메뉴 건너뛰기




Volumn 11, Issue 2, 2015, Pages 259-271

Applying machine learning techniques for ADME-Tox prediction: A review

Author keywords

Absorption; Distribution; Excretion and toxicity of xenobiotics; In silico drug design; Machine learning; Metabolism; Molecular modeling; Pharmacokinetics; Quantitative structure activity relationships

Indexed keywords

XENOBIOTIC AGENT;

EID: 84921292877     PISSN: 17425255     EISSN: 17447607     Source Type: Journal    
DOI: 10.1517/17425255.2015.980814     Document Type: Review
Times cited : (135)

References (87)
  • 2
    • 0037082199 scopus 로고    scopus 로고
    • The emerging importance of predictive ADME simulation in drug discovery
    • Selick HE, Beresford AP, Tarbit MH. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 2002;7:109-16
    • (2002) Drug Discov Today , vol.7 , pp. 109-116
    • Selick, H.E.1    Beresford, A.P.2    Tarbit, M.H.3
  • 3
    • 84877987070 scopus 로고    scopus 로고
    • Pharmacokinetic Properties and in silico ADME modeling in drug discovery
    • Honorio KM, Moda TL, Andricopulo AD. Pharmacokinetic Properties and in silico ADME modeling in drug discovery. Medicinal Chemistry 2013;9:163-76.
    • (2013) Medicinal Chemistry , vol.9 , pp. 163-176
    • Honorio, K.M.1    Moda, T.L.2    Andricopulo, A.D.3
  • 4
    • 84857770428 scopus 로고    scopus 로고
    • The Challenges Involved in Modeling Toxicity Data In Silico: A review
    • Gleeson MP, Modi S, Bender A, et al. The Challenges Involved in Modeling Toxicity Data In Silico: a review. Curr Pharm Des 2012;18:1266-91
    • (2012) Curr Pharm des , vol.18 , pp. 1266-1291
    • Gleeson, M.P.1    Modi, S.2    Bender, A.3
  • 5
    • 0000379046 scopus 로고
    • On the relationship between the toxicity and the physical properties of substances
    • Richet C. On the relationship between the toxicity and the physical properties of substances. CR Seances Soc Biol Ses Fit 1893;9:775-6
    • (1893) CR Seances Soc Biol Ses Fit , vol.9 , pp. 775-776
    • Richet, C.1
  • 6
    • 0001223011 scopus 로고
    • The use of chemical potentials as indices of toxicity
    • Ferguson J. The use of chemical potentials as indices of toxicity. J R Soc Med 1939;127:387-404
    • (1939) J R Soc Med , vol.127 , pp. 387-404
    • Ferguson, J.1
  • 7
    • 0030030608 scopus 로고    scopus 로고
    • Correlation of drug absorption with molecular surface properties
    • Palm K, Luthman K, Ungell AL, et al. Correlation of drug absorption with molecular surface properties. J Pharm Sci 1996;85:32-9
    • (1996) J Pharm Sci , vol.85 , pp. 32-39
    • Palm, K.1    Luthman, K.2    Ungell, A.L.3
  • 8
    • 84860267055 scopus 로고    scopus 로고
    • Beyond size, ionization state, and lipophilicity: Influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds
    • Yang Y, Engkvist O, Llinàs A, Chen H. Beyond size, ionization state, and lipophilicity: influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. J Med Chem 2012;55:3667-77
    • (2012) J Med Chem , vol.55 , pp. 3667-3677
    • Yang, Y.1    Engkvist, O.2    Llinàs, A.3    Chen, H.4
  • 10
    • 33645923096 scopus 로고    scopus 로고
    • Computational methods in developing quantitative structure-activity relationships (QSAR): A review
    • Dudek AZ, Arodz T, Galvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 2006;9:213-28.
    • (2006) Comb Chem High Throughput Screen , vol.9 , pp. 213-228
    • Dudek, A.Z.1    Arodz, T.2    Galvez, J.3
  • 11
    • 77950906295 scopus 로고    scopus 로고
    • QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems
    • Sprous DG, Palmer RK, Swanson JT, Lawless M. QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems. Curr Top Med Chem 2010;10:619-37
    • (2010) Curr Top Med Chem , vol.10 , pp. 619-637
    • Sprous, D.G.1    Palmer, R.K.2    Swanson, J.T.3    Lawless, M.4
  • 12
    • 79958266864 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints
    • Tian S, Li Y, Wang J, et al. ADME evaluation in drug discovery. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 2011;8(3):841-51
    • (2011) Mol Pharm , vol.8 , Issue.3 , pp. 841-851
    • Tian, S.1    Li, Y.2    Wang, J.3
  • 13
    • 77955921855 scopus 로고    scopus 로고
    • Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity
    • Cao DS, Xu QS, Liang YZ, et al. Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity. Chemom Intell Lab Syst 2010;103(2):129-36
    • (2010) Chemom Intell Lab Syst , vol.103 , Issue.2 , pp. 129-136
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3
  • 15
    • 4243178130 scopus 로고    scopus 로고
    • The changing structure of the pharmaceutical industry
    • Cockburn IM. The changing structure of the pharmaceutical industry. Health Aff 2004;23:10-22
    • (2004) Health Aff , vol.23 , pp. 10-22
    • Cockburn, I.M.1
  • 16
    • 84875249913 scopus 로고    scopus 로고
    • Who can pay for innovative medicines?
    • Decramer S, Decramer M. Who can pay for innovative medicines? Eur Respir J 2013;41:495-6
    • (2013) Eur Respir J , vol.41 , pp. 495-496
    • Decramer, S.1    Decramer, M.2
  • 17
    • 38949088196 scopus 로고    scopus 로고
    • Metabolism and Toxicity of Drugs. Two decades of progress in industrial drug metabolism
    • Baillie TA. Metabolism and Toxicity of Drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 2007;21:129-37
    • (2007) Chem Res Toxicol , vol.21 , pp. 129-137
    • Baillie, T.A.1
  • 19
    • 26044455091 scopus 로고    scopus 로고
    • The legacy of the past, the reality of the present and the hopes of the future
    • Enriz RD. The legacy of the past, the reality of the present and the hopes of the future. J Mol Struct 2005;731:163-72
    • (2005) J Mol Struct , vol.731 , pp. 163-172
    • Enriz, R.D.1
  • 20
    • 84875150414 scopus 로고    scopus 로고
    • The holistic integration of virtual screening in drug discovery
    • Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today 2013;18:358-64
    • (2013) Drug Discov Today , vol.18 , pp. 358-364
    • Tanrikulu, Y.1    Kruger, B.2    Proschak, E.3
  • 21
    • 84866739808 scopus 로고    scopus 로고
    • Drug discovery in pharmaceutical industry: Productivity challenges and trends
    • Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today 2012;17:1088-102
    • (2012) Drug Discov Today , vol.17 , pp. 1088-1102
    • Khanna, I.1
  • 22
    • 0041670909 scopus 로고    scopus 로고
    • Support Vector machines for adme property classification
    • Trotter MWB, Holden SB. Support Vector machines for adme property classification. QSAR Comb Sci 2003;22:533-48
    • (2003) QSAR Comb Sci , vol.22 , pp. 533-548
    • Trotter, M.W.B.1    Holden, S.B.2
  • 23
    • 33646246986 scopus 로고    scopus 로고
    • Kernel functions for attributed molecular graphs - A new similarity-based approach to ADME prediction in classification and regression
    • Fröhlich H, Wegner JK, Sieker F, Zell A. Kernel functions for attributed molecular graphs - a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb Sci 2006;25:317-26
    • (2006) QSAR Comb Sci , vol.25 , pp. 317-326
    • Fröhlich, H.1    Wegner, J.K.2    Sieker, F.3    Zell, A.4
  • 24
    • 67349139293 scopus 로고    scopus 로고
    • An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs
    • Yang SY, Huang Q, Li LL, et al. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intell Med 2009;46:155-63
    • (2009) Artif Intell Med , vol.46 , pp. 155-163
    • Yang, S.Y.1    Huang, Q.2    Li, L.L.3
  • 25
    • 52949113498 scopus 로고    scopus 로고
    • PK/DB: Database for pharmacokinetic properties and predictive in silico ADME models
    • Moda TL, Torres LG, Carrara AE, Andricopulo AD. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinformatics 2008;24:2270-1
    • (2008) Bioinformatics , vol.24 , pp. 2270-2271
