-
1
-
-
77049132676
-
The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hy-drolysates
-
F. Sanger and E. O. Thompson, “The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hy-drolysates,” J. Biochem., vol. 53, no. 3, pp. 353–366, 1953a.
-
(1953)
J. Biochem.
, vol.53
, Issue.3
, pp. 353-366
-
-
Sanger, F.1
Thompson, E.O.2
-
2
-
-
77049157238
-
The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hy-drolysates
-
F. Sanger and E. O. Thompson, “The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hy-drolysates,” J. Biochem., vol. 53, no. 3, pp. 366–374, 1953b.
-
(1953)
J. Biochem.
, vol.53
, Issue.3
, pp. 366-374
-
-
Sanger, F.1
Thompson, E.O.2
-
3
-
-
76549238253
-
The pleated sheet, a new layer config-uration of the polypeptide chain
-
L. Pauling and R. B. Corey, “The pleated sheet, a new layer config-uration of the polypeptide chain,” Proc. Nat. Acad. Sci., vol. 37, pp. 251–256, 1951.
-
(1951)
Proc. Nat. Acad. Sci.
, vol.37
, pp. 251-256
-
-
Pauling, L.1
Corey, R.B.2
-
4
-
-
76549252207
-
The structure of proteins: Two hydrogenbonded helical configurations of the polypeptide chain
-
L. Pauling, R. B. Corey, and H. R. Branson, “The structure of proteins: Two hydrogenbonded helical configurations of the polypeptide chain,” Proc. Nat. Acad. Sci., vol. 37, pp. 205–211, 1951.
-
(1951)
Proc. Nat. Acad. Sci.
, vol.37
, pp. 205-211
-
-
Pauling, L.1
Corey, R.B.2
Branson, H.R.3
-
5
-
-
36949091243
-
Structure of myoglobin: A three-dimensional Fourier synthesis at 2_a resolution
-
J. C. Kendrew, R. E. Dickerson, B. E. Strandberg, R. J. Hart, D. R. Davies, D. C. Phillips, and V. C. Shore, “Structure of myoglobin: A three-dimensional Fourier synthesis at 2_a resolution,” Nature, vol. 185, pp. 422–427, 1960.
-
(1960)
Nature
, vol.185
, pp. 422-427
-
-
Kendrew, J.C.1
Dickerson, R.E.2
Strandberg, B.E.3
Hart, R.J.4
Davies, D.R.5
Phillips, D.C.6
Shore, V.C.7
-
6
-
-
36949066642
-
Structure of haemoglobin: A three-dimensional Fourier synthesis at 5.5 Angstrom resolution, obtained by x-ray analysis
-
M. F. Perutz, M. G. Rossmann, A. F. Cullis, G. Muirhead, G. Will, and A. T. North, “Structure of haemoglobin: A three-dimensional Fourier synthesis at 5.5 Angstrom resolution, obtained by x-ray analysis,” Na-ture, vol. 185, pp. 416–422, 1960.
-
(1960)
Na-ture
, vol.185
, pp. 416-422
-
-
Perutz, M.F.1
Rossmann, M.G.2
Cullis, A.F.3
Muirhead, G.4
Will, G.5
North, A.T.6
-
7
-
-
0025370815
-
Dominant forces in protein folding
-
K. A. Dill, “Dominant forces in protein folding,” Biochemistry, vol. 31, pp. 7134–7155, 1990.
-
(1990)
Biochemistry
, vol.31
, pp. 7134-7155
-
-
Dill, K.A.1
-
8
-
-
0242292013
-
From protein structure to biochemical function?
-
R. A. Laskowski, J. D. Watson, and J. M. Thornton, “From protein structure to biochemical function?,” J. Struct. Funct. Genomics, vol. 4, pp. 167–177, 2003.
-
(2003)
J. Struct. Funct. Genomics
, vol.4
, pp. 167-177
-
-
Laskowski, R.A.1
Watson, J.D.2
Thornton, J.M.3
-
9
-
-
0024373679
-
DNA conformation and protein binding
-
A. Travers, “DNA conformation and protein binding,” Ann. Rev. Biochem., vol. 58, pp. 427–452, 1989.
-
(1989)
Ann. Rev. Biochem.
, vol.58
, pp. 427-452
-
-
Travers, A.1
-
10
-
-
0025324091
-
Structure, function and diversity of class I major histocompatibility complex molecules
-
P. J. Bjorkman and P. Parham, “Structure, function and diversity of class I major histocompatibility complex molecules,” Ann. Rev. Biochem., vol. 59, pp. 253–288, 1990.
-
(1990)
Ann. Rev. Biochem.
, vol.59
, pp. 253-288
-
-
Bjorkman, P.J.1
Parham, P.2
-
11
-
-
0003539117
-
The Development of X-Ray Analysis
-
London, U.K.: G. Bell
-
L. Bragg, The Development of X-Ray Analysis. London, U.K.: G. Bell, 1975.
-
(1975)
-
-
Bragg, L.1
-
12
-
-
0004195607
-
Protein Crystallography
-
New York Academic
-
T. L. Blundell and L. H. Johnson, Protein Crystallography. New York: Academic, 1976.
-
(1976)
-
-
Blundell, T.L.1
Johnson, L.H.2
-
13
-
-
0003919736
-
NMR of Proteins and Nucleic Acids
-
New York Wiley
-
K. Wuthrich, NMR of Proteins and Nucleic Acids. New York: Wiley, 1986.
-
(1986)
-
-
Wuthrich, K.1
-
14
-
-
0025977709
-
Crystal structure of interleukin 8: Sym-biosis of NMR and crystallography
-
E. N. Baldwin, I. T. Weber, R. S. Charles, J. Xuan, E. Appella, M. Yamada, K. Matsushima, B. F. P. Edwards, G. M. Clore, A. M. Gro-nenborn, and A. Wlodawar, “Crystal structure of interleukin 8: Sym-biosis of NMR and crystallography,” Proc. Nat. Acad. Sci., vol. 88, pp. 502–506, 1991.
-
(1991)
Proc. Nat. Acad. Sci.
, vol.88
, pp. 502-506
-
-
Baldwin, E.N.1
Weber, I.T.2
Charles, R.S.3
Xuan, J.4
Appella, E.5
Yamada, M.6
Matsushima, K.7
Edwards, B.F.P.8
Clore, G.M.9
Gro-nenborn, A.M.10
Wlodawar, A.11
-
15
-
-
0033954256
-
The protein data bank
-
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data bank,” Nucl. Acids Res., vol. 28, pp. 235–242, 2000.
-
(2000)
Nucl. Acids Res.
, vol.28
, pp. 235-242
-
-
Berman, H.M.1
Westbrook, J.2
Feng, Z.3
Gilliland, G.4
Bhat, T.N.5
Weissig, H.6
Shindyalov, I.N.7
Bourne, P.E.8
-
16
-
-
31144467558
-
The impact of structural genomics: Expectations and outcomes
-
J. M. Chandonia and S. E. Brenner, “The impact of structural genomics: Expectations and outcomes,” Science, vol. 311, pp. 347–351, 2006.
