메뉴 건너뛰기




Volumn 14, Issue 16, 2014, Pages 1913-1922

In silico machine learning methods in drug development

Author keywords

Artificial neural network; Genetic programming; Machine learning; QSAR; Support vector machine

Indexed keywords

CAMPTOTHECIN; DNA TOPOISOMERASE INHIBITOR; EPIDERMAL GROWTH FACTOR RECEPTOR;

EID: 84911446995     PISSN: 15680266     EISSN: 18734294     Source Type: Journal    
DOI: 10.2174/1568026614666140929124203     Document Type: Article
Times cited : (43)

References (79)
  • 7
    • 77958029276 scopus 로고    scopus 로고
    • Quantitative Correlations of Physical and Chemical Properties with Chemical Structure; Utility for Prediction
    • (2010)
    • Katritzky, A.; Kuanar, M.; Slavov, S.; Hall, C.; Karelson, M.; Kahn, I.; Dobchev, D. (2010). Quantitative Correlations of Physical and Chemical Properties with Chemical Structure; Utility for Prediction. Chem. Rev., 2010, 110(10), 5714 - 5789.
    • (2010) Chem. Rev , vol.110 , Issue.10 , pp. 5714 -5789
    • Katritzky, A.1    Kuanar, M.2    Slavov, S.3    Hall, C.4    Karelson, M.5    Kahn, I.6    Dobchev, D.7
  • 8
    • 33646822473 scopus 로고    scopus 로고
    • Physical, chemical, and technological property correlation with chemical structure: The potential of QSPR. Zeitschrift für Naturforschung B
    • Katritzky, A.R.; Dobchev, D.A.; Karelson, M. Physical, chemical, and technological property correlation with chemical structure: The potential of QSPR. Zeitschrift für Naturforschung B. J. Chem. Sci., 2006, 61(4), 373 - 384.
    • (2006) J. Chem. Sci , vol.61 , Issue.4 , pp. 373 -384
    • Katritzky, A.R.1    Dobchev, D.A.2    Karelson, M.3
  • 9
    • 77957682824 scopus 로고    scopus 로고
    • Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR
    • De Benedetti, P.G.; Fanelli, F. Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR. Drug Discov. Today, 2010, 15(19-20), 859-866.
    • (2010) Drug Discov. Today , vol.15 , Issue.19-20 , pp. 859-866
    • De Benedetti, P.G.1    Fanelli, F.2
  • 12
    • 0036985975 scopus 로고    scopus 로고
    • On the information content of 2D and 3D descriptors for QSAR
    • Oprea, T.I. On the information content of 2D and 3D descriptors for QSAR. J. Braz. Chem. Soc., 2002, 13(6), 811-815.
    • (2002) J. Braz. Chem. Soc , vol.13 , Issue.6 , pp. 811-815
    • Oprea, T.I.1
  • 13
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting Computational Neural Network Quantitative Structure-Property Relationship Models: A Detailed Interpretation of the Weights and Biases
    • Guha, R.; Stanton, D.T.; Jurs, P.C. Interpreting Computational Neural Network Quantitative Structure-Property Relationship Models: A Detailed Interpretation of the Weights and Biases. J. Chem. Inf. Mod. 2005, 45, 1109.
    • (2005) J. Chem. Inf. Mod , vol.45 , pp. 1109
    • Guha, R.1    Stanton, D.T.2    Jurs, P.C.3
  • 14
    • 84863686834 scopus 로고    scopus 로고
    • Quantitative Structure-Activity/Property Relationships: The Ubiquitous Links between Cause and Effect
    • Berhanu, W.M.; Pillai, G.G.; Oliferenko, A.A.; Katritzky, A.R. Quantitative Structure-Activity/Property Relationships: The Ubiquitous Links between Cause and Effect. Chem.Plus.Chem, 2012, 77(7), 507-517.
    • (2012) Chem.Plus.Chem , vol.77 , Issue.7 , pp. 507-517
    • Berhanu, W.M.1    Pillai, G.G.2    Oliferenko, A.A.3    Katritzky, A.R.4
  • 16
    • 18144404059 scopus 로고    scopus 로고
    • Correlation of Boiling Points With Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics
    • Katritzky, A.R.; Mu, L.; Lobanov, V. S.; Karelson, M. Correlation of Boiling Points With Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics. J. Phys. Chem. 1996, 100, 10400-10407.
