-
2
-
-
0037082199
-
The emerging importance of predictive ADME simulation in drug discovery
-
Selick HE, Beresford AP, Tarbit MH. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 2002;7:109-16
-
(2002)
Drug Discov Today
, vol.7
, pp. 109-116
-
-
Selick, H.E.1
Beresford, A.P.2
Tarbit, M.H.3
-
3
-
-
84877987070
-
Pharmacokinetic Properties and in silico ADME modeling in drug discovery
-
Honorio KM, Moda TL, Andricopulo AD. Pharmacokinetic Properties and in silico ADME modeling in drug discovery. Medicinal Chemistry 2013;9:163-76.
-
(2013)
Medicinal Chemistry
, vol.9
, pp. 163-176
-
-
Honorio, K.M.1
Moda, T.L.2
Andricopulo, A.D.3
-
4
-
-
84857770428
-
The Challenges Involved in Modeling Toxicity Data In Silico: A review
-
Gleeson MP, Modi S, Bender A, et al. The Challenges Involved in Modeling Toxicity Data In Silico: a review. Curr Pharm Des 2012;18:1266-91
-
(2012)
Curr Pharm des
, vol.18
, pp. 1266-1291
-
-
Gleeson, M.P.1
Modi, S.2
Bender, A.3
-
5
-
-
0000379046
-
On the relationship between the toxicity and the physical properties of substances
-
Richet C. On the relationship between the toxicity and the physical properties of substances. CR Seances Soc Biol Ses Fit 1893;9:775-6
-
(1893)
CR Seances Soc Biol Ses Fit
, vol.9
, pp. 775-776
-
-
Richet, C.1
-
6
-
-
0001223011
-
The use of chemical potentials as indices of toxicity
-
Ferguson J. The use of chemical potentials as indices of toxicity. J R Soc Med 1939;127:387-404
-
(1939)
J R Soc Med
, vol.127
, pp. 387-404
-
-
Ferguson, J.1
-
7
-
-
0030030608
-
Correlation of drug absorption with molecular surface properties
-
Palm K, Luthman K, Ungell AL, et al. Correlation of drug absorption with molecular surface properties. J Pharm Sci 1996;85:32-9
-
(1996)
J Pharm Sci
, vol.85
, pp. 32-39
-
-
Palm, K.1
Luthman, K.2
Ungell, A.L.3
-
8
-
-
84860267055
-
Beyond size, ionization state, and lipophilicity: Influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds
-
Yang Y, Engkvist O, Llinàs A, Chen H. Beyond size, ionization state, and lipophilicity: influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. J Med Chem 2012;55:3667-77
-
(2012)
J Med Chem
, vol.55
, pp. 3667-3677
-
-
Yang, Y.1
Engkvist, O.2
Llinàs, A.3
Chen, H.4
-
9
-
-
50649123607
-
-
John Wiley & Sons, Inc; Hoboken, NJ, USA
-
Selassie C, Verma RP, Abraham DJ. History of quantitative structure-activity relationships. Burger's medicinal chemistry and drug discovery. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2003
-
(2003)
History of Quantitative Structure-activity Relationships. Burger's Medicinal Chemistry and Drug Discovery
-
-
Selassie, C.1
Verma, R.P.2
Abraham, D.J.3
-
10
-
-
33645923096
-
Computational methods in developing quantitative structure-activity relationships (QSAR): A review
-
Dudek AZ, Arodz T, Galvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 2006;9:213-28.