-
(2006)
Science
, vol.311
, pp. 347-351
-
-
Chandonia, J.M.1
Brenner, S.E.2
-
17
-
-
0015859467
-
Principles that govern the folding of protein chains
-
C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science, vol. 181, pp. 223–230, 1973.
-
(1973)
Science
, vol.181
, pp. 223-230
-
-
Anfinsen, C.B.1
-
18
-
-
29144526714
-
Protein structure prediction: Inroads to bi-ology
-
D. Petrey and B. Honig, “Protein structure prediction: Inroads to bi-ology,” Mol. Cell., vol. 20, pp. 811–819, 2005.
-
(2005)
Mol. Cell.
, vol.20
, pp. 811-819
-
-
Petrey, D.1
Honig, B.2
-
19
-
-
12844260161
-
Comparative protein structure modeling and its applications to drug discovery
-
London, U.K. Academic
-
M. Jacobson and A. Sali, “Comparative protein structure modeling and its applications to drug discovery,” in Annual Reports in Medical Chemistry, J. Overington, Ed. London, U.K.: Academic, 2004, pp. 259–276.
-
(2004)
Annual Reports in Medical Chemistry, J.
, pp. 259-276
-
-
Jacobson, M.1
Sali, A.2
-
20
-
-
84864516302
-
Prediction of protein structure through evolution
-
B. Rost, J. Liu, D. Przybylski, R. Nair, K. O. Wrzeszczynski, H. Bigelow, and Y. Ofran, “Prediction of protein structure through evolution,” in Handbook of Chemoinformatics - From Data to Knowl-edge, J. Gasteiger and T. Engel, Eds. New York: Wiley, 2003, pp. 1789–1811.
-
(2003)
Handbook of Chemoinformatics - From Data to Knowl-edge
, pp. 1789
-
-
Rost, B.1
Liu, J.2
Przybylski, D.3
Nair, R.4
Wrzeszczynski, K.O.5
Bigelow, H.6
Ofran, Y.7
-
21
-
-
0003396310
-
Bioinformatics: The Machine Learning Ap-proach
-
2nd ed. Cambridge, MA MIT Press
-
P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Ap-proach, 2nd ed. Cambridge, MA: MIT Press, 2001.
-
(2001)
-
-
Baldi, P.1
Brunak, S.2
-
22
-
-
0027169638
-
Improved prediction of protein secondary structure by use of sequence profiles and neural networks
-
B. Rost and C. Sander, “Improved prediction of protein secondary structure by use of sequence profiles and neural networks,” Proc. Nat. Acad. Sci., vol. 90, no. 16, pp. 7558–7562, 1993a.
-
(1993)
Proc. Nat. Acad. Sci.
, vol.90
, Issue.16
, pp. 7558-7562
-
-
Rost, B.1
Sander, C.2
-
23
-
-
0027291015
-
Prediction of protein secondary structure at better than 70% accuracy
-
B. Rost and C. Sander, “Prediction of protein secondary structure at better than 70% accuracy,” J. Mol. Bio., vol. 232, no. 2, pp. 584–599, 1993b.
-
(1993)
J. Mol. Bio.
, vol.232
, Issue.2
, pp. 584-599
-
-
Rost, B.1
Sander, C.2
-
24
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” J. Mol. Bio., vol. 292, pp. 195–202, 1999b.
-
(1999)
J. Mol. Bio.
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
25
-
-
0036568279
-
Improving the pre-diction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, “Improving the pre-diction of protein secondary structure in three and eight classes using recurrent neural networks and profiles,” Proteins, vol. 47, pp. 228–235, 2002a.
-
(2002)
Proteins
, vol.47
, pp. 228-235
-
-
Pollastri, G.1
Przybylski, D.2
Rost, B.3
Baldi, P.4
-
26
-
-
0028109886
-
Conservation and prediction of solvent acces-sibility in protein families
-
B. Rost and C. Sander, “Conservation and prediction of solvent acces-sibility in protein families,” Proteins, vol. 20, no. 3, pp. 216-226,1994.
-
(1994)
Proteins
, vol.20
, Issue.3
, pp. 216-226
-
-
Rost, B.1
Sander, C.2
-
27
-
-
0036568293
-
Prediction of co-ordination number and relative solvent accessibility in proteins
-
G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio, “Prediction of co-ordination number and relative solvent accessibility in proteins,” Pro-teins, vol. 47, pp. 142–153, 2002b.
-
(2002)
Pro-teins
, vol.47
, pp. 142-153
-
-
Pollastri, G.1
Baldi, P.2
Fariselli, P.3
Casadio, R.4
-
28
-
-
0035663988
-
Prediction of con-tact maps with neural networks and correlated mutations
-
P. Fariselli, O. Olmea, A. Valencia, and R. Casadio, “Prediction of con-tact maps with neural networks and correlated mutations,” Prot. Eng., vol. 13, pp. 835–843, 2001.
-
(2001)
Prot. Eng.
, vol.13
, pp. 835-843
-
-
Fariselli, P.1
Olmea, O.2
Valencia, A.3
Casadio, R.4
-
29
-
-
0041719954
-
Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners
-
no. Suool 1. pp
-
G. Pollastri and P. Baldi, “Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners.” Bioinfo., vol. 18. no. Suool 1. pp. S62-S70, 2002.
-
(2002)
Bioinfo.
, vol.18
, pp. S62-S70
-
-
Pollastri, G.1
Baldi, P.2
-
30
-
-
0034781580
-
Prediction of disulfide connectivity in pro-teins
-
P. Fariselli and R. Casadio, “Prediction of disulfide connectivity in pro-teins,” Bioinfo., vol. 17, pp. 957–964, 2004.
-
(2004)
Bioinfo.
, vol.17
, pp. 957-964
-
-
Fariselli, P.1
Casadio, R.2
-
31
-
-
0037661358
-
A recursive connectionist approach for pre-dicting disulfide connectivity in proteins
-
A. Vullo and P. Frasconi, “A recursive connectionist approach for pre-dicting disulfide connectivity in proteins,” in Proc. 18th Annu. ACM Symp. Applied Computing, 2003, pp. 67–71.
-
(2003)
Proc. 18th Annu. ACM Symp. Applied Computing
, pp. 67-71
-
-
Vullo, A.1
Frasconi, P.2
-
32
-
-
84898931668
-
Large-scale prediction of disulphide bond connectivity
-
Cambridge, MA MIT Press NIPS04 Conf., pp
-
P. Baldi, J. Cheng, and A. Vullo, “Large-scale prediction of disulphide bond connectivity,” in Advances in Neural Information Processing Sys-tems, L. Bottou, L. Saul, and Y. Weiss, Eds. Cambridge, MA: MIT Press, 2005, vol. 17, NIPS04 Conf., pp. 97–104.