    • (1996) J. Phys. Chem , vol.100 , pp. 10400-10407
    • Katritzky, A.R.1    Mu, L.2    Lobanov, V.S.3    Karelson, M.4
  • 18
    • 47349120200 scopus 로고    scopus 로고
    • QSAR modeling of the antifungal activity against Candida albicans for a diverse set of organic compounds
    • Katritzky, A.R.; Slavov, S.H.; Dobchev, D.A.; Karelson, M. QSAR modeling of the antifungal activity against Candida albicans for a diverse set of organic compounds. Bioorgan. Med. Chem., 2008, 16(14), 7055 - 7069.
    • (2008) Bioorgan. Med. Chem , vol.16 , Issue.14 , pp. 7055 -7069
    • Katritzky, A.R.1    Slavov, S.H.2    Dobchev, D.A.3    Karelson, M.4
  • 19
    • 84861871524 scopus 로고    scopus 로고
    • QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions
    • Goudarzi, N.; Goodarzi, M.; Chen, T. QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions. Med. Chem. Res., 2012, 21(4), 437-443.
    • (2012) Med. Chem. Res , vol.21 , Issue.4 , pp. 437-443
    • Goudarzi, N.1    Goodarzi, M.2    Chen, T.3
  • 20
    • 34250630576 scopus 로고    scopus 로고
    • Comparison Between 2D and 3D-QSAR Approaches to Correlate Inhibitor Activity for a Series of Indole Amide Hydroxamic Acid
    • Katritzky, A.R.; Slavov, S.; Dobchev, D.A.; Karelson, M. Comparison Between 2D and 3D-QSAR Approaches to Correlate Inhibitor Activity for a Series of Indole Amide Hydroxamic Acid. QSAR Comb. Sc., 2007, 26(3), 333 - 345.
    • (2007) QSAR Comb. Sc , vol.26 , Issue.3 , pp. 333 -345
    • Katritzky, A.R.1    Slavov, S.2    Dobchev, D.A.3    Karelson, M.4
  • 21
    • 33748868145 scopus 로고    scopus 로고
    • A partial least squares regression study with antioxidant flavonoid compounds
    • Weber, K.C.; Honório, K.M.; Bruni, A.T.; Andricopulo, A.D.; da Silva, A.B.F. A partial least squares regression study with antioxidant flavonoid compounds. Struct. Chem., 2006, 17(3), 307-313.
    • (2006) Struct. Chem , vol.17 , Issue.3 , pp. 307-313
    • Weber, K.C.1    Honório, K.M.2    Bruni, A.T.3    Andricopulo, A.D.4    da Silva, A.B.F.5
  • 22
    • 84861127413 scopus 로고    scopus 로고
    • T QSAR and QSPR model interpretation using partial least squares (PLS) analysis
    • Stanton D,T QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr Comput-Aid. Drug Des., 2012, 8(2), 107-27.
    • (2012) Curr Comput-Aid Drug Des , vol.8 , Issue.2 , pp. 107-127
    • Stanton, D.1
  • 23
    • 20844451562 scopus 로고    scopus 로고
    • An automated PLS search for biologically relevant QSAR descriptors
    • Olah, M.; Bologa, C.; Oprea, Y.I. An automated PLS search for biologically relevant QSAR descriptors, J. Comput Aid. Mol. Des., 2004, 18, 437-449.
    • (2004) J. Comput Aid. Mol. Des , vol.18 , pp. 437-449
    • Olah, M.1    Bologa, C.2    Oprea, Y.I.3
  • 25
    • 9144270576 scopus 로고    scopus 로고
    • Computational techniques for diversity analysis and compound classification
    • Kitchen, D.B.; Stahura, F.L.; Bajorath, J. Computational techniques for diversity analysis and compound classification. Mini Rev. Med. Chem., 2004, 4(10), 1029-39.
    • (2004) Mini Rev. Med. Chem , vol.4 , Issue.10 , pp. 1029-1039
    • Kitchen, D.B.1    Stahura, F.L.2    Bajorath, J.3
  • 31
    • 40049095552 scopus 로고    scopus 로고
    • QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network
    • Lu, W.J.; Chen, Y.L.; Ma, W.P.; Zhang, X.Y.; Luan, F.; Liu, M.C.; Chen, X.G.; Hu, Z.D. QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network. Eur. J. Med. Chem., 2008, 43, 569-576.