-
(2006)
Comb Chem High Throughput Screen
, vol.9
, pp. 213-228
-
-
Dudek, A.Z.1
Arodz, T.2
Galvez, J.3
-
11
-
-
77950906295
-
QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems
-
Sprous DG, Palmer RK, Swanson JT, Lawless M. QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems. Curr Top Med Chem 2010;10:619-37
-
(2010)
Curr Top Med Chem
, vol.10
, pp. 619-637
-
-
Sprous, D.G.1
Palmer, R.K.2
Swanson, J.T.3
Lawless, M.4
-
12
-
-
79958266864
-
ADME evaluation in drug discovery. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints
-
Tian S, Li Y, Wang J, et al. ADME evaluation in drug discovery. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 2011;8(3):841-51
-
(2011)
Mol Pharm
, vol.8
, Issue.3
, pp. 841-851
-
-
Tian, S.1
Li, Y.2
Wang, J.3
-
13
-
-
77955921855
-
Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity
-
Cao DS, Xu QS, Liang YZ, et al. Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity. Chemom Intell Lab Syst 2010;103(2):129-36
-
(2010)
Chemom Intell Lab Syst
, vol.103
, Issue.2
, pp. 129-136
-
-
Cao, D.S.1
Xu, Q.S.2
Liang, Y.Z.3
-
15
-
-
4243178130
-
The changing structure of the pharmaceutical industry
-
Cockburn IM. The changing structure of the pharmaceutical industry. Health Aff 2004;23:10-22
-
(2004)
Health Aff
, vol.23
, pp. 10-22
-
-
Cockburn, I.M.1
-
16
-
-
84875249913
-
Who can pay for innovative medicines?
-
Decramer S, Decramer M. Who can pay for innovative medicines? Eur Respir J 2013;41:495-6
-
(2013)
Eur Respir J
, vol.41
, pp. 495-496
-
-
Decramer, S.1
Decramer, M.2
-
17
-
-
38949088196
-
Metabolism and Toxicity of Drugs. Two decades of progress in industrial drug metabolism
-
Baillie TA. Metabolism and Toxicity of Drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 2007;21:129-37
-
(2007)
Chem Res Toxicol
, vol.21
, pp. 129-137
-
-
Baillie, T.A.1
-
18
-
-
84865738030
-
-
John Wiley and Sons, Inc; Hoboken, NJ, USA
-
Lagorce D, Reynes C, Camproux AC, et al. In silico ADME/Tox predictions. ADMET for medicinal chemists:a practical guide. John Wiley and Sons, Inc; Hoboken, NJ, USA: 2011. p. 29-124
-
(2011)
In Silico ADME/Tox Predictions. ADMET for Medicinal Chemists:A Practical Guide
, pp. 29-124
-
-
Lagorce, D.1
Reynes, C.2
Camproux, A.C.3
-
19
-
-
26044455091
-
The legacy of the past, the reality of the present and the hopes of the future
-
Enriz RD. The legacy of the past, the reality of the present and the hopes of the future. J Mol Struct 2005;731:163-72
-
(2005)
J Mol Struct
, vol.731
, pp. 163-172
-
-
Enriz, R.D.1
-
20
-
-
84875150414
-
The holistic integration of virtual screening in drug discovery
-
Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today 2013;18:358-64
-
(2013)
Drug Discov Today
, vol.18
, pp. 358-364
-
-
Tanrikulu, Y.1
Kruger, B.2
Proschak, E.3
-
21
-
-
84866739808
-
Drug discovery in pharmaceutical industry: Productivity challenges and trends
-
Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today 2012;17:1088-102
-
(2012)
Drug Discov Today
, vol.17
, pp. 1088-1102
-
-
Khanna, I.1
-
22
-
-
0041670909
-
Support Vector machines for adme property classification
-
Trotter MWB, Holden SB. Support Vector machines for adme property classification. QSAR Comb Sci 2003;22:533-48
-
(2003)
QSAR Comb Sci
, vol.22
, pp. 533-548
-
-
Trotter, M.W.B.1
Holden, S.B.2
-
23
-
-
33646246986
-
Kernel functions for attributed molecular graphs - A new similarity-based approach to ADME prediction in classification and regression