-
(2005)
Advances in Neural Information Processing Sys-tems
, vol.17
, pp. 97-104
-
-
Baldi, P.1
Cheng, J.2
Vullo, A.3
-
33
-
-
31944444347
-
Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural net-works, and weighted graph matching
-
J. Cheng, H. Saigo, and P. Baldi, “Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural net-works, and weighted graph matching,” Proteins: Structure, Function, Bioinformatics, vol. 62, no. 3, pp. 617–629, 2006b.
-
(2006)
Proteins: Structure, Function, Bioinformatics
, vol.62
, Issue.3
, pp. 617-629
-
-
Cheng, J.1
Saigo, H.2
Baldi, P.3
-
34
-
-
85152601164
-
Critical assessment of methods of protein structure pre-diction-Round VII
-
J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, T. Hubbard, and A. Tramontano, “Critical assessment of methods of protein structure pre-diction-Round VII,” Proteins, vol. 29, pp. 179–187, 2007.
-
(2007)
Proteins
, vol.29
, pp. 179-187
-
-
Moult, J.1
Fidelis, K.2
Kryshtafovych, A.3
Rost, B.4
Hubbard, T.5
Tramontano, A.6
-
35
-
-
36749104181
-
From the Mediterranean coast to the shores of Lake On-tario: CAPRI's premiere on the American continent
-
S. J. Wodak, “From the Mediterranean coast to the shores of Lake On-tario: CAPRI's premiere on the American continent,” Proteins, vol. 69, pp. 687–698, 2007.
-
(2007)
Proteins
, vol.69
, pp. 687-698
-
-
Wodak, S.J.1
-
36
-
-
0028011075
-
Hidden Markov models of biological primary sequence information
-
P. Baldi, Y. Chauvin, T. Hunkapillar, and M. McClure, “Hidden Markov models of biological primary sequence information,” Proc. Nat. Acad. Sci., vol. 91, no. 3, pp. 1059–1063, 1994.
-
(1994)
Proc. Nat. Acad. Sci.
, vol.91
, Issue.3
, pp. 1059-1063
-
-
Baldi, P.1
Chauvin, Y.2
Hunkapillar, T.3
McClure, M.4
-
37
-
-
0028181441
-
Hidden Markov models in computational biology: Applications to protein modeling
-
A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler, “Hidden Markov models in computational biology: Applications to protein modeling,” J. Mol. Biol., vol. 235, pp. 1501–1531, 1994.
-
(1994)
J. Mol. Biol.
, vol.235
, pp. 1501-1531
-
-
Krogh, A.1
Brown, M.2
Mian, I.S.3
Sjolander, K.4
Haussler, D.5
-
38
-
-
0022471098
-
Learning repre-sentations by back-propagating error
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-sentations by back-propagating error,” Nature, vol. 323, pp. 533–536, 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
39
-
-
0003450542
-
The Nature of Statistical Learning Theory
-
Berlin Ger-many: Springer-Verlag
-
V. Vapnik, The Nature of Statistical Learning Theory. Berlin, Ger-many: Springer-Verlag, 1995.
-
(1995)
-
-
Vapnik, V.1
-
40
-
-
34247566179
-
Computer-assisted protein domain boundary prediction using the DomPred server
-
K. Bryson, D. Cozzetto, and D. T. Jones, “Computer-assisted protein domain boundary prediction using the DomPred server,” Curr Protein Pept Sci., vol. 8, pp. 181–188, 2007.
-
(2007)
Curr Protein Pept Sci.
, vol.8
, pp. 181-188
-
-
Bryson, K.1
Cozzetto, D.2
Jones, D.T.3
-
41
-
-
36749014942
-
Assessment of predictions submitted
-
no. S8, pp
-
M. Tress, J. Cheng, P. Baldi, K. Joo, J. Lee, J. H. Seo, J. Lee, D. Baker, D. Chivian, D. Kim, A. Valencia, and I. Ezkurdia, “Assessment of predictions submitted for the CASP7 domain prediction category,” Proteins: Structure, Function and Bioinformatics, vol. 68, no. S8, pp. 137-151,2007.
-
(2007)
Proteins: Structure, Function and Bioinformatics
, vol.68
, pp. 137-151
-
-
Tress, M.1
Cheng, J.2
Baldi, P.3
Joo, K.4
Lee, J.5
Seo, J.H.6
Lee, J.7
Baker, D.8
Chivian, D.9
Kim, D.10
Valencia, A.11
Ezkurdia, I.12
-
42
-
-
34547591340
-
DOMAC: An accurate, hybrid protein domain prediction server
-
J. Cheng, “DOMAC: An accurate, hybrid protein domain prediction server,” Nucleic Acids Res., vol. 35, pp. w354-w356, 2007.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. w354-w356
-
-
Cheng, J.1
-
43
-
-
30344485673
-
Exploiting heterogeneous sequence properties improves prediction of protein disorder
-
no. Suppl 1, pp
-
Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, and A. K. Dunker, “Exploiting heterogeneous sequence properties improves prediction of protein disorder,” Proteins, vol. 61, no. Suppl 1, pp. 176–182, 2005.
-
(2005)
Proteins
, vol.61
, pp. 176-182
-
-
Obradovic, Z.1
Peng, K.2
Vucetic, S.3
Radivojac, P.4
Dunker, A.K.5
-
44
-
-
3242891318
-
The DISOPRED server for the prediction of protein disorder
-
J. J. Ward, L. J. McGuffm, K. Bryson, B. F. Buxton, and D. T. Jones, “The DISOPRED server for the prediction of protein disorder,” Bioinfo., vol. 20, pp. 2138–2139, 2004.
-
(2004)
Bioinfo.
, vol.20
, pp. 2138-2139
-
-
Ward, J.J.1
McGuffm, L.J.2
Bryson, K.3
Buxton, B.F.4
Jones, D.T.5
-
45
-
-
27944488680
-
Accurate prediction of pro-tein disordered regions by mining protein structure data
-
J. Cheng, M. J. Sweredoski, and P. Baldi, “Accurate prediction of pro-tein disordered regions by mining protein structure data,” Data Mining Knowledge Discovery, vol. 11, pp. 213–222, 2005.
-
(2005)
Data Mining Knowledge Discovery
, vol.11
, pp. 213-222
-
-
Cheng, J.1
Sweredoski, M.J.2
Baldi, P.3
-
46
-
-
0035910270
-
Pre-dicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
-
L. Sonnhammer
-
A. Krogh, B. Larsson, G. von Heijne, and E. L. L. Sonnhammer, “Pre-dicting transmembrane protein topology with a hidden Markov model: Application to complete genomes,” J. Mol. Biol., vol. 305, no. 3, pp. 567–580, 2001.
-
(2001)
J. Mol. Biol.
, vol.305
, Issue.3
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
-
47
-
-
0018110116
-
Prediction of the secondary structure of proteins from their amino acid sequence
-
P. Y. Chou and G. D. Fasman, “Prediction of the secondary structure of proteins from their amino acid sequence,” Adv. Enzymol., vol. 47, pp. 45–148, 1978.
-
(1978)
Adv. Enzymol.