    • (2008) Eur. J. Med. Chem , vol.43 , pp. 569-576
    • Lu, W.J.1    Chen, Y.L.2    Ma, W.P.3    Zhang, X.Y.4    Luan, F.5    Liu, M.C.6    Chen, X.G.7    Hu, Z.D.8
  • 32
    • 34248389661 scopus 로고    scopus 로고
    • QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN
    • Gharagheizi, F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput. Mater. Sci., 2007, 40, 159-167.
    • (2007) Comput. Mater. Sci , vol.40 , pp. 159-167
    • Gharagheizi, F.1
  • 33
    • 0036368719 scopus 로고    scopus 로고
    • Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design
    • English, L. B. Ed., Springer Protocols: New Jersey
    • Winkler, D.A.; Burden, F.R. Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design. In: Combinatorial Library, Methods in Molecular Biology. English, L. B. Ed., Springer Protocols: New Jersey, 2002, pp. 325-367.
    • (2002) Combinatorial Library, Methods in Molecular Biology , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 36
    • 0040864988 scopus 로고
    • Principles of Risk Minimization for Learning Theory
    • Moody, J. E.; Hanson, S.J.; Lippmann, R.P. Eds.; Morgan Kaufmann Publishers, Inc.: Massachusetts
    • Vapnik, V. Principles of Risk Minimization for Learning Theory. In Advances in Neural Information Processing Systems, Moody, J. E.; Hanson, S.J.; Lippmann, R.P. Eds.; Morgan Kaufmann Publishers, Inc.: Massachusetts, 1992, Vol. 4.
    • (1992) Advances in Neural Information Processing Systems , vol.4
    • Vapnik, V.1
  • 37
    • 66249095188 scopus 로고    scopus 로고
    • Virtual screening for cytochromes P450: Successes of machine learning filters
    • Burton, J.; Ijjaali, I.; Petitet, F.; Michel, A.; Vercauteren, D.P. Virtual screening for cytochromes P450: successes of machine learning filters. Comb. Chem. HTS., 2009, 12, 369-382.
    • (2009) Comb. Chem. HTS , vol.12 , pp. 369-382
    • Burton, J.1    Ijjaali, I.2    Petitet, F.3    Michel, A.4    Vercauteren, D.P.5
  • 38
    • 58149099516 scopus 로고    scopus 로고
    • In silico functional profiling of small molecules and its applications
    • Sato, T.; Matsuo, Y.; Honma, T.; Yokoyama, S. In silico functional profiling of small molecules and its applications. J. Med. Chem., 2008, 25, 7705-7716.
    • (2008) J. Med. Chem , vol.25 , pp. 7705-7716
    • Sato, T.1    Matsuo, Y.2    Honma, T.3    Yokoyama, S.4
  • 39
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc., 1998, 2(2), 121-167.
    • (1998) Data Min. Knowl. Disc , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 42
    • 0037365194 scopus 로고    scopus 로고
    • Active Learning with Support Vector Machines in the Drug Discovery Process
    • Warmuth et al., Active Learning with Support Vector Machines in the Drug Discovery Process. J. Chem.Inf. Comput. Sci., 2003, 43(2): 667-673
    • (2003) J Chem. Inf. Comput. Sci , vol.43 , Issue.2 , pp. 667-673
    • Warmuth1
  • 44
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its applications in chemistry. Chemom
    • Li, H.; Liang, Y.; Xu, Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst., 2009, 95,188-198.
    • (2009) Intell. Lab. Syst , vol.95 , pp. 188-198
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 47
    • 24644487132 scopus 로고    scopus 로고
    • Genetic programming in data mining for drug discovery
    • Ghosh, A.; Jain, L.C., Ed.; Springer: Berlin
    • Langdon, W.B. and Barrett, S.J. Genetic programming in data mining for drug discovery. In: Ghosh, A.; Jain, L.C., Ed.; Evolutionary Computing in Data Mining. Springer: Berlin, 2004, pp. 211-235.
    • (2004) Evolutionary Computing in Data Mining , pp. 211-235
    • Langdon, W.B.1    Barrett, S.J.2
  • 48
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • Venkatraman, V.; Dalby, A.R.; Yang, Z.R. Evaluation of mutual information and genetic programming for feature selection in QSAR, J. Chem. Inf. Comp. Sci., 2004, 44, 1686-1692.