-
Fröhlich H, Wegner JK, Sieker F, Zell A. Kernel functions for attributed molecular graphs - a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb Sci 2006;25:317-26
-
(2006)
QSAR Comb Sci
, vol.25
, pp. 317-326
-
-
Fröhlich, H.1
Wegner, J.K.2
Sieker, F.3
Zell, A.4
-
24
-
-
67349139293
-
An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs
-
Yang SY, Huang Q, Li LL, et al. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intell Med 2009;46:155-63
-
(2009)
Artif Intell Med
, vol.46
, pp. 155-163
-
-
Yang, S.Y.1
Huang, Q.2
Li, L.L.3
-
25
-
-
52949113498
-
PK/DB: Database for pharmacokinetic properties and predictive in silico ADME models
-
Moda TL, Torres LG, Carrara AE, Andricopulo AD. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinformatics 2008;24:2270-1
-
(2008)
Bioinformatics
, vol.24
, pp. 2270-2271
-
-
Moda, T.L.1
Torres, L.G.2
Carrara, A.E.3
Andricopulo, A.D.4
-
26
-
-
84874045681
-
A Fragment-Based Approach for the in Silico Prediction of Blood-Brain Barrier Permeation
-
Moda TL, Carrara AE, Andricopulo AD. A Fragment-Based Approach for the in Silico Prediction of Blood-Brain Barrier Permeation. J Braz Chem Soc 2012;23:2191-6
-
(2012)
J Braz Chem Soc
, vol.23
, pp. 2191-2196
-
-
Moda, T.L.1
Carrara, A.E.2
Andricopulo, A.D.3
-
27
-
-
84859440002
-
Consensus hologram QSAR modeling for the prediction of human intestinal absorption
-
Moda TL, Andricopulo AD. Consensus hologram QSAR modeling for the prediction of human intestinal absorption. Bioorg Med Chem Lett 2012;22:2889-93
-
(2012)
Bioorg Med Chem Lett
, vol.22
, pp. 2889-2893
-
-
Moda, T.L.1
Andricopulo, A.D.2
-
29
-
-
35348864556
-
Hologram QSAR model for the prediction of human oral bioavailability
-
Moda TL, Montanari CA, Andricopulo AD. Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 2007;15:7738-45
-
(2007)
Bioorg Med Chem
, vol.15
, pp. 7738-7745
-
-
Moda, T.L.1
Montanari, C.A.2
Andricopulo, A.D.3
-
31
-
-
84870017710
-
admetSAR: A Comprehensive source and free tool for assessment of chemical ADMET properties
-
Cheng F, Li W, Zhou Y, et al. admetSAR: a Comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 2012;52:3099-105
-
(2012)
J Chem Inf Model
, vol.52
, pp. 3099-3105
-
-
Cheng, F.1
Li, W.2
Zhou, Y.3
-
32
-
-
34247265434
-
Reaction Site Mapping of Xenobiotic Biotransformations
-
Boyer S, Arnby CH, Carlsson L, et al. Reaction Site Mapping of Xenobiotic Biotransformations. J Chem Inf Model 2007;47:583-90
-
(2007)
J Chem Inf Model
, vol.47
, pp. 583-590
-
-
Boyer, S.1
Arnby, C.H.2
Carlsson, L.3
-
33
-
-
5544290537
-
Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): Evaluation of performance
-
Bender A, Mussa HY, Glen RC, Reiling S. Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 2004;44:1708-18
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1708-1718
-
-
Bender, A.1
Mussa, H.Y.2
Glen, R.C.3
Reiling, S.4
-
35
-
-
65249170905
-
OSIRIS, an entirely in-house developed drug discovery informatics system
-
Sander T, Freyss J, von Korff M, et al. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009;49:232-46
-
(2009)
J Chem Inf Model
, vol.49
, pp. 232-246
-
-
Sander, T.1
Freyss, J.2
Von Korff, M.3
-
38
-
-
70450181710
-
How to Recognize and Workaround Pitfalls in QSAR Studies: A critical review
-
Scior T, Medina-Franco JL, Do QT, et al. How to Recognize and Workaround Pitfalls in QSAR Studies: a critical review. Curr Med Chem 2009;16:4297-313.