, vol.47
, pp. 45-148
-
-
Chou, P.Y.1
Fasman, G.D.2
-
48
-
-
0023803244
-
Predicting the secondary structure of globular proteins using neural network models
-
N. Qian and T. J. Sejnowski, “Predicting the secondary structure of globular proteins using neural network models,” J. Mol. Biol., vol. 202, pp. 265–884, 1988.
-
(1988)
J. Mol. Biol.
, vol.202
, pp. 265-884
-
-
Qian, N.1
Sejnowski, T.J.2
-
49
-
-
0033369033
-
Exploiting the past and the future in protein secondary structure prediction
-
P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploiting the past and the future in protein secondary structure prediction,” Bioin-formatics, vol. 15, no. 11, pp. 937–946, 1999.
-
(1999)
Bioin-formatics
, vol.15
, Issue.11
, pp. 937-946
-
-
Baldi, P.1
Brunak, S.2
Frasconi, P.3
Soda, G.4
Pollastri, G.5
-
50
-
-
0023512802
-
Prediction of secondary structure by evolutionary comparison: Application to the a subunit of tryptophan synthase
-
I. P. Crawford, T. Niermann, and K. Kirchner, “Prediction of secondary structure by evolutionary comparison: Application to the a subunit of tryptophan synthase,” Proteins, vol. 2, pp. 118–129, 1987.
-
(1987)
Proteins
, vol.2
, pp. 118-129
-
-
Crawford, I.P.1
Niermann, T.2
Kirchner, K.3
-
51
-
-
0025865814
-
Amino acid sequence analysis of the annexin supergene family of pro-teins
-
G. J. Barton, R. H. Newman, P. S. Freemont, and M. J. Crumpton, “Amino acid sequence analysis of the annexin supergene family of pro-teins,” Eur. J. Biochem., vol. 198, pp. 749–760, 1991.
-
(1991)
Eur. J. Biochem.
, vol.198
, pp. 749-760
-
-
Barton, G.J.1
Newman, R.H.2
Freemont, P.S.3
Crumpton, M.J.4
-
52
-
-
0027169638
-
Improved prediction of protein secondary structure by use of sequence profiles and neural networks
-
B. Rost and C. Sander, “Improved prediction of protein secondary structure by use of sequence profiles and neural networks,” Proc. Nat. Acad. Sci., vol. 90, pp. 7558–7562, 1993.
-
(1993)
Proc. Nat. Acad. Sci.
, vol.90
, pp. 7558-7562
-
-
Rost, B.1
Sander, C.2
-
53
-
-
13444273448
-
The universal protein resource (UniProt), “
-
pp. D154-159
-
A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O'Donovan, N. Redaschi, and L. S. Yeh, “The universal protein resource (UniProt),“ Nucleic Acids Res., vol. 33, pp. D154-159, 2005.
-
(2005)
Nucleic Acids Res.
, vol.33
-
-
Bairoch, A.1
Apweiler, R.2
Wu, C.H.3
Barker, W.C.4
Boeckmann, B.5
Ferro, S.6
Gasteiger, E.7
Huang, H.8
Lopez, R.9
Magrane, M.10
Martin, M.J.11
Natale, D.A.12
O'Donovan, C.13
Redaschi, N.14
Yeh, L.S.15
-
54
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
S. F. Altschul, T. L. Madden, A. A. Scha_er, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A new generation of protein database search programs,” Nuc. As. Res., vol. 25, no. 17, pp. 3389–3402, 1997.
-
(1997)
Nuc. As. Res.
, vol.25
, Issue.17
, pp. 3389-3402
-
-
Altschul, S.F.1
Madden, T.L.2
Scha_er, A.A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.J.7
-
55
-
-
17444397116
-
Porter: A new, accurate server for protein secondary structure prediction
-
G. Pollastri and A. McLysaght, “Porter: A new, accurate server for protein secondary structure prediction,” Bioinfo., vol. 21, no. 8, pp. 1719–20, 2005.
-
(2005)
Bioinfo.
, vol.21
, Issue.8
, pp. 1719-1720
-
-
Pollastri, G.1
McLysaght, A.2
-
56
-
-
23144465987
-
SCRATCH: A protein structure and structural feature prediction server
-
J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi, “SCRATCH: A protein structure and structural feature prediction server,” Nuc. As. Res., vol. 33, pp. 72–76, 2005.
-
(2005)
Nuc. As. Res.
, vol.33
, pp. 72-76
-
-
Cheng, J.1
Randall, A.Z.2
Sweredoski, M.J.3
Baldi, P.4
-
57
-
-
33846249595
-
MUPRED: A tool for bridging the gap be-tween template based methods and sequence profile based methods for protein secondary structure prediction
-
R. Bondugula and D. Xu, “MUPRED: A tool for bridging the gap be-tween template based methods and sequence profile based methods for protein secondary structure prediction,” Proteins, vol. 66, no. 3, pp. 664–670, 2007.
-
(2007)
Proteins
, vol.66
, Issue.3
, pp. 664-670
-
-
Bondugula, R.1
Xu, D.2
-
58
-
-
0141738785
-
Secondary structure prediction using support vector machines
-
J. J. Ward, L. J. McGuffin, B. F. Buxton, and D. T. Jones, “Secondary structure prediction using support vector machines,” Bioinfo., vol. 19, pp. 1650–1655, 2003.
-
(2003)
Bioinfo.
, vol.19
, pp. 1650-1655
-
-
Ward, J.J.1
McGuffin, L.J.2
Buxton, B.F.3
Jones, D.T.4
-
59
-
-
39149140433
-
TMBpro: Secondary structure, beta-contact, and tertiary structure prediction of transmem-brane beta-barrel proteins
-
Sweredoski, and P. Baldi
-
Randall, J. Cheng, M. Sweredoski, and P. Baldi, “TMBpro: Secondary structure, beta-contact, and tertiary structure prediction of transmem-brane beta-barrel proteins,” Bioinfo., vol. 24, pp. 513–520, 2008.
-
(2008)
Bioinfo.
, vol.24
, pp. 513-520
-
-
Randall, J.1
Cheng, M.2
-
60
-
-
33646873003
-
Rising accuracy of protein secondary structure prediction
-
New York Marcel Dekker
-
B. Rost, “Rising accuracy of protein secondary structure prediction,” in Protein Structure Determination, Analysis, and Modeling for Drug Discovery, D. Chasman, Ed. New York: Marcel Dekker, 2003, pp. 207–249.
-
(2003)
Protein Structure Determination, Analysis, and Modeling for Drug Discovery
, pp. 207-249
-
-
Rost, B.1
-
61
-
-
33745101459
-
DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent acces-sibility, and recursive neural networks
-
J. Cheng, M. Sweredoski, and P. Baldi, “DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent acces-sibility, and recursive neural networks,” Data Mining Knowledge Dis-covery, vol. 13, pp. 1–10, 2006.
-
(2006)
Data Mining Knowledge Dis-covery
, vol.13
, pp. 1-10
-
-
Cheng, J.1
Sweredoski, M.2
Baldi, P.3
-
63
-
-
0030627941
-
Improving contact predictions by the com-bination of correlated mutations and other sources of sequence infor-mation
-
O. Olmea and A. Valencia, “Improving contact predictions by the com-bination of correlated mutations and other sources of sequence infor-mation,” Fold Des, vol. 2, pp. s25-s32, 1997.
