메뉴 건너뛰기




Volumn 20, Issue 4, 2015, Pages 458-465

Active-learning strategies in computer-assisted drug discovery

Author keywords

[No Author keywords available]

Indexed keywords

DRUG;

EID: 84930211844     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2014.12.004     Document Type: Review
Times cited : (196)

References (62)
  • 1
    • 79952114386 scopus 로고    scopus 로고
    • Adaptive combinatorial design of focused compound libraries
    • G. Schneider, and A. Schüller Adaptive combinatorial design of focused compound libraries Methods Mol. Biol. 572 2009 135 147
    • (2009) Methods Mol. Biol. , vol.572 , pp. 135-147
    • Schneider, G.1    Schüller, A.2
  • 2
    • 57849156863 scopus 로고    scopus 로고
    • Voyages to the (un)known: Adaptive design of bioactive compounds
    • G. Schneider Voyages to the (un)known: adaptive design of bioactive compounds Trends Biotechnol. 27 2009 18 26
    • (2009) Trends Biotechnol. , vol.27 , pp. 18-26
    • Schneider, G.1
  • 3
    • 84869744217 scopus 로고    scopus 로고
    • Inside the mind of a medicinal chemist: The role of human bias in compound prioritization during drug discovery
    • P.S. Kutchukian Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery PLoS ONE 7 2012 e48476
    • (2012) PLoS ONE , vol.7 , pp. e48476
    • Kutchukian, P.S.1
  • 4
    • 32444441360 scopus 로고    scopus 로고
    • Computational chemistry-driven decision making in lead generation
    • V. Schnecke, and J. Boström Computational chemistry-driven decision making in lead generation Drug Discov. Today 11 2006 43 50
    • (2006) Drug Discov. Today , vol.11 , pp. 43-50
    • Schnecke, V.1    Boström, J.2
  • 5
    • 0037107041 scopus 로고    scopus 로고
    • Discovery informatics: Its evolving role in drug discovery
    • B.L. Claus, and D.J. Underwood Discovery informatics: its evolving role in drug discovery Drug Discov. Today 7 2002 957 966
    • (2002) Drug Discov. Today , vol.7 , pp. 957-966
    • Claus, B.L.1    Underwood, D.J.2
  • 6
    • 0029878670 scopus 로고    scopus 로고
    • Application of genetic algorithms to combinatorial synthesis: A computational approach to lead identification and lead optimization
    • J. Singh Application of genetic algorithms to combinatorial synthesis: a computational approach to lead identification and lead optimization J. Am. Chem. Soc. 118 1996 1669 1676
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 1669-1676
    • Singh, J.1
  • 7
    • 0033968062 scopus 로고    scopus 로고
    • Chemoinformatics - Similarity and diversity in chemical libraries
    • P. Willet Chemoinformatics - similarity and diversity in chemical libraries Curr. Opin. Biotechnol. 11 2000 85 88
    • (2000) Curr. Opin. Biotechnol. , vol.11 , pp. 85-88
    • Willet, P.1
  • 8
    • 84901707371 scopus 로고    scopus 로고
    • Accessing new chemical entities through microfluidic technology
    • T. Rodrigues Accessing new chemical entities through microfluidic technology Angew. Chem. Int. Ed. 53 2014 5750 5758
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 5750-5758
    • Rodrigues, T.1
  • 9
    • 78651491171 scopus 로고    scopus 로고
    • Automated lead optimization of MMP-12 inhibitors using a genetic algorithm
    • S.D. Pickett Automated lead optimization of MMP-12 inhibitors using a genetic algorithm ACS Med. Chem. Lett. 2 2011 28 33
    • (2011) ACS Med. Chem. Lett. , vol.2 , pp. 28-33
    • Pickett, S.D.1
