메뉴 건너뛰기




Volumn 54, Issue 3, 2014, Pages 837-843

Choosing feature selection and learning algorithms in QSAR

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL CHEMISTRY; DECISION TREES; LARGE DATASET; LEARNING SYSTEMS; LINEAR REGRESSION; NEURAL NETWORKS; RANDOM FORESTS; SUPPORT VECTOR MACHINES;

EID: 84896980988     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci400573c     Document Type: Article
Times cited : (88)

References (39)
  • 1
    • 37249047989 scopus 로고    scopus 로고
    • The Recent Trend in QSAR Modeling - Variable Selection and 3D-QSAR Methods
    • Arakawa, M.; Hasegawa, K.; Funatsu, K. The Recent Trend in QSAR Modeling - Variable Selection and 3D-QSAR Methods Curr. Comput.-Aided Drug Des. 2007, 3, 254-262
    • (2007) Curr. Comput.-Aided Drug Des. , vol.3 , pp. 254-262
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 3
    • 66149118918 scopus 로고    scopus 로고
    • Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities
    • Goodarzi, M.; Freitas, M. P.; Jensen, R. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities J. Chem. Inf. Model. 2009, 49, 824-832
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 824-832
    • Goodarzi, M.1    Freitas, M.P.2    Jensen, R.3
  • 4
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu, Y. A comparative study on feature selection methods for drug discovery J. Chem. Inf. Comput. Sci. 2004, 44, 1823-1828
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1823-1828
    • Liu, Y.1
  • 8
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking Attribute Selection Techniques for Discrete Class Data Mining
    • Hall, M. A.; Holmes, G. Benchmarking Attribute Selection Techniques for Discrete Class Data Mining IEEE Trans. Knowl. Data Eng. 2003, 15, 1437-1447
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 9
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics Bioinformatics 2007, 23, 2507-17
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 11
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and Empirical Analysis of ReliefF and RReliefF
    • Robnik-Sikonja, M.; Kononenko, I. Theoretical and Empirical Analysis of ReliefF and RReliefF Mach. Learn. 2003, 53, 23-69
    • (2003) Mach. Learn. , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 12
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the Elastic Net
    • Zou, H.; Hastie, T. Regularization and variable selection via the Elastic Net J. R. Stat. Soc., Ser. B 2005, 67, 301-320
    • (2005) J. R. Stat. Soc., Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 13
    • 85194972808 scopus 로고
    • Regression Shrinkage and Selection Via the Lasso
    • Tibshirani, R. Regression Shrinkage and Selection Via the Lasso J. R. Stat. Soc., Ser. B 1994, 58, 267-288
    • (1994) J. R. Stat. Soc., Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 16
    • 0002692783 scopus 로고
    • Soft modelling by latent variables: The nonlinear iterative partial least squares (NIPALS) approach
    • Academic Press: New York
    • Wold, H. Soft modelling by latent variables: the nonlinear iterative partial least squares (NIPALS) approach. In Perspectives in Probability and Statistics: Papers in Honor of M. S. Bartlett; Gani, J., Ed.; Academic Press: New York, 1975
    • (1975) Perspectives in Probability and Statistics: Papers in Honor of M. S. Bartlett
    • Wold, H.1    Gani, J.2
  • 17
    • 0035272953 scopus 로고    scopus 로고
    • A probabilistic derivation of the partial least-squares algorithm
    • Gustafsson, M. G. A probabilistic derivation of the partial least-squares algorithm J. Chem. Inf. Comput. Sci. 2001, 41, 288-94
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 288-294
    • Gustafsson, M.G.1
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 21
    • 0034351504 scopus 로고    scopus 로고
    • A widely applicable set of descriptors
    • Labute, P. A widely applicable set of descriptors J. Mol. Graph. Model. 2000, 18, 464-77
    • (2000) J. Mol. Graph. Model. , vol.18 , pp. 464-477
    • Labute, P.1
  • 23
    • 84896905092 scopus 로고    scopus 로고
    • http://www.epa.gov/ncct/dsstox/sdf-cpdbas.html.
  • 24
    • 84896933574 scopus 로고    scopus 로고
    • http://www.epa.gov/ncct/dsstox/sdf-epafhm.html.
  • 25
    • 84896949808 scopus 로고    scopus 로고
    • http://www.epa.gov/ncct/dsstox/sdf-fdamdd.html.
  • 26
    • 0000629975 scopus 로고
    • Cross-Validatory Choice and Assessment of Statistical Predictions
    • Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions J. R. Stat. Soc., Ser. B 1974, 36, 111-147
    • (1974) J. R. Stat. Soc., Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing: Vienna, Austria, (ISBN 3 900051 07 0)
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2012, (ISBN 3 900051 07 0).
    • (2012) R: A Language and Environment for Statistical Computing
  • 28
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent J. Stat. Software 2010, 33, 1-22
    • (2010) J. Stat. Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 32
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw, A.; Wiener, M. Classification and Regression by randomForest R News 2002, 2, 18-22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 39
    • 0032376126 scopus 로고    scopus 로고
    • Violin Plots: A Box Plot-Density Trace Synergism
    • Hintze, J. L.; Nelson, R. D. Violin Plots: A Box Plot-Density Trace Synergism Am. Stat. 1998, 52, 181-84
    • (1998) Am. Stat. , vol.52 , pp. 181-184
    • Hintze, J.L.1    Nelson, R.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.