-
(1997)
Fold Des
, vol.2
, pp. s25-s32
-
-
Olmea, O.1
Valencia, A.2
-
64
-
-
0036522644
-
A machine learning strategy for protein anal-ysis
-
P. Baldi and G. Pollastri, “A machine learning strategy for protein anal-ysis,” IEEE Intelligent Systems, Special Issue Intelligent Systems in Bi-ology, vol. 17, no. 2, pp. 28–35, Feb. 2002.
-
(2002)
IEEE Intelligent Systems, Special Issue Intelligent Systems in Bi-ology
, vol.17
, Issue.2
, pp. 28-35
-
-
Baldi, P.1
Pollastri, G.2
-
65
-
-
0029097099
-
Global fold determination from a small number of distance restraints
-
A. Aszodi, M. Gradwell, and W. Taylor, “Global fold determination from a small number of distance restraints,” J. Mol. Biol., vol. 251, pp. 308–326, 1995.
-
(1995)
J. Mol. Biol.
, vol.251
, pp. 308-326
-
-
Aszodi, A.1
Gradwell, M.2
Taylor, W.3
-
66
-
-
0030627407
-
Recovery of protein structure from contact maps
-
M. Vendruscolo, E. Kussell, and E. Domany, “Recovery of protein structure from contact maps,” Folding Design, vol. 2, pp. 295–306, 1997.
-
(1997)
Folding Design
, vol.2
, pp. 295-306
-
-
Vendruscolo, M.1
Kussell, E.2
Domany, E.3
-
67
-
-
0031575423
-
MONSSTER: A method for folding globular proteins with a small number of distance restraints
-
J. Skolnick, A. Kolinski, and A. Ortiz, “MONSSTER: A method for folding globular proteins with a small number of distance restraints,” J Mol. Biol., vol. 265, pp. 217–241, 1997.
-
(1997)
J Mol. Biol.
, vol.265
, pp. 217-241
-
-
Skolnick, J.1
Kolinski, A.2
Ortiz, A.3
-
68
-
-
0032502839
-
Contact order, transition state placement and the refolding rates of single domain proteins
-
K. Plaxco, K. Simons, and D. Baker, “Contact order, transition state placement and the refolding rates of single domain proteins,” J. Mol. Biol., vol. 277, pp. 985–994, 1998.
-
(1998)
J. Mol. Biol.
, vol.277
, pp. 985-994
-
-
Plaxco, K.1
Simons, K.2
Baker, D.3
-
69
-
-
17144369578
-
Protein folding rates estimated from contact predictions
-
M. Punta and B. Rost, “Protein folding rates estimated from contact predictions,” J. Mol. Biol., pp. 507–512, 2005a.
-
(2005)
J. Mol. Biol.
, pp. 507-512
-
-
Punta, M.1
Rost, B.2
-
70
-
-
2542420004
-
The principled design of large-scale re-cursive neural network architectures—DAG-RNNs and the protein structure prediction problem
-
P. Baldi and G. Pollastri, “The principled design of large-scale re-cursive neural network architectures—DAG-RNNs and the protein structure prediction problem,” J. Machine Learning Res., vol. 4, pp. 575–602, 2003.
-
(2003)
J. Machine Learning Res.
, vol.4
, pp. 575-602
-
-
Baldi, P.1
Pollastri, G.2
-
71
-
-
21444454088
-
PROFcon: Novel prediction of long-range con-tacts
-
M. Punta and B. Rost, “PROFcon: Novel prediction of long-range con-tacts,” Bioinfo., vol. 21, pp. 2960–2968, 2005b.
-
(2005)
Bioinfo.
, vol.21
, pp. 2960-2968
-
-
Punta, M.1
Rost, B.2
-
72
-
-
36749031067
-
Contact prediction using mutual in-formation and neural nets
-
G. Shackelford and K. Karplus, “Contact prediction using mutual in-formation and neural nets,” Proteins, vol. 69, pp. 159–164, 2007.
-
(2007)
Proteins
, vol.69
, pp. 159-164
-
-
Shackelford, G.1
Karplus, K.2
-
73
-
-
24744453057
-
Striped sheets and protein contact prediction
-
no. Supplement 1, pp. i224—i231
-
R. MacCallum, “Striped sheets and protein contact prediction,” Bioinfo., vol. 20, no. Supplement 1, pp. i224—i231, 2004.
-
(2004)
Bioinfo.
, vol.20
-
-
MacCallum, R.1
-
74
-
-
34247247779
-
Improved residue contact prediction using sup-port vector machines and a large feature set
-
J. Cheng and P. Baldi, “Improved residue contact prediction using sup-port vector machines and a large feature set,” BMC Bioinformatics, vol. 8, p. 113, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 113
-
-
Cheng, J.1
Baldi, P.2
-
75
-
-
36749082814
-
Assessment of intramolecular contact predictions for
-
J. M. G. Izarzugaza, O. Grana, M. L. Tress, A. Valencia, and N. D. Clarke, “Assessment of intramolecular contact predictions for CASP7,” Proteins, vol. 69, pp. 152–158.
-
Proteins
, vol.69
, pp. 152-158
-
-
Izarzugaza, J.M.G.1
Grana, O.2
Tress, M.L.3
Valencia, A.4
Clarke, N.D.5
-
76
-
-
41349114023
-
A comprehensive assessment of sequence-based and template-based methods for protein contact prediction
-
to be published
-
S. Wu and Y. Zhang, “A comprehensive assessment of sequence-based and template-based methods for protein contact prediction,” Bioinfo., 2008, to be published.
-
(2008)
Bioinfo.
-
-
Wu, S.1
Zhang, Y.2
-
77
-
-
84860507958
-
Three-stage prediction of protein beta-sheets by neural networks, alignments, and graph algorithms
-
J. Cheng and P. Baldi, “Three-stage prediction of protein beta-sheets by neural networks, alignments, and graph algorithms,” Bioinfo., vol. 21, pp. i75–i84, 2005.
-
(2005)
Bioinfo.
, vol.21
, pp. i75-i84
-
-
Cheng, J.1
Baldi, P.2
-
78
-
-
0033566578
-
Role of evolutionary infor-mation in predicting the disulfide-bonding state of cysteine in proteins
-
P. Fariselli, P. Riccobelli, and R. Casadio, “Role of evolutionary infor-mation in predicting the disulfide-bonding state of cysteine in proteins,” Proteins, vol. 36, pp. 340–346, 1999.
-
(1999)
Proteins
, vol.36
, pp. 340-346
-
-
Fariselli, P.1
Riccobelli, P.2
Casadio, R.3
-
79
-
-
1842455284
-
Disulfide connectivity prediction using re-cursive neural networks and evolutionary information
-
A. Vullo and P. Frasconi, “Disulfide connectivity prediction using re-cursive neural networks and evolutionary information,” Bioinfo., vol. 20, pp. 653–659, 2004.