  • 10
    • 67649341994 scopus 로고    scopus 로고
    • Navigating structure-activity landscapes
    • J. Bajorath Navigating structure-activity landscapes Drug Discov. Today 14 2009 698 705
    • (2009) Drug Discov. Today , vol.14 , pp. 698-705
    • Bajorath, J.1
  • 11
    • 33846400442 scopus 로고    scopus 로고
    • Knowledge and intelligence in drug design
    • A.L. Hopkins, and A. Polinsky Knowledge and intelligence in drug design Annu. Rep. Med. Chem. 41 2006 425 437
    • (2006) Annu. Rep. Med. Chem. , vol.41 , pp. 425-437
    • Hopkins, A.L.1    Polinsky, A.2
  • 14
    • 0003288443 scopus 로고    scopus 로고
    • Active learning in the drug discovery process
    • M.K. Warmuth Active learning in the drug discovery process NIPS 2001 1449 1456
    • (2001) NIPS , pp. 1449-1456
    • Warmuth, M.K.1
  • 15
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machines in the drug discovery process
    • M.K. Warmuth Active learning with support vector machines in the drug discovery process J. Chem. Inf. Comput. Sci. 43 2003 667 673
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 667-673
    • Warmuth, M.K.1
  • 16
    • 44449101219 scopus 로고    scopus 로고
    • Virtual screening system for finding structurally diverse hits by active learning
    • Y. Fujiwara Virtual screening system for finding structurally diverse hits by active learning J. Chem. Inf. Model. 48 2008 930 940
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 930-940
    • Fujiwara, Y.1
  • 17
    • 0036835460 scopus 로고    scopus 로고
    • Integration of virtual and high-throughput screening
    • J. Bajorath Integration of virtual and high-throughput screening Nat. Rev. Drug Discov. 1 2002 882 894
    • (2002) Nat. Rev. Drug Discov. , vol.1 , pp. 882-894
    • Bajorath, J.1
  • 18
    • 57149126648 scopus 로고    scopus 로고
    • Active learning for high throughput screening
    • Springer
    • K. De Grave Active learning for high throughput screening Discovery Science 2008 Springer 185 196
    • (2008) Discovery Science , pp. 185-196
    • De Grave, K.1
  • 19
    • 84939973148 scopus 로고    scopus 로고
    • Active learning for primary drug screening
    • Conference Proceedings; available online at http://www.montefiore.ulg.ac.be/services/stochastic/benelearn08/
    • K. De Grave Active learning for primary drug screening Benelearn 08, The Annual Belgian-Dutch Machine Learning Conference 2008 55 56 Conference Proceedings; available online at http://www.montefiore.ulg.ac.be/services/stochastic/benelearn08/
    • (2008) Benelearn 08, the Annual Belgian-Dutch Machine Learning Conference , pp. 55-56
    • De Grave, K.1
  • 20
    • 84875468578 scopus 로고    scopus 로고
    • Predicting potent compounds via model-based global optimization
    • M. Ahmadi Predicting potent compounds via model-based global optimization J. Chem. Inf. Model. 53 2013 553 559
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 553-559
    • Ahmadi, M.1
  • 21
    • 79961092747 scopus 로고    scopus 로고
    • The knowledge-gradient algorithm for sequencing experiments in drug discovery
    • D.M. Negoescu The knowledge-gradient algorithm for sequencing experiments in drug discovery NFORMS J. Comput. 23 2011 346 363
    • (2011) NFORMS J. Comput. , vol.23 , pp. 346-363
    • Negoescu, D.M.1
  • 22
    • 0036740917 scopus 로고    scopus 로고
    • Why do we need so many chemical similarity search methods?
