drugs
    • Jun
    • Korcsmáros T, Szalay MS, Böde C, et al. How to design multi-target drugs. Expert Opin Drug Discov. 2007 Jun;2(6):799-808. doi:10.1517/ 17460441.2.1.115.
    • (2007) Expert Opin Drug Discov , vol.2 , Issue.6 , pp. 799-808
    • Korcsmáros, T.1    Szalay, M.S.2    Böde, C.3
  • 147
    • 84957436796 scopus 로고    scopus 로고
    • QSAR studies in the discovery of novel type-II diabetic therapies
    • Abuhammad A, Taha MO. QSAR studies in the discovery of novel type-II diabetic therapies. Expert Opin Drug Discov. 2015;1-18. doi:10.1517/17460441.2016.1118046.
    • (2015) Expert Opin Drug Discov. , pp. 1-18
    • Abuhammad, A.1    Taha, M.O.2
  • 148
    • 15044349115 scopus 로고    scopus 로고
    • The efficiency of multi-target drugs: The network approach might help drug design
    • Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005;26(4):178-182. doi:10.1016/j.tips.2005.02.007.
    • (2005) Trends Pharmacol Sci. , vol.26 , Issue.4 , pp. 178-182
    • Csermely, P.1    Agoston, V.2    Pongor, S.3
  • 149
    • 30344479953 scopus 로고    scopus 로고
    • The benefits of the multi-target approach in drug design and discovery
    • Espinoza-Fonseca LM. The benefits of the multi-target approach in drug design and discovery. Bioorganic Med Chem. 2006;14(4):896-897 doi:10.1016/j.bmc.2005.09.011.
    • (2006) Bioorganic Med Chem. , vol.14 , Issue.4 , pp. 896-897
    • Espinoza-Fonseca, L.M.1
  • 150
    • 84871602057 scopus 로고    scopus 로고
    • Challenges in the design of multitarget drugs against multifactorial pathologies: A new life for medicinal chemistry?
    • Costantino L, Barlocco D. Challenges in the design of multitarget drugs against multifactorial pathologies: a new life for medicinal chemistry? Future Med Chem. 2013;5(1):5-7. doi:10.4155/fmc.12.193.
    • (2013) Future Med Chem. , vol.5 , Issue.1 , pp. 5-7
    • Costantino, L.1    Barlocco, D.2
  • 151
    • 84876577793 scopus 로고    scopus 로고
    • Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations
    • Heikamp K, Bajorath J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J Chem Inf Model. 2013;53(4):791-801. doi:10.1021/ ci400090t.
    • (2013) J Chem Inf Model. , vol.53 , Issue.4 , pp. 791-801
    • Heikamp, K.1    Bajorath, J.2
  • 152
    • 84864237263 scopus 로고    scopus 로고
    • Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors
    • Ajmani S, Kulkarni SA. Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors. Mol Inform. 2012;31(6-7):473-490. doi:10.1002/minf.201100160.
    • (2012) Mol Inform. , vol.31 , Issue.6-7 , pp. 473-490
    • Ajmani, S.1    Kulkarni, S.A.2
  • 153
    • 70049090801 scopus 로고    scopus 로고
    • An empirical analysis of domain adaptation algorithms for genomic sequence analysis
    • Koller D, Schuurmans D, Bengio Y, Bottou L, editors. La Jolla: NIPS Foundation
    • Schweikert G, Widmer C, Scholkopf B RG. An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in neural information processing systems 21: Proceedings of the 2008 Conference. La Jolla: NIPS Foundation; 2009. p. 1433-1440.
    • (2009) Advances in Neural Information Processing Systems 21: Proceedings of the 2008 Conference , pp. 1433-1440
    • Schweikert, G.1    Widmer, C.2    Scholkopf, B.R.G.3
  • 154
    • 84948568727 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship: Promising advances in drug discovery platforms
    • Wang T, Wu M-B, Lin J-P, et al. Quantitative structure-activity relationship: promising advances in drug discovery platforms. Expert Opin Drug Discov. 2015;10(12):1283-1300. doi:10.1517/17460441.2015.1083006.
    • (2015) Expert Opin Drug Discov. , vol.10 , Issue.12 , pp. 1283-1300
    • Wang, T.1    Wu, M.-B.2    Lin, J.-P.3
  • 155
    • 84904733491 scopus 로고    scopus 로고
    • QSAR multi-target in drug discovery: A review
    • Zanni R, Gálvez-Llompart M, Gálvez J, et al. QSAR multi-target in drug discovery: a review. Curr Comput Aided Drug Des. 2014;10(2):129-136. doi:10.2174/157340991002140708105124.
    • (2014) Curr Comput Aided Drug Des. , vol.10 , Issue.2 , pp. 129-136
    • Zanni, R.1    Gálvez-Llompart, M.2    Gálvez, J.3
  • 156
    • 79960562727 scopus 로고    scopus 로고
    • Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: An in-silico study
    • Liu Q, Zhou H, Liu L, et al. Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study. BMC Bioinformatics. 2011;12:294. doi:10.1186/1471-2105-12-294.
    • (2011) BMC Bioinformatics. , vol.12 , pp. 294
    • Liu, Q.1    Zhou, H.2    Liu, L.3
  • 157
    • 77953286121 scopus 로고    scopus 로고
    • In-silico approaches to multi-target drug discovery : Computer aided multi-target drug design, multi-target virtual screening
    • Ma XH, Shi Z, Tan C, et al. In-silico approaches to multi-target drug discovery : computer aided multi-target drug design, multi-target virtual screening. Pharm Res. 2010;27(5):739-749. doi:10.1007/ s11095-010-0065-2.
    • (2010) Pharm Res. , vol.27 , Issue.5 , pp. 739-749
    • Ma, X.H.1    Shi, Z.2    Tan, C.3
  • 158
    • 84860265647 scopus 로고    scopus 로고
    • A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis
    • Castillo-Garit JA, Abad C, Rodríguez-Borges JE, et al. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis. Curr Top Med Chem. 2012;12(8):852-865. doi:10.2174/156802612800166756.
    • (2012) Curr Top Med Chem. , vol.12 , Issue.8 , pp. 852-865
    • Castillo-Garit, J.A.1    Abad, C.2    Rodríguez-Borges, J.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.