    • (2004) J. Chem. Inf. Comp. Sci , vol.44 , pp. 1686-1692
    • Venkatraman, V.1    Dalby, A.R.2    Yang, Z.R.3
  • 49
    • 34247214462 scopus 로고    scopus 로고
    • Feature selection and molecular classification of cancer using genetic programming
    • Yu, J.; Yu, J.; Almal, A.A.; Dhanasekaran, S.M.; Ghosh, D.; Worzel, W.P.; Chinnaiyan, A.M. Feature selection and molecular classification of cancer using genetic programming. Neoplasia, 2007, 9(4), 292-303.
    • (2007) Neoplasia , vol.9 , Issue.4 , pp. 292-303
    • Yu, J.1    Yu, J.2    Almal, A.A.3    Dhanasekaran, S.M.4    Ghosh, D.5    Worzel, W.P.6    Chinnaiyan, A.M.7
  • 50
    • 70350125156 scopus 로고    scopus 로고
    • Genetic programming for QSAR investigation of docking energy
    • Archetti, F.; Giordani, I.; Vanneschi, L.; Genetic programming for QSAR investigation of docking energy, Appl. Soft Comput., 2010, 10, 170-182.
    • (2010) Appl. Soft Comput , vol.10 , pp. 170-182
    • Archetti, F.1    Giordani, I.2    Vanneschi, L.3
  • 51
    • 36148998343 scopus 로고    scopus 로고
    • Genetic programming for computational pharmacokinetics in drug discovery and development
    • Archetti, F.; Messina, E.; Lanzeni, S.; Vanneschi, L. Genetic programming for computational pharmacokinetics in drug discovery and development, Genet. Program. Evol. M., 2007, 8(4), 17-26.
    • (2007) Genet Program. Evol. M , vol.8 , Issue.4 , pp. 17-26
    • Archetti, F.1    Messina, E.2    Lanzeni, S.3    Vanneschi, L.4
  • 56
    • 84877874626 scopus 로고    scopus 로고
    • State of the science: Use of biomarkers and imaging in diagnosis and management of Alzheimer disease
    • Fraller, D.B. State of the science: use of biomarkers and imaging in diagnosis and management of Alzheimer disease. J. Neurosci. Nurs., 2013, 45, 63-70.
    • (2013) J. Neurosci. Nurs , vol.45 , pp. 63-70
    • Fraller, D.B.1
  • 58
    • 84896322818 scopus 로고    scopus 로고
    • A diagnostic methodology for Alzheimer's disease
    • Hsu, W.C.; Denq, C.; Chen, Su-S. A diagnostic methodology for Alzheimer's disease, J. Clin. Bioinfo., 2013, 3, 9.
    • (2013) J. Clin. Bioinfo , vol.3 , pp. 9
    • Hsu, W.C.1    Denq, C.2    Chen, S.3
  • 59
    • 33646861609 scopus 로고    scopus 로고
    • QSAR study of 1,4-dihydropyridine calcium channel antagonists based on gene expression programming
    • Si, H.Z.; Wang, T.; Zhang, K.J.; Hua, Z.D.; Fan, B.T. QSAR study of 1,4-dihydropyridine calcium channel antagonists based on gene expression programming, Bioorgan. Med. Chem., 2004, 14, 4834-4841.
    • (2004) Bioorgan. Med. Chem , vol.14 , pp. 4834-4841
    • Si, H.Z.1    Wang, T.2    Zhang, K.J.3    Hua, Z.D.4    Fan, B.T.5
  • 60
    • 79952363629 scopus 로고    scopus 로고
    • Jian-Ping Zhou , Qi Huang , Huan- Zhang Xie.Lin-Li Li , Sheng-Yong Yang, Discovery of novel mGluR1 antagonists: A multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor
    • Li , G-B.; Yang, L-L.; Feng, S.; Jian-Ping Zhou , Qi Huang , Huan- Zhang Xie.Lin-Li Li , Sheng-Yong Yang, Discovery of novel mGluR1 antagonists: A multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor. Bioorgan. Med. Chem. Let., 2011, 21, 1736-1740.