    • Moda, T.L.1    Torres, L.G.2    Carrara, A.E.3    Andricopulo, A.D.4
  • 26
    • 84874045681 scopus 로고    scopus 로고
    • A Fragment-Based Approach for the in Silico Prediction of Blood-Brain Barrier Permeation
    • Moda TL, Carrara AE, Andricopulo AD. A Fragment-Based Approach for the in Silico Prediction of Blood-Brain Barrier Permeation. J Braz Chem Soc 2012;23:2191-6
    • (2012) J Braz Chem Soc , vol.23 , pp. 2191-2196
    • Moda, T.L.1    Carrara, A.E.2    Andricopulo, A.D.3
  • 27
    • 84859440002 scopus 로고    scopus 로고
    • Consensus hologram QSAR modeling for the prediction of human intestinal absorption
    • Moda TL, Andricopulo AD. Consensus hologram QSAR modeling for the prediction of human intestinal absorption. Bioorg Med Chem Lett 2012;22:2889-93
    • (2012) Bioorg Med Chem Lett , vol.22 , pp. 2889-2893
    • Moda, T.L.1    Andricopulo, A.D.2
  • 28
    • 35349020941 scopus 로고    scopus 로고
    • In silico prediction of human plasma protein binding using hologram QSAR
    • Moda TL, Montanari CA, Andricopulo AD. In silico prediction of human plasma protein binding using hologram QSAR. Lett Drug Design Discov 2007;4:502-9
    • (2007) Lett Drug Design Discov , vol.4 , pp. 502-509
    • Moda, T.L.1    Montanari, C.A.2    Andricopulo, A.D.3
  • 29
    • 35348864556 scopus 로고    scopus 로고
    • Hologram QSAR model for the prediction of human oral bioavailability
    • Moda TL, Montanari CA, Andricopulo AD. Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 2007;15:7738-45
    • (2007) Bioorg Med Chem , vol.15 , pp. 7738-7745
    • Moda, T.L.1    Montanari, C.A.2    Andricopulo, A.D.3
  • 31
    • 84870017710 scopus 로고    scopus 로고
    • admetSAR: A Comprehensive source and free tool for assessment of chemical ADMET properties
    • Cheng F, Li W, Zhou Y, et al. admetSAR: a Comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 2012;52:3099-105
    • (2012) J Chem Inf Model , vol.52 , pp. 3099-3105
    • Cheng, F.1    Li, W.2    Zhou, Y.3
  • 32
    • 34247265434 scopus 로고    scopus 로고
    • Reaction Site Mapping of Xenobiotic Biotransformations
    • Boyer S, Arnby CH, Carlsson L, et al. Reaction Site Mapping of Xenobiotic Biotransformations. J Chem Inf Model 2007;47:583-90
    • (2007) J Chem Inf Model , vol.47 , pp. 583-590
    • Boyer, S.1    Arnby, C.H.2    Carlsson, L.3
  • 33
    • 5544290537 scopus 로고    scopus 로고
    • Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): Evaluation of performance
    • Bender A, Mussa HY, Glen RC, Reiling S. Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 2004;44:1708-18
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1708-1718
    • Bender, A.1    Mussa, H.Y.2    Glen, R.C.3    Reiling, S.4
  • 35
    • 65249170905 scopus 로고    scopus 로고
    • OSIRIS, an entirely in-house developed drug discovery informatics system
    • Sander T, Freyss J, von Korff M, et al. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009;49:232-46
    • (2009) J Chem Inf Model , vol.49 , pp. 232-246
    • Sander, T.1    Freyss, J.2    Von Korff, M.3
  • 38
    • 70450181710 scopus 로고    scopus 로고
    • How to Recognize and Workaround Pitfalls in QSAR Studies: A critical review
    • Scior T, Medina-Franco JL, Do QT, et al. How to Recognize and Workaround Pitfalls in QSAR Studies: a critical review. Curr Med Chem 2009;16:4297-313.
    • (2009) Curr Med Chem , vol.16 , pp. 4297-4313
    • Scior, T.1    Medina-Franco, J.L.2    Do, Q.T.3
  • 39
    • 34250078600 scopus 로고
    • Partial Least Squares (PLS): Its strengths and limitations
    • Cramer RDI. Partial Least Squares (PLS): its strengths and limitations. Perspect Drug Discov Des 1993;1:269-78
    • (1993) Perspect Drug Discov des , vol.1 , pp. 269-278
    • Cramer, R.D.I.1
  • 40
    • 20444407285 scopus 로고    scopus 로고
    • kappa nearest neighbors qsar modeling as a variational problem: Theory and applications