-
(2004)
Bioinfo.
, vol.20
, pp. 653-659
-
-
Vullo, A.1
Frasconi, P.2
-
80
-
-
31944444347
-
Farge-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural net-works, and weighted graph matching
-
J. Cheng, H. Saigo, and P. Baldi, “Farge-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural net-works, and weighted graph matching,” Proteins: Structure, Function, Bioinformatics, vol. 62, no. 3, pp. 617–629, 2006b.
-
(2006)
Proteins: Structure, Function, Bioinformatics
, vol.62
, Issue.3
, pp. 617-629
-
-
Cheng, J.1
Saigo, H.2
Baldi, P.3
-
81
-
-
39149140433
-
TMBpro: Sec-ondary structure, beta-contact, and tertiary structure prediction of trans-membrane beta-barrel proteins
-
A. Z. Randall, J. Cheng, M. Sweredoski, and P. Baldi, “TMBpro: Sec-ondary structure, beta-contact, and tertiary structure prediction of trans-membrane beta-barrel proteins,” Bioinfo., vol. 24, pp. 513–520, 2008.
-
(2008)
Bioinfo.
, vol.24
, pp. 513-520
-
-
Randall, A.Z.1
Cheng, J.2
Sweredoski, M.3
Baldi, P.4
-
82
-
-
43349102979
-
FT-COMAR: Fault tolerant three-dimensional structure reconstruction from protein contact maps
-
M. Vassura, L. Margara, P. Di Lena, F. Medri, P. Fariselli, and R. Casadio, “FT-COMAR: Fault tolerant three-dimensional structure reconstruction from protein contact maps,” Bioinfo., vol. 24, pp. 1313–1315, 2008.
-
(2008)
Bioinfo.
, vol.24
, pp. 1313-1315
-
-
Vassura, M.1
Margara, L.2
Lena, P.D.3
Medri, F.4
Fariselli, P.5
Casadio, R.6
-
83
-
-
0037139549
-
De novo determination of protein back-bone structure from residual dipolar couplings using Rosetta
-
C. A. Rohl and D. Baker, “De novo determination of protein back-bone structure from residual dipolar couplings using Rosetta,” J. Amer. Chemical Soc., vol. 124, pp. 2723–2729, 2004.
-
(2004)
J. Amer. Chemical Soc.
, vol.124
, pp. 2723-2729
-
-
Rohl, C.A.1
Baker, D.2
-
84
-
-
0034501067
-
De novo protein structure determination using sparse NMR data
-
P. M. Bowers, C. E. Strauss, and D. Baker, “De novo protein structure determination using sparse NMR data,” J. Biomol. NMR, vol. 18, no. 4, pp. 311–318, 2000.
-
(2000)
J. Biomol. NMR
, vol.18
, Issue.4
, pp. 311-318
-
-
Bowers, P.M.1
Strauss, C.E.2
Baker, D.3
-
85
-
-
2442676589
-
Automated structure prediction of weakly homologous proteins on a genomic scale
-
Y. Zhang and J. Skolnick, “Automated structure prediction of weakly homologous proteins on a genomic scale,” Proc Nat. Acad. Sci., vol. 101, no. 20, pp. 7594–7599, 2004a.
-
(2004)
Proc Nat. Acad. Sci.
, vol.101
, Issue.20
, pp. 7594-7599
-
-
Zhang, Y.1
Skolnick, J.2
-
86
-
-
0033537993
-
GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences
-
D. T. Jones, “GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences,” J. Mol. Biol., vol. 287, pp. 797–815, 1999a.
-
(1999)
J. Mol. Biol.
, vol.287
, pp. 797-815
-
-
Jones, D.T.1
-
87
-
-
0142184275
-
PROSPECT II: Pro-tein structure prediction method for genome-scale applications
-
D. Kim, D. Xu, J. Guo, K. Ellrott, and Y. Xu, “PROSPECT II: Pro-tein structure prediction method for genome-scale applications,” Pro-tein Eng., vol. 16, no. 9, pp. 641–650, 2003.
-
(2003)
Pro-tein Eng.
, vol.16
, Issue.9
, pp. 641-650
-
-
Kim, D.1
Xu, D.2
Guo, J.3
Ellrott, K.4
Xu, Y.5
-
88
-
-
33745616114
-
A machine learning information retrieval approach to protein fold recognition
-
J. Cheng and P. Baldi, “A machine learning information retrieval approach to protein fold recognition,” Bioinfo., vol. 22, no. 12, pp. 1456–1463, 2006.
-
(2006)
Bioinfo.
, vol.22
, Issue.12
, pp. 1456-1463
-
-
Cheng, J.1
Baldi, P.2
-
89
-
-
0031585984
-
Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
-
K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, “Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions,” J. Mol. Biol., vol. 268, pp. 209–225, 1997.
-
(1997)
J. Mol. Biol.
, vol.268
, pp. 209-225
-
-
Simons, K.T.1
Kooperberg, C.2
Huang, E.3
Baker, D.4
-
90
-
-
36749049687
-
Prediction of global and local model quality in CASP7 using Peons and ProQ
-
B. Wallner and A. Elofsson, “Prediction of global and local model quality in CASP7 using Peons and ProQ,” Proteins, vol. 69, pp. 184–193, 2007.
-
(2007)
Proteins
, vol.69
, pp. 184-193
-
-
Wallner, B.1
Elofsson, A.2
-
91
-
-
42449122271
-
Ranking predicted protein structures with support vector regression
-
J. Qiu, W. Sheffler, D. Baker, and W. S. Noble, “Ranking predicted protein structures with support vector regression,” Proteins, vol. 71, pp. 1175–1182, 2007.
-
(2007)
Proteins
, vol.71
, pp. 1175-1182
-
-
Qiu, J.1
Sheffler, W.2
Baker, D.3
Noble, W.S.4
-
92
-
-
0032438987
-
Hidden Markov models for detecting remote protein homologies
-
K. Karplus, C. Barrett, and R. Hughey, “Hidden Markov models for detecting remote protein homologies,” Bioinfo., vol. 14, no. 10, pp. 846–856, 1998.
-
(1998)
Bioinfo.
, vol.14
, Issue.10
, pp. 846-856
-
-
Karplus, K.1
Barrett, C.2
Hughey, R.3
-
93
-
-
0031743421
-
Profile hidden Markov models
-
S. R. Eddy, “Profile hidden Markov models,” Bioinfo., vol. 14, pp. 755–763, 1998.
-
(1998)
Bioinfo.
, vol.14
, pp. 755-763
-
-
Eddy, S.R.1
-
94
-
-
16344373015
-
Protein homology detection by HMM-HMM compar-ison
-
J. Soeding, “Protein homology detection by HMM-HMM compar-ison,” Bioinfo., vol. 21, pp. 951–960, 2005.
-
(2005)
Bioinfo.
, vol.21
, pp. 951-960
-
-
Soeding, J.1
-
95
-
-
0027136282
-
Comparative protein modelling by satis-faction of spatial restraints
-
A. Sali and T. L. Blundell, “Comparative protein modelling by satis-faction of spatial restraints,” J. Mol. Biol., vol. 234, pp. 779–815, 1993.