    • (2011) Bioorgan. Med. Chem. Let , vol.21 , pp. 1736-1740
    • Li, G.-B.1    Yang, L.-L.2    Feng, S.3
  • 61
    • 77956166424 scopus 로고    scopus 로고
    • Docking to Erlotinib Off-Targets Leads to Inhibitors of Lung Cancer Cell Proliferation with Suitable in Vitro Pharmacokinetics
    • Li, L. W.; Li, J.; Khanna, M.; Jo, I.; Baird, J. P.; Meroueh, S. O. Docking to Erlotinib Off-Targets Leads to Inhibitors of Lung Cancer Cell Proliferation with Suitable in Vitro Pharmacokinetics, ACS Med. Chem. Lett., 2010, 1, 229.
    • (2010) ACS Med. Chem. Lett , vol.1 , pp. 229
    • Li, L.W.1    Li, J.2    Khanna, M.3    Jo, I.4    Baird, J.P.5    Meroueh, S.O.6
  • 62
    • 79955401050 scopus 로고    scopus 로고
    • Target-Specific Support Vector Machine Scoring in Structure-Based Virtual Screening: Computational Validation, In Vitro Testing in Kinases, and Effects on Lung Cancer Cell Proliferation
    • Li L.; Khanna, M.; Jo, I.; Wang, F.; Ashpole, N.M.; Hudmon, A.; Meroueh, S.O. Target-Specific Support Vector Machine Scoring in Structure-Based Virtual Screening: Computational Validation, In Vitro Testing in Kinases, and Effects on Lung Cancer Cell Proliferation, J. Chem. Inf. Model, 2011, 51, 755-759.
    • (2011) J. Chem. Inf. Model , vol.51 , pp. 755-759
    • Li, L.1    Khanna, M.2    Jo, I.3    Wang, F.4    Ashpole, N.M.5    Hudmon, A.6    Meroueh, S.O.7
  • 63
    • 0035960060 scopus 로고    scopus 로고
    • Quantitative Structure-Antitumor Activity Relationships of Camptothecin Analogues: Cluster Analysis and Genetic Algorithm-Based Studies
    • Fan, Y.; Shi, L.M.; Kohn, K.W.; Pommier, Y.; Weinstein, J.N.; Quantitative Structure-Antitumor Activity Relationships of Camptothecin Analogues: Cluster Analysis and Genetic Algorithm-Based Studies, J. Med. Chem., 2001, 44, 3254-3263.
    • (2001) J. Med Chem , vol.44 , pp. 3254-3263
    • Fan, Y.1    Shi, L.M.2    Kohn, K.W.3    Pommier, Y.4    Weinstein, J.N.5
  • 64
    • 0032543518 scopus 로고    scopus 로고
    • Molecular modeling studies of the DNA - topoisomerase I ternary cleavable complexe with camptothecin
    • Fan, Y.; Weinstein, J.N.; Kohn, K.W.; Shi, L.M.; Pommier, Y. Molecular modeling studies of the DNA - topoisomerase I ternary cleavable complexe with camptothecin. J. Med. Chem.,1998, 41, 2216-2226.
    • (1998) J. Med. Chem , vol.41 , pp. 2216-2226
    • Fan, Y.1    Weinstein, J.N.2    Kohn, K.W.3    Shi, L.M.4    Pommier, Y.5
  • 65
    • 19544386838 scopus 로고    scopus 로고
    • Study of probabilistic neural networks to classify the active compounds in medicinal plants
    • Xue, C.X.; Zhang, X.Y.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Study of probabilistic neural networks to classify the active compounds in medicinal plants. J. Pharm. Biomed. An., 2005, 38, 497-507.
    • (2005) J. Pharm. Biomed. An , vol.38 , pp. 497-507
    • Xue, C.X.1    Zhang, X.Y.2    Liu, M.C.3    Hu, Z.D.4    Fan, B.T.5
  • 66
    • 57949085600 scopus 로고    scopus 로고
    • Prediction of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas based on the heuristic method, support vector machine and projection pursuit regression
    • Yuan, Y.; Zhang, R.; Hu, R.; Ruan. Prediction of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas based on the heuristic method, support vector machine and projection pursuit regression, Eur. J. Med. Chem., 2009, 44, 25-34.
    • (2009) Eur. J. Med. Chem , vol.44 , pp. 25-34
    • Yuan, Y.1    Zhang, R.2    Hu3    Ruan, R.4
  • 67
    • 72049084491 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming
    • Shi, W.; Zhang, X.; Shen, Q. Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming. Eur. J. Med. Chem., 2010, 45, 49-54.