    • R.P. Sheridan Why do we need so many chemical similarity search methods? Drug Discov Today 7 2002 903 911
    • (2002) Drug Discov Today , vol.7 , pp. 903-911
    • Sheridan, R.P.1
  • 23
    • 84896525962 scopus 로고    scopus 로고
    • Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus
    • D. Reker Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus Proc. Natl. Acad. Sci. U.S.A. 111 2014 4067 4072
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 4067-4072
    • Reker, D.1
  • 24
    • 21844444960 scopus 로고    scopus 로고
    • Online choice of active learning algorithms
    • Y. Baram Online choice of active learning algorithms J. Mach. Learn. Res. 5 2004 255 291
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 255-291
    • Baram, Y.1
  • 25
    • 38049181434 scopus 로고    scopus 로고
    • Dual strategy active learning
    • Springer
    • P. Donmez Dual strategy active learning Machine Learning: ECML 2007 2007 Springer 116 127
    • (2007) Machine Learning: ECML 2007 , pp. 116-127
    • Donmez, P.1
  • 26
    • 84893101922 scopus 로고    scopus 로고
    • Balancing novelty with confined chemical space in modern drug discovery
    • J.L. Medina-Franco Balancing novelty with confined chemical space in modern drug discovery Expert Opin. Drug Discov. 9 2014 151 156
    • (2014) Expert Opin. Drug Discov. , vol.9 , pp. 151-156
    • Medina-Franco, J.L.1
  • 27
    • 0031859262 scopus 로고    scopus 로고
    • Evolutionary combinatorial chemistry: Application of genetic algorithms
    • L. Weber Evolutionary combinatorial chemistry: application of genetic algorithms Drug Discov. Today 3 1998 379 385
    • (1998) Drug Discov. Today , vol.3 , pp. 379-385
    • Weber, L.1
  • 28
    • 33749842822 scopus 로고
    • Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm
    • L. Weber Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm Angew. Chem. Int. Ed. 34 1995 2280 2282
    • (1995) Angew. Chem. Int. Ed. , vol.34 , pp. 2280-2282
    • Weber, L.1
  • 29
    • 0034131234 scopus 로고    scopus 로고
    • Simulated molecular evolution in a full combinatorial library
    • K. Illgen Simulated molecular evolution in a full combinatorial library Chem. Biol. 7 2000 433 441
    • (2000) Chem. Biol. , vol.7 , pp. 433-441
    • Illgen, K.1
  • 30
    • 33748976088 scopus 로고    scopus 로고
    • Directed evolution of trypsin inhibiting peptides using a genetic algorithm
    • Y. Yokobayashi Directed evolution of trypsin inhibiting peptides using a genetic algorithm J. Chem. Soc., Perkin Trans. 1 20 1996 2435 2439
    • (1996) J. Chem. Soc., Perkin Trans. 1 , vol.20 , pp. 2435-2439
    • Yokobayashi, Y.1
  • 31
    • 0036706734 scopus 로고    scopus 로고
    • A genetic algorithm for the design of molecules with desired properties
    • S. Kampenhausen A genetic algorithm for the design of molecules with desired properties J. Comput. Aided Mol. Des. 16 2002 551 567
    • (2002) J. Comput. Aided Mol. Des. , vol.16 , pp. 551-567
    • Kampenhausen, S.1
  • 32
    • 84870987376 scopus 로고    scopus 로고
    • Automated design of ligands to polypharmacology profiles
    • J. Besnard Automated design of ligands to polypharmacology profiles Nature 492 2012 215 220
    • (2012) Nature , vol.492 , pp. 215-220
    • Besnard, J.1
  • 33
    • 0032403276 scopus 로고    scopus 로고
    • Genetic optimization of combinatorial libraries
    • A. Gobbi, and D. Poppinger Genetic optimization of combinatorial libraries Biotechnol. Bioeng. 61 1998 47 54
    • (1998) Biotechnol. Bioeng. , vol.61 , pp. 47-54
    • Gobbi, A.1    Poppinger, D.2
  • 34
    • 84876244863 scopus 로고    scopus 로고
    • Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform
    • B. Desai Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform J. Med. Chem. 56 2013 3033 3047
    • (2013) J. Med. Chem. , vol.56 , pp. 3033-3047
    • Desai, B.1
  • 35
    • 84867834357 scopus 로고    scopus 로고
    • Iterative refinement of a binding pocket model: Active computational steering of lead optimization