-
(1993)
J. Mol. Biol.
, vol.234
, pp. 779-815
-
-
Sali, A.1
Blundell, T.L.2
-
96
-
-
1942519275
-
SPICKER: A clustering approach to iden-tify near-native protein folds
-
Y. Zhang and J. Skolnick, “SPICKER: A clustering approach to iden-tify near-native protein folds,” J. Comp. Chem., vol. 25, pp. 865–871, 2004b.
-
(2004)
J. Comp. Chem.
, vol.25
, pp. 865-871
-
-
Zhang, Y.1
Skolnick, J.2
-
97
-
-
36749043625
-
As-sessment of predictions in the model quality assessment category
-
no. S8, pp
-
D. Cozzetto, A. Kryshtafovych, M. Ceriani, and A. Tramontano, “As-sessment of predictions in the model quality assessment category,” Pro-teins, vol. 69, no. S8, pp. 175–183, 2007.
-
(2007)
Pro-teins
, vol.69
, pp. 175-183
-
-
Cozzetto, D.1
Kryshtafovych, A.2
Ceriani, M.3
Tramontano, A.4
-
98
-
-
0032400516
-
Modelling protein docking using shape complemen-tarity, electrostatics and biochemical information
-
P. Aloy, G. Moont, H. A. Gabb, E. Querol, F. X. Aviles, and M. J. E. Sternberg, “Modelling protein docking using shape complemen-tarity, electrostatics and biochemical information,” Proteins, vol. 33, pp. 535–549, 1998.
-
(1998)
Proteins
, vol.33
, pp. 535-549
-
-
Aloy, P.1
Moont, G.2
Gabb, H.A.3
Querol, E.4
Aviles, F.X.5
Sternberg, M.J.E.6
-
99
-
-
34250877416
-
Protein docking using surface matching and supervised machine learning
-
A. J. Bordner and A. A. Gorin, “Protein docking using surface matching and supervised machine learning,” Proteins, vol. 68, pp. 488–502, 2007.
-
(2007)
Proteins
, vol.68
, pp. 488-502
-
-
Bordner, A.J.1
Gorin, A.A.2
-
100
-
-
33645095436
-
Efficient re-straints for protein-protein docking by comparison of observed amino acid substitution patterns with those predicted from local environ- ment
-
Mol. Biol
-
V. Chelliah, T. L. Blundell, and J. Fernandez-Recio, “Efficient re-straints for protein-protein docking by comparison of observed amino acid substitution patterns with those predicted from local environ- ment” J.Mol. Biol., vol. 357. pp. 1669–1682, 2006.
-
(2006)
J.
, vol.357
, pp. 1669-1682
-
-
Chelliah, V.1
Blundell, T.L.2
Fernandez-Recio, J.3
-
101
-
-
0038526303
-
ZDOCK: An initial-stage protein docking algorithm
-
R. Chen, L. Li, and Z. Weng, “ZDOCK: An initial-stage protein docking algorithm,” Proteins, vol. 52, pp. 80–87, 2003.
-
(2003)
Proteins
, vol.52
, pp. 80-87
-
-
Chen, R.1
Li, L.2
Weng, Z.3
-
102
-
-
0345832301
-
ClusPro: An automated docking and discrimination method for the prediction of protein complexes
-
S. R. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho, “ClusPro: An automated docking and discrimination method for the prediction of protein complexes,” Bioinfo., vol. 20, pp. 45–50, 2004.
-
(2004)
Bioinfo.
, vol.20
, pp. 45-50
-
-
Comeau, S.R.1
Gatchell, D.W.2
Vajda, S.3
Camacho, C.J.4
-
103
-
-
21644489506
-
CAPRI rounds 3–5 reveal promising successes and future challenges for RosettaDock
-
M. D. Daily, D. Masica, A. Sivasubramanian, S. Somarouthu, and J. J. Gray, “CAPRI rounds 3–5 reveal promising successes and future challenges for RosettaDock,” Proteins, vol. 60, pp. 181–186, 2005.
-
(2005)
Proteins
, vol.60
, pp. 181-186
-
-
Daily, M.D.1
Masica, D.2
Sivasubramanian, A.3
Somarouthu, S.4
Gray, J.J.5
-
104
-
-
0037442962
-
HADDOCK: A protein-protein docking approach based on biochemical or biophysical infor-mation
-
C. Dominguez, R. Boelens, and A. Bonvin, “HADDOCK: A protein-protein docking approach based on biochemical or biophysical infor-mation,” J. Amer. Chem. Soc., vol. 125, pp. 1731–1737, 2003.
-
(2003)
J. Amer. Chem. Soc.
, vol.125
, pp. 1731-1737
-
-
Dominguez, C.1
Boelens, R.2
Bonvin, A.3
-
105
-
-
0031565730
-
Modelling protein docking using shape complementarity, electrostatics, and biochemical information
-
H. A. Gabb, R. M. Jackson, and M. J. E. Sternberg, “Modelling protein docking using shape complementarity, electrostatics, and biochemical information,” J. Mol. Biol., vol. 272, pp. 106–120, 1997.
-
(1997)
J. Mol. Biol.
, vol.272
, pp. 106-120
-
-
Gabb, H.A.1
Jackson, R.M.2
Sternberg, M.J.E.3
-
106
-
-
0038161052
-
Protein-protein docking with simultaneous optimization of rigid body displacement and side chain conforma-tions
-
J. J. Gray, S. E. Moughan, C. Wang, O. Schueler-Furman, B. Kuhlman, C. A. Rohl, and D. Baker, “Protein-protein docking with simultaneous optimization of rigid body displacement and side chain conforma-tions,” J. Mol. Biol., vol. 331, pp. 281–299, 2003.
-
(2003)
J. Mol. Biol.
, vol.331
, pp. 281-299
-
-
Gray, J.J.1
Moughan, S.E.2
Wang, C.3
Schueler-Furman, O.4
Kuhlman, B.5
Rohl, C.A.6
Baker, D.7
-
107
-
-
1842861590
-
Prediction of protein-protein interactions: The CAPRI experiment, its evaluation and implications
-
S. J. Wodak and R. Mendez, “Prediction of protein-protein interactions: The CAPRI experiment, its evaluation and implications,” Curr. Opin. Struct. Biol., vol. 14, pp. 242–249, 2004.
-
(2004)
Curr. Opin. Struct. Biol.
, vol.14
, pp. 242-249
-
-
Wodak, S.J.1
Mendez, R.2
-
108
-
-
0037340493
-
Development of unified statistical potentials describing protein-protein interactions
-
H. Lu, L. Lu, and J. Skolnick, “Development of unified statistical potentials describing protein-protein interactions,” Biophysical J., vol. 84, pp. 1895–1901, 2003.
-
(2003)
Biophysical J.