-
(2009)
Curr Med Chem
, vol.16
, pp. 4297-4313
-
-
Scior, T.1
Medina-Franco, J.L.2
Do, Q.T.3
-
39
-
-
34250078600
-
Partial Least Squares (PLS): Its strengths and limitations
-
Cramer RDI. Partial Least Squares (PLS): its strengths and limitations. Perspect Drug Discov Des 1993;1:269-78
-
(1993)
Perspect Drug Discov des
, vol.1
, pp. 269-278
-
-
Cramer, R.D.I.1
-
40
-
-
20444407285
-
kappa nearest neighbors qsar modeling as a variational problem: Theory and applications
-
Itskowitz P, Tropsha A. kappa nearest neighbors qsar modeling as a variational problem: theory and applications. J Chem Inf Model 2005;45:777-85
-
(2005)
J Chem Inf Model
, vol.45
, pp. 777-785
-
-
Itskowitz, P.1
Tropsha, A.2
-
41
-
-
33846923287
-
In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
-
Jensen BF, Vind C, Padkjaer SB, et al. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50(3):501-11
-
(2007)
J Med Chem
, vol.50
, Issue.3
, pp. 501-511
-
-
Jensen, B.F.1
Vind, C.2
Padkjaer, S.B.3
-
42
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001;45:5-32
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
43
-
-
77958064179
-
Mining data with random forests: A survey and results of new tests
-
Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recognit 2011;44:330-49
-
(2011)
Pattern Recognit
, vol.44
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
52
-
-
77149142588
-
Modelling of drug disposition kinetics in in vitro intestinal absorption cell models
-
Heikkinen AT, Korjamo T, Monkkonen J. Modelling of drug disposition kinetics in in vitro intestinal absorption cell models. Basic Clin Pharmacol Toxicol 2010;106:180-8
-
(2010)
Basic Clin Pharmacol Toxicol
, vol.106
, pp. 180-188
-
-
Heikkinen, A.T.1
Korjamo, T.2
Monkkonen, J.3
-
53
-
-
84870245310
-
Caco-2 monolayers in experimental and theoretical predictions of drug transport
-
Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2012;64:280-9
-
(2012)
Adv Drug Deliv Rev
, vol.64
, pp. 280-289
-
-
Artursson, P.1
Palm, K.2
Luthman, K.3
-
54
-
-
84861335392
-
Insights into the permeability of drugs and drug-like molecules from MI-QSAR and HQSAR studies
-
Shinde RN, Srikanth K, Sobhia ME. Insights into the permeability of drugs and drug-like molecules from MI-QSAR and HQSAR studies. J Mol Model 2012;18:947-62
-
(2012)
J Mol Model
, vol.18
, pp. 947-962
-
-
Shinde, R.N.1
Srikanth, K.2
Sobhia, M.E.3
-
55
-
-
47349124511
-
Membrane-interaction quantitative structure-activity relationship (MI-QSAR) analyses of skin penetration enhancers
-
Zheng T, Hopfinger AJ, Esposito EX, et al. Membrane-interaction quantitative structure-activity relationship (MI-QSAR) analyses of skin penetration enhancers. J Chem Inf Model 2008;48:1238-56
-
(2008)
J Chem Inf Model
, vol.48
, pp. 1238-1256
-
-
Zheng, T.1
Hopfinger, A.J.2
Esposito, E.X.3
-
56
-
-
31644439691
-
MI-QSAR models for prediction of corneal permeability of organic compounds
-
Chen C, Yang J. MI-QSAR models for prediction of corneal permeability of organic compounds. Acta Pharmacol Sin 2006;27:193-204
-
(2006)
Acta Pharmacol Sin
, vol.27
, pp. 193-204
-
-
Chen, C.1
Yang, J.2
-
57
-
-
34247397960
-
Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis
-
Iyer M, Tseng YJ, Senese CL, et al. Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis. Mol Pharm 2007;4:218-31
-
(2007)
Mol Pharm
, vol.4
, pp. 218-231
-
-
Iyer, M.1
Tseng, Y.J.2
Senese, C.L.3
-
58
-
-
27744440270
-
Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis
-
Chen LL, Yao J, Yang JB, Yang J. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. Acta Pharmacol Sin 2005;26:1322-33
-
(2005)
Acta Pharmacol Sin
, vol.26
, pp. 1322-1333
-
-
Chen, L.L.1
Yao, J.2
Yang, J.B.3
Yang, J.4
-
59
-
-
0036844787
-
Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis
-
Iyer M, Mishra R, Han Y, Hopfinger AJ. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 2002;19(11):1611-21