    • R. Varela Iterative refinement of a binding pocket model: active computational steering of lead optimization J. Med. Chem. 55 2012 8926 8942
    • (2012) J. Med. Chem. , vol.55 , pp. 8926-8942
    • Varela, R.1
  • 36
    • 84876174816 scopus 로고    scopus 로고
    • 50 data - A statistical analysis
    • 50 data - a statistical analysis PLOS ONE 8 2013 e61007
    • (2013) PLOS ONE , vol.8 , pp. e61007
    • Kalliokoski, T.1
  • 37
    • 1642336155 scopus 로고    scopus 로고
    • Functional genomic hypothesis generation and experimentation by a robot scientist
    • R.D. King Functional genomic hypothesis generation and experimentation by a robot scientist Nature 427 2004 247 252
    • (2004) Nature , vol.427 , pp. 247-252
    • King, R.D.1
  • 39
    • 20444502203 scopus 로고    scopus 로고
    • From virtual to real screening for D3 dopamine receptor ligands
    • E. Byvatov From virtual to real screening for D3 dopamine receptor ligands ChemBioChem 6 2005 997 999
    • (2005) ChemBioChem , vol.6 , pp. 997-999
    • Byvatov, E.1
  • 40
    • 27444433232 scopus 로고    scopus 로고
    • Extraction and visualization of potential pharmacophore points using support vector machines: Application to ligand-based virtual screening for COX-2 inhibitors
    • L. Franke Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors J. Med. Chem. 48 2005 6997 7004
    • (2005) J. Med. Chem. , vol.48 , pp. 6997-7004
    • Franke, L.1
  • 41
    • 33749252873 scopus 로고    scopus 로고
    • When can semi-supervised learning work?
    • MIT Press
    • O. Chapelle When can semi-supervised learning work? Semi-supervised Learning 2006 MIT Press 2 3
    • (2006) Semi-supervised Learning , pp. 2-3
    • Chapelle, O.1
  • 42
    • 33746156959 scopus 로고    scopus 로고
    • Global mapping of pharmacological space
    • G.V. Paolini Global mapping of pharmacological space Nature 24 2006 805 815
    • (2006) Nature , vol.24 , pp. 805-815
    • Paolini, G.V.1
  • 43
    • 27144443099 scopus 로고    scopus 로고
    • Drug discovery: Playing dirty
    • S. Franzt Drug discovery: playing dirty Nature 437 2005 942 943
    • (2005) Nature , vol.437 , pp. 942-943
    • Franzt, S.1
  • 44
    • 75149130051 scopus 로고    scopus 로고
    • Targeting the cancer kinome through polypharmacology
    • Z.A. Knight Targeting the cancer kinome through polypharmacology Nat. Rev. Cancer 10 2010 130 137
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 130-137
    • Knight, Z.A.1
  • 45
    • 79959979886 scopus 로고    scopus 로고
    • Rapid analysis of pharmacology for infectious diseases
    • A.L. Hopkins Rapid analysis of pharmacology for infectious diseases Curr. Top. Med. Chem. 11 2011 1292 1300
    • (2011) Curr. Top. Med. Chem. , vol.11 , pp. 1292-1300
    • Hopkins, A.L.1
  • 46
    • 77956477049 scopus 로고    scopus 로고
    • Drug profiling: Knowing where it hits
    • A. Merino Drug profiling: knowing where it hits Drug Discov. Today 15 2010 749 756
    • (2010) Drug Discov. Today , vol.15 , pp. 749-756
    • Merino, A.1
  • 47
    • 84876933802 scopus 로고    scopus 로고
    • Shifting from the single to the multitarget paradigm in drug discovery
    • J.L. Medina-Franco Shifting from the single to the multitarget paradigm in drug discovery Drug Discov. Today 18 2013 495 501
    • (2013) Drug Discov. Today , vol.18 , pp. 495-501
    • Medina-Franco, J.L.1
  • 48
    • 82455205704 scopus 로고    scopus 로고
    • Neighborhood-preserving visualization of adaptive structure-activity landscapes: Application to drug discovery
    • M. Reutlinger Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery Angew. Chem. Int. Ed. 50 2011 11633 11636
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 11633-11636
    • Reutlinger, M.1
  • 49
    • 84898653013 scopus 로고    scopus 로고
    • Multi-objective molecular de novo design by adaptive fragment prioritization
    • M. Reutlinger Multi-objective molecular de novo design by adaptive fragment prioritization Angew. Chem. Int. Ed. 53 2014 4244 4248