    • Itskowitz P, Tropsha A. kappa nearest neighbors qsar modeling as a variational problem: theory and applications. J Chem Inf Model 2005;45:777-85
    • (2005) J Chem Inf Model , vol.45 , pp. 777-785
    • Itskowitz, P.1    Tropsha, A.2
  • 41
    • 33846923287 scopus 로고    scopus 로고
    • In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
    • Jensen BF, Vind C, Padkjaer SB, et al. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50(3):501-11
    • (2007) J Med Chem , vol.50 , Issue.3 , pp. 501-511
    • Jensen, B.F.1    Vind, C.2    Padkjaer, S.B.3
  • 42
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001;45:5-32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 43
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recognit 2011;44:330-49
    • (2011) Pattern Recognit , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 52
    • 77149142588 scopus 로고    scopus 로고
    • Modelling of drug disposition kinetics in in vitro intestinal absorption cell models
    • Heikkinen AT, Korjamo T, Monkkonen J. Modelling of drug disposition kinetics in in vitro intestinal absorption cell models. Basic Clin Pharmacol Toxicol 2010;106:180-8
    • (2010) Basic Clin Pharmacol Toxicol , vol.106 , pp. 180-188
    • Heikkinen, A.T.1    Korjamo, T.2    Monkkonen, J.3
  • 53
    • 84870245310 scopus 로고    scopus 로고
    • Caco-2 monolayers in experimental and theoretical predictions of drug transport
    • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2012;64:280-9
    • (2012) Adv Drug Deliv Rev , vol.64 , pp. 280-289
    • Artursson, P.1    Palm, K.2    Luthman, K.3
  • 54
    • 84861335392 scopus 로고    scopus 로고
    • Insights into the permeability of drugs and drug-like molecules from MI-QSAR and HQSAR studies
    • Shinde RN, Srikanth K, Sobhia ME. Insights into the permeability of drugs and drug-like molecules from MI-QSAR and HQSAR studies. J Mol Model 2012;18:947-62
    • (2012) J Mol Model , vol.18 , pp. 947-962
    • Shinde, R.N.1    Srikanth, K.2    Sobhia, M.E.3
  • 55
    • 47349124511 scopus 로고    scopus 로고
    • Membrane-interaction quantitative structure-activity relationship (MI-QSAR) analyses of skin penetration enhancers
    • Zheng T, Hopfinger AJ, Esposito EX, et al. Membrane-interaction quantitative structure-activity relationship (MI-QSAR) analyses of skin penetration enhancers. J Chem Inf Model 2008;48:1238-56
    • (2008) J Chem Inf Model , vol.48 , pp. 1238-1256
    • Zheng, T.1    Hopfinger, A.J.2    Esposito, E.X.3
  • 56
    • 31644439691 scopus 로고    scopus 로고
    • MI-QSAR models for prediction of corneal permeability of organic compounds
    • Chen C, Yang J. MI-QSAR models for prediction of corneal permeability of organic compounds. Acta Pharmacol Sin 2006;27:193-204
    • (2006) Acta Pharmacol Sin , vol.27 , pp. 193-204
    • Chen, C.1    Yang, J.2
  • 57
    • 34247397960 scopus 로고    scopus 로고
    • Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis
    • Iyer M, Tseng YJ, Senese CL, et al. Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis. Mol Pharm 2007;4:218-31
    • (2007) Mol Pharm , vol.4 , pp. 218-231
    • Iyer, M.1    Tseng, Y.J.2    Senese, C.L.3
  • 58
    • 27744440270 scopus 로고    scopus 로고
    • Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis
    • Chen LL, Yao J, Yang JB, Yang J. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. Acta Pharmacol Sin 2005;26:1322-33
    • (2005) Acta Pharmacol Sin , vol.26 , pp. 1322-1333
    • Chen, L.L.1    Yao, J.2    Yang, J.B.3    Yang, J.4
  • 59
    • 0036844787 scopus 로고    scopus 로고
    • Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis
    • Iyer M, Mishra R, Han Y, Hopfinger AJ. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 2002;19(11):1611-21
    • (2002) Pharm Res , vol.19 , Issue.11 , pp. 1611-1621
    • Iyer, M.1    Mishra, R.2    Han, Y.3    Hopfinger, A.J.4
  