-
(2002)
Pharm Res
, vol.19
, Issue.11
, pp. 1611-1621
-
-
Iyer, M.1
Mishra, R.2
Han, Y.3
Hopfinger, A.J.4
-
60
-
-
84876020270
-
In silico model of drug permeability across sublingual mucosa
-
Goswami T, Kokate A, Jasti BR, Li X. In silico model of drug permeability across sublingual mucosa. Arch Oral Biol 2013;58:545-51
-
(2013)
Arch Oral Biol
, vol.58
, pp. 545-551
-
-
Goswami, T.1
Kokate, A.2
Jasti, B.R.3
Li, X.4
-
61
-
-
84862502609
-
A novel chemometric method for the prediction of human oral bioavailability
-
Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012;13:6964-82
-
(2012)
Int J Mol Sci
, vol.13
, pp. 6964-6982
-
-
Xu, X.1
Zhang, W.2
Huang, C.3
-
62
-
-
84871348189
-
Models to predict intestinal absorption of therapeutic peptides and proteins
-
Antunes F, Andrade F, Ferreira D, et al. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab 2013;14:4-20
-
(2013)
Curr Drug Metab
, vol.14
, pp. 4-20
-
-
Antunes, F.1
Andrade, F.2
Ferreira, D.3
-
63
-
-
76649085489
-
Significance of Protein Binding in Pharmacokinetics and Pharmacodynamics
-
Schmidt S, Gonzalez D, Derendorf H. Significance of Protein Binding in Pharmacokinetics and Pharmacodynamics. J Pharm Sci 2010;99:1107-22
-
(2010)
J Pharm Sci
, vol.99
, pp. 1107-1122
-
-
Schmidt, S.1
Gonzalez, D.2
Derendorf, H.3
-
64
-
-
84879192625
-
Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics
-
Foye WO, Lemke TL, Williams DA, editors. Lippincott Williams and Wilkins, New York
-
Jambhekar S. Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics. In: Foye WO, Lemke TL, Williams DA, editors. Foye's principles of medicinal chemistry. Lippincott Williams and Wilkins, New York; 2008;p. 247-50
-
(2008)
Foye's Principles of Medicinal Chemistry
, pp. 247-250
-
-
Jambhekar, S.1
-
65
-
-
33846230530
-
Plasma protein binding affinity and its relationship to molecular structure: An in-silico analysis
-
Gleeson M. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007;50:101-12
-
(2007)
J Med Chem
, vol.50
, pp. 101-112
-
-
Gleeson, M.1
-
66
-
-
44749088791
-
Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method
-
Ma CY, Yang SY, Zhang H, et al. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J Pharm Biomed Anal 2008;47:677-82
-
(2008)
J Pharm Biomed Anal
, vol.47
, pp. 677-682
-
-
Ma, C.Y.1
Yang, S.Y.2
Zhang, H.3
-
67
-
-
84879193775
-
QSAR models for the prediction of plasma protein binding
-
Ghafourian T, Amin Z. QSAR models for the prediction of plasma protein binding. BioImpacts 2013;3:21-7
-
(2013)
BioImpacts
, vol.3
, pp. 21-27
-
-
Ghafourian, T.1
Amin, Z.2
-
68
-
-
84855237775
-
Results of molecular docking as descriptors to predict human serum albumin binding affinity
-
Chen L, Chen X. Results of molecular docking as descriptors to predict human serum albumin binding affinity. J Mol Graph Model 2012;33:35-43
-
(2012)
J Mol Graph Model
, vol.33
, pp. 35-43
-
-
Chen, L.1
Chen, X.2
-
69
-
-
84855861782
-
Toward in silico structure-based ADMET prediction in drug discovery
-
Moroy G, Martiny VY, Vayer P, et al. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2012;17:44-55
-
(2012)
Drug Discov Today
, vol.17
, pp. 44-55
-
-
Moroy, G.1
Martiny, V.Y.2
Vayer, P.3
-
70
-
-
71449103290
-
Structure-based Drug metabolism predictions for drug design
-
Sun H, Scott DO. Structure-based Drug metabolism predictions for drug design. Chem Biol Drug Design 2010;75:3-17
-
(2010)
Chem Biol Drug Design
, vol.75
, pp. 3-17
-
-
Sun, H.1
Scott, D.O.2
-
71
-
-
84880979312
-
Development of quantitative structure-metabolism (QSMR) relationships for substituted anilines based on computational chemistry
-
Athersuch TJ, Wilson ID, Keun HC, Lindon JC. Development of quantitative structure-metabolism (QSMR) relationships for substituted anilines based on computational chemistry. Xenobiotica 2013;43:792-802
-
(2013)
Xenobiotica
, vol.43
, pp. 792-802
-
-
Athersuch, T.J.1