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 4244-4248
    • Reutlinger, M.1
  • 50
    • 84879221884 scopus 로고    scopus 로고
    • Multi-objective optimization methods in drug design
    • C.A. Nicolaou, and N. Brown Multi-objective optimization methods in drug design Drug Discov. Today Technol. 10 2013 e427 e435
    • (2013) Drug Discov. Today Technol. , vol.10 , pp. e427-e435
    • Nicolaou, C.A.1    Brown, N.2
  • 51
    • 84893248227 scopus 로고    scopus 로고
    • Active learning for multi-objective optimization
    • M. Zuluaga Active learning for multi-objective optimization JMLR W&CP 28 2013 462 470
    • (2013) JMLR W&CP , vol.28 , pp. 462-470
    • Zuluaga, M.1
  • 52
    • 0001073278 scopus 로고    scopus 로고
    • The design of combinatorial libraries using properties and 3D pharmacophore fingerprints
    • B.R. Beno The design of combinatorial libraries using properties and 3D pharmacophore fingerprints Drug Discov. Today 6 2001 251 258
    • (2001) Drug Discov. Today , vol.6 , pp. 251-258
    • Beno, B.R.1
  • 53
    • 79952145881 scopus 로고    scopus 로고
    • Maximum-score diversity selection for early drug discovery
    • T. Meinl Maximum-score diversity selection for early drug discovery J. Chem. Inf. Model. 51 2011 237 247
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 237-247
    • Meinl, T.1
  • 55
    • 77649157271 scopus 로고    scopus 로고
    • Automated discovery of novel drug formulations using predictive iterated high throughput experimentation
    • F. Caschera Automated discovery of novel drug formulations using predictive iterated high throughput experimentation PLoS ONE 5 2010 e8546
    • (2010) PLoS ONE , vol.5 , pp. e8546
    • Caschera, F.1
  • 56
    • 75149162532 scopus 로고    scopus 로고
    • Active learning for human protein-protein interaction prediction
    • T.P. Mohamed Active learning for human protein-protein interaction prediction BMC Bioinform. 11 2010 S57
    • (2010) BMC Bioinform. , vol.11 , pp. S57
    • Mohamed, T.P.1
  • 57
    • 81355127286 scopus 로고    scopus 로고
    • Efficient discovery of anti-inflammatory small-molecule combinations using evolutionary computing
    • B.G. Small Efficient discovery of anti-inflammatory small-molecule combinations using evolutionary computing Nat. Chem. Biol. 7 2011 902 908
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 902-908
    • Small, B.G.1
  • 58
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classification
    • Y. Lui Active learning with support vector machine applied to gene expression data for cancer classification J. Chem. Inf. Comput. Sci. 44 2004 1936 1941
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1936-1941
    • Lui, Y.1
  • 59
    • 70349671213 scopus 로고    scopus 로고
    • Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning
    • S.A. Danziger Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning PLoS Comput. Biol. 5 2009 e1000498
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000498
    • Danziger, S.A.1
  • 60
    • 84892906484 scopus 로고    scopus 로고
    • Efficient modeling and active learning discovery of biological responses
    • A.W. Naik Efficient modeling and active learning discovery of biological responses PLOS ONE 8 2013 e83996
    • (2013) PLOS ONE , vol.8 , pp. e83996
    • Naik, A.W.1
  • 61
    • 84862192766 scopus 로고    scopus 로고
    • ChEMBL: A large-scale bioactivity database for drug discovery
    • A. Gaulton ChEMBL: a large-scale bioactivity database for drug discovery Nucleic Acids Res. 40 2012 D1100 D1107
    • (2012) Nucleic Acids Res. , vol.40 , pp. D1100-D1107
    • Gaulton, A.1
  • 62
    • 0242467732 scopus 로고    scopus 로고
    • Collection of bioactive reference compounds for focused library design
    • P. Schneider, and G. Schneider Collection of bioactive reference compounds for focused library design QSAR Comb. Sci. 22 2003 713 718.
    • (2003) QSAR Comb. Sci. , vol.22 , pp. 713-718
    • Schneider, P.1    Schneider, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.