메뉴 건너뛰기




Volumn 5, Issue 4, 2013, Pages

The influence of the inactives subset generation on the performance of machine learning methods

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84877347625     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/1758-2946-5-17     Document Type: Article
Times cited : (32)

References (35)
  • 1
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert H, Vogt M, Bajorath J: Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 2010, 50:205-216.
    • (2010) J Chem Inf Model , vol.50 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 4
    • 10244222365 scopus 로고    scopus 로고
    • Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures
    • Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A: Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. Org Biomol Chem 2004, 2:3256-3266.
    • (2004) Org Biomol Chem , vol.2 , pp. 3256-3266
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 5
    • 70349941427 scopus 로고    scopus 로고
    • Virtual screening of Abl inhibitors from large compound libraries by support vector machines
    • Liu XH, Ma XH, Tan CY, Jiang YY, Go ML, Low BC, Chen YZ: Virtual screening of Abl inhibitors from large compound libraries by support vector machines. J Chem Inf Model 2009, 49:2101-2110.
    • (2009) J Chem Inf Model , vol.49 , pp. 2101-2110
    • Liu, X.H.1    Ma, X.H.2    Tan, C.Y.3    Jiang, Y.Y.4    Go, M.L.5    Low, B.C.6    Chen, Y.Z.7
  • 8
    • 84877347172 scopus 로고    scopus 로고
    • Classification of cytochrome P 450 activities using machine learning methods
    • Hammann F, Gutmann H, Baumann U, Helma C, Drewe J: Classification of Cytochrome P 450 Activities Using Machine Learning Methods. Mol Pharmaceutics 2009, 33:796-801.
    • (2009) Mol Pharmaceutics , vol.33 , pp. 796-801
    • Hammann, F.1    Gutmann, H.2    Baumann, U.3    Helma, C.4    Drewe, J.5
  • 10
    • 43049157546 scopus 로고    scopus 로고
    • A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor
    • Han LY, Ma XH, Lin HH, Jia J, Zhu F, Xue Y, Li ZR, Cao ZW, Ji ZL, Chen YZ: A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. J Mol Graph Model 2008, 26:1276-1286.
    • (2008) J Mol Graph Model , vol.26 , pp. 1276-1286
    • Han, L.Y.1    Ma, X.H.2    Lin, H.H.3    Jia, J.4    Zhu, F.5    Xue, Y.6    Li, Z.R.7    Cao, Z.W.8    Ji, Z.L.9    Chen, Y.Z.10
  • 11
    • 33750982700 scopus 로고    scopus 로고
    • Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
    • DOI 10.1016/j.jmgm.2006.01.007, PII S1093326306000180
    • Li H, Ung CY, Yap CW, Xue Y, Li ZR, Chen YZ: Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. J Mol Graph Model 2006, 25:313-323. (Pubitemid 44740069)
    • (2006) Journal of Molecular Graphics and Modelling , vol.25 , Issue.3 , pp. 313-323
    • Li, H.1    Ung, C.Y.2    Yap, C.W.3    Xue, Y.4    Li, Z.R.5    Chen, Y.Z.6
  • 12
    • 13844312649 scopus 로고    scopus 로고
    • ZINC - A free database of commercially available compounds for virtual screening
    • DOI 10.1021/ci049714+
    • Irwin JJ, Shoichet BK ZINC: A Free Database of Commercially Available Compounds for Virtual Screening. J Chem Inf Model 2005, 45:177-182. (Pubitemid 40736970)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.1 , pp. 177-182
    • Irwin, J.J.1    Shoichet, B.K.2
  • 13
    • 84877330182 scopus 로고    scopus 로고
    • MDDR Licensed By Accelrys Inc. USA
    • MDDR licensed by Accelrys, Inc. USA. www.accelrys.com.
  • 15
    • 41349093326 scopus 로고    scopus 로고
    • What do we know and when do we know it?
    • Nicholls A: What do we know and when do we know it? J Comput Aided Mol Des 2008, 22:239-255.
    • (2008) J Comput Aided Mol des , vol.22 , pp. 239-255
    • Nicholls, A.1
  • 16
    • 66249088724 scopus 로고    scopus 로고
    • Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries
    • Ma XH, Jia J, Zhu F, Xue Y, Li ZR, Chen YZ: Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb Chem High Throughput Screen 2009, 12:344-357.
    • (2009) Comb Chem High Throughput Screen , vol.12 , pp. 344-357
    • Ma, X.H.1    Jia, J.2    Zhu, F.3    Xue, Y.4    Li, Z.R.5    Chen, Y.Z.6
  • 17
    • 80255135618 scopus 로고    scopus 로고
    • Brainstorming: Weighted voting prediction of inhibitors for protein targets
    • Plewczynski D: Brainstorming: weighted voting prediction of inhibitors for protein targets. J Mol Model 2011, 17:2133-2141.
    • (2011) J Mol Model , vol.17 , pp. 2133-2141
    • Plewczynski, D.1
  • 22
    • 84877323784 scopus 로고    scopus 로고
    • Discovery Studio provided by Accelrys, Inc USA
    • Discovery Studio, provided by Accelrys, Inc USA. www.accelrys.com.
  • 24
    • 79953005609 scopus 로고    scopus 로고
    • PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
    • Yap CWEI: PaDEL-Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints. J Comput Chem 2010, 32:1466-1474.
    • (2010) J Comput Chem , vol.32 , pp. 1466-1474
    • Yap, C.W.E.I.1
  • 27
    • 54949134905 scopus 로고    scopus 로고
    • Chemical substructures that enrich for biological activity
    • Klekota J, Roth FP: Chemical substructures that enrich for biological activity. Bioinformatics 2008, 24:2518-2525.
    • (2008) Bioinformatics , vol.24 , pp. 2518-2525
    • Klekota, J.1    Roth, F.P.2
  • 28
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • Edited by Scholkopf B, Burges C, Smola AJ. Cambridge: MIT Press
    • Platt JC: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. In Advances in Kernel Methods - Support Vector Learning. Edited by Scholkopf B, Burges C, Smola AJ. Cambridge: MIT Press; 1999:185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 30
    • 84877326977 scopus 로고    scopus 로고
    • Comparing performance of committee based approaches to active learning
    • Edited by Klopotek M, Przepiorkowski A, Wierzchon S, Trojanowski K. Warsaw: EXIT
    • Stefanowski J, Pachocki M: Comparing Performance of Committee Based Approaches to Active Learning. In Recent Advances in Intelligent Information Systems. Edited by Klopotek M, Przepiorkowski A, Wierzchon S, Trojanowski K. Warsaw: EXIT; 2009:457-470.
    • (2009) Recent Advances in Intelligent Information Systems , pp. 457-470
    • Stefanowski, J.1    Pachocki, M.2
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L: Random Forests. Mach Learn 2001, 45:5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.