, vol.84
, pp. 1895-1901
-
-
Lu, H.1
Lu, L.2
Skolnick, J.3
-
109
-
-
35449008122
-
Integrating statistical pair potentials into protein complex prediction
-
J. Mintseris, B. Pierce, K. Wiehe, R. Anderson, R. Chen, and Z. Weng, “Integrating statistical pair potentials into protein complex prediction,” Proteins, vol. 69, pp. 511–520, 2007.
-
(2007)
Proteins
, vol.69
, pp. 511-520
-
-
Mintseris, J.1
Pierce, B.2
Wiehe, K.3
Anderson, R.4
Chen, R.5
Weng, Z.6
-
110
-
-
0033562633
-
Use of pair potentials across protein interfaces in screening predicted docked complexes
-
G. Moont, H. A. Gabb, and M. J. Sternberg, “Use of pair potentials across protein interfaces in screening predicted docked complexes,” Proteins, vol. 35, pp. 364–373, 1999.
-
(1999)
Proteins
, vol.35
, pp. 364-373
-
-
Moont, G.1
Gabb, H.A.2
Sternberg, M.J.3
-
111
-
-
0026572775
-
Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation tech-niques
-
E. Katchalski-Katzir,I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, and I. A. Vakser, “Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation tech-niques,” Proc. Nat. Acad. Sci., vol. 89, pp. 2195–2199, 1992.
-
(1992)
Proc. Nat. Acad. Sci.
, vol.89
, pp. 2195-2199
-
-
Katchalski-Katzir, E.1
Shariv, I.2
Eisenstein, M.3
Friesem, A.A.4
Aflalo, C.5
Vakser, I.A.6
-
112
-
-
34249912111
-
Identification of near-native structures by clustering protein docking conformations
-
S. Lorenzen and Y. Zhang, “Identification of near-native structures by clustering protein docking conformations,” Proteins, vol. 68, pp. 187–194, 2007.
-
(2007)
Proteins
, vol.68
, pp. 187-194
-
-
Lorenzen, S.1
Zhang, Y.2
-
113
-
-
34548767667
-
Interaction-site prediction for protein complexes: A critical assessment
-
H. X. Zhou and S. Qin, “Interaction-site prediction for protein complexes: A critical assessment,” Bioinfo., vol. 23, no. 17, pp. 2203–2209, 2007.
-
(2007)
Bioinfo.
, vol.23
, Issue.17
, pp. 2203-2209
-
-
Zhou, H.X.1
Qin, S.2
-
114
-
-
0035882570
-
Prediction of protein interaction sites from sequence profile and residue neighbor list
-
H. X. Zhou and Y. Shan, “Prediction of protein interaction sites from sequence profile and residue neighbor list,” Proteins, vol. 44, pp. 336–343, 2001.
-
(2001)
Proteins
, vol.44
, pp. 336-343
-
-
Zhou, H.X.1
Shan, Y.2
-
115
-
-
35748966976
-
Protein solubility: Sequence based prediction and experimental verification
-
P. Smialowski, A. J. Martin-Galiano, A. Mikolajka, T. Girschick, T. A. Holak, and D. Frishman, “Protein solubility: Sequence based prediction and experimental verification,” Bioinformatics, vol. 23, pp. 2536–2542, 2007.
-
(2007)
Bioinformatics
, vol.23
, pp. 2536-2542
-
-
Smialowski, P.1
Martin-Galiano, A.J.2
Mikolajka, A.3
Girschick, T.4
Holak, T.A.5
Frishman, D.6
-
116
-
-
33644847172
-
Prediction of protein stability changes for single site mutations using support vector machines
-
J. Cheng, A. Randall, and P. Baldi, “Prediction of protein stability changes for single site mutations using support vector machines,” Pro-teins, vol. 62, no. 4, pp. 1125–1132, 2006c.
-
(2006)
Pro-teins
, vol.62
, Issue.4
, pp. 1125-1132
-
-
Cheng, J.1
Randall, A.2
Baldi, P.3
-
117
-
-
34248531753
-
Locating proteins in the cell using TargetP, SignalP, and related tools
-
O. Emanuelsson, S. Brunak, G. V. Heijne, and H. Nielsen, “Locating proteins in the cell using TargetP, SignalP, and related tools,” Nature Protocols, vol. 2, pp. 953–971, 2007.
-
(2007)
Nature Protocols
, vol.2
, pp. 953-971
-
-
Emanuelsson, O.1
Brunak, S.2
Heijne, G.V.3
Nielsen, H.4
-
118
-
-
3042521098
-
Improved prediction of signal peptides: SignalP 3.0
-
J. D. Bendtsen, H. Nielsen, G. V. Heijne, and S. Brunak, “Improved prediction of signal peptides: SignalP 3.0,” J. Mol. Biol., vol. 340, pp. 783–795, 2004.
-
(2004)
J. Mol. Biol.
, vol.340
, pp. 783-795
-
-
Bendtsen, J.D.1
Nielsen, H.2
Heijne, G.V.3
Brunak, S.4
-
119
-
-
0033579464
-
Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites
-
N. Blom, S. Gammeltoft, and S. Brunak, “Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites,” J. Molec-ular Biol., vol. 294, pp. 1351–1362, 1999.
-
(1999)
J. Molec-ular Biol.
, vol.294
, pp. 1351-1362
-
-
Blom, N.1
Gammeltoft, S.2
Brunak, S.3
-
120
-
-
33751099863
-
Prediction of residues in discontinuous B-cell epitopes using protein 3D structures
-
P. H. Andersen, M. Nielsen, and O. Lund, “Prediction of residues in discontinuous B-cell epitopes using protein 3D structures,” Protein Sci., vol. 15, pp. 2558–2567, 2006.
-
(2006)
Protein Sci.
, vol.15
, pp. 2558-2567
-
-
Andersen, P.H.1
Nielsen, M.2
Lund, O.3
-
121
-
-
33751104704
-
Improved method for predicting linear B-cell epitopes
-
J. Larsen, O. Lund, and M. Nielsen, “Improved method for predicting linear B-cell epitopes,” Immunome Res., vol. 2, p. 2, 2006.
-
(2006)
Immunome Res.
, vol.2
, pp. 2
-
-
Larsen, J.1
Lund, O.2
Nielsen, M.3
-
122
-
-
45449086674
-
PEPITO: Improved discontinuous B-cell epitope prediction using multiple distance thresholds and half-sphere exposure
-
J. Sweredoski and P. Baldi, “PEPITO: Improved discontinuous B-cell epitope prediction using multiple distance thresholds and half-sphere exposure,” Bioinformatics, vol. 24, pp. 1459–1460, 2008a.
-
(2008)
Bioinformatics
, vol.24
, pp. 1459-1460
-
-
Sweredoski, J.1
Baldi, P.2
-
123
-
-
85008015866
-
COBEpro: A Novel System for Predicting Continuous B-Cell Epitopes
-
submitted for publication
-
J. Sweredoski and P. Baldi, COBEpro: A Novel System for Predicting Continuous B-Cell Epitopes, 2008, submitted for publication.
-
(2008)
-
-
Sweredoski, J.1
Baldi, P.2
|