    • (2010) Eur. J. Med. Chem , vol.45 , pp. 49-54
    • Shi, W.1    Zhang, X.2    Shen, Q.3
  • 68
    • 77649185953 scopus 로고    scopus 로고
    • Support vector machines: Development of QSAR models for predicting anti-HIV-1activity of TIBO derivatives
    • Darnag, R.; Mazouz, E.L.M.; Schmitzer, A.; Villemin, D.; Jarid, A.; Cherqaoui, D. Support vector machines: Development of QSAR models for predicting anti-HIV-1activity of TIBO derivatives. Eur. J. Med. Chem., 2010, 45, 1590-1597.
    • (2010) Eur. J. Med. Chem , vol.45 , pp. 1590-1597
    • Darnag, R.1    Mazouz, E.L.M.2    Schmitzer, A.3    Villemin, D.4    Jarid, A.5    Cherqaoui, D.6
  • 70
    • 0037208305 scopus 로고    scopus 로고
    • Using General Regression and Probabilistic Neural Networks To Predict Human Intestinal Absorption with Topological Descriptors Derived from Two-Dimensional Chemical Structures
    • Niwa, T. Using General Regression and Probabilistic Neural Networks To Predict Human Intestinal Absorption with Topological Descriptors Derived from Two-Dimensional Chemical Structures, J. Chem. Inf. Comput. Sci., 2003, 43, 113-119.
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , pp. 113-119
    • Niwa, T.1
  • 72
    • 19544393375 scopus 로고    scopus 로고
    • A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors
    • Tobita, M.; Nishikawa, T.; Nagashima, R. A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors. Bioorgan. Med. Chem. Lett., 2005, 15, 2886-2890.
    • (2005) Bioorgan. Med. Chem. Lett , vol.15 , pp. 2886-2890
    • Tobita, M.1    Nishikawa, T.2    Nagashima, R.3
  • 73
    • 67749122287 scopus 로고    scopus 로고
    • Predictive models, based on classification algorithms, for compounds potentially active as mitochondrial ATP-sensitive potassium channel openers
    • Coi, A.; Bianucci, A.M.; Calderone, V.; Testai, L.; Digiacomo, M.; Rapposelli, S.; Balsamo, A.; Predictive models, based on classification algorithms, for compounds potentially active as mitochondrial ATP-sensitive potassium channel openers. Bioorgan Med. Chem., 2009, 17, 5565-5571.
    • (2009) Bioorgan Med. Chem , vol.17 , pp. 5565-5571
    • Coi, A.1    Bianucci, A.M.2    Calderone, V.3    Testai, L.4    Digiacomo, M.5    Rapposelli, S.6    Balsamo, A.7
  • 74
    • 0842281274 scopus 로고    scopus 로고
    • A neural network based prediction of octanol-water partition coefficients using atomic5 fragmental descriptors
    • Molnar, L.; Keseru, G.M.; Papp, A.; Gulyasc, Z.; Darvasb, F. A neural network based prediction of octanol-water partition coefficients using atomic5 fragmental descriptors. Bioorgan. Med. Chem. Let., 2004, 14, 851-853.
    • (2004) Bioorgan. Med. Chem. Let , vol.14 , pp. 851-853
    • Molnar, L.1    Keseru, G.M.2    Papp, A.3    Gulyasc, Z.4    Darvasb, F.5
  • 75
    • 84864346941 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine
    • Golmohammadi, H.; Dashtbozorgi, Z.; Acree Jr., W.E. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine.Euro. J. Pharm. Sci., 2012, 47, 421-429.
    • (2012) Euro J. Pharm. Sci , vol.47 , pp. 421-429
    • Golmohammadi, H.1    Dashtbozorgi, Z.2    Acree, W.E.3
  • 78
    • 13344285267 scopus 로고    scopus 로고
    • Optimisation algorithms and natural computing in drug discovery
    • Solmajer; Zupan. Optimisation algorithms and natural computing in drug discovery. Drug Discov. Tod.: Technologies, 2004, 1(3): 247-252
    • (2004) Drug Discov. Tod.: Technologies , vol.1 , Issue.3 , pp. 247-252
    • Solmajer1    Zupan2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.