Wilson, I.D.2
Keun, H.C.3
Lindon, J.C.4
-
72
-
-
78650509649
-
A rapid computational filter for predicting the rate of human renal clearance
-
Paine SW, Barton P, Bird J, et al. A rapid computational filter for predicting the rate of human renal clearance. J Mol Graph Model 2010;29:529-37
-
(2010)
J Mol Graph Model
, vol.29
, pp. 529-537
-
-
Paine, S.W.1
Barton, P.2
Bird, J.3
-
73
-
-
84875761618
-
In Silico Categorization of in vivo intrinsic clearance using machine learning
-
Hsiao Y-W, Fagerholm U, Norinder U. In Silico Categorization of in vivo intrinsic clearance using machine learning. Mol Pharm 2013;10:1318-21
-
(2013)
Mol Pharm
, vol.10
, pp. 1318-1321
-
-
Hsiao, Y.-W.1
Fagerholm, U.2
Norinder, U.3
-
74
-
-
58149291856
-
In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach
-
Zhang H, Chen QY, Xiang ML, et al. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 2009;23:134-40
-
(2009)
Toxicol in Vitro
, vol.23
, pp. 134-140
-
-
Zhang, H.1
Chen, Q.Y.2
Xiang, M.L.3
-
75
-
-
84864137933
-
Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations
-
Myshkin E, Brennan R, Khasanova T, et al. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Chem Biol Drug Design 2012;80:406-16
-
(2012)
Chem Biol Drug Design
, vol.80
, pp. 406-416
-
-
Myshkin, E.1
Brennan, R.2
Khasanova, T.3
-
76
-
-
84857770428
-
The challenges involved in modeling toxicity data in silico: A review
-
Gleeson MP, Modi S, Bender A, et al. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des 2012;18:1266-91
-
(2012)
Curr Pharm des
, vol.18
, pp. 1266-1291
-
-
Gleeson, M.P.1
Modi, S.2
Bender, A.3
-
78
-
-
84869885324
-
CORAL: QSPR model of water solubility based on local and global SMILES attributes
-
Toropov AA, Toropova AP, Benfenati E, et al. CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere 2013;90:877-80
-
(2013)
Chemosphere
, vol.90
, pp. 877-880
-
-
Toropov, A.A.1
Toropova, A.P.2
Benfenati, E.3
-
79
-
-
67349205580
-
Three-class classification models of logS and logP derived by using GA-CG-SVM approach
-
Zhang H, Xiang ML, Ma CY, et al. Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol Divers 2009;13:261-8
-
(2009)
Mol Divers
, vol.13
, pp. 261-268
-
-
Zhang, H.1
Xiang, M.L.2
Ma, C.Y.3
-
80
-
-
59549104238
-
Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors
-
Zhang H, Xiang ML, Zhao YL, et al. Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors. Eur J Pharm Sci 2009;36:451-7
-
(2009)
Eur J Pharm Sci
, vol.36
, pp. 451-457
-
-
Zhang, H.1
Xiang, M.L.2
Zhao, Y.L.3
-
81
-
-
2942704243
-
ESOL: Estimating aqueous solubility directly from molecular structure
-
Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 2004;44:1000-5
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1000-1005
-
-
Delaney, J.S.1
-
82
-
-
1542741028
-
ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
-
Hou TJ, Xia K, Zhang W, Xu XJ. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 2004;44:266-75
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 266-275
-
-
Hou, T.J.1
Xia, K.2
Zhang, W.3
Xu, X.J.4
-
83
-
-
0037361981
-
Prediction of aqueous solubility of organic compounds based on a 3D structure representation
-
Yan A, Gasteiger J. Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 2002;43:429-34
-
(2002)
J Chem Inf Comput Sci
, vol.43
, pp. 429-434
-
-
Yan, A.1
Gasteiger, J.2
-
85
-
-
0036115689
-
Estimation of aqueous solubility of organic compounds with QSPR approach
-
Gao H, Shanmugasundaram V, Lee P. Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res 2002;19:497-503
-
(2002)
Pharm Res
, vol.19
, pp. 497-503
-
-
Gao, H.1
Shanmugasundaram, V.2
Lee, P.3
-
87
-
-
0001645890
-
Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology
-
Huuskonen J. Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. J Chem Inf Comput Sci 2000;40:773-7
-
(2000)
J Chem Inf Comput Sci
, vol.40
, pp. 773-777
-
-
Huuskonen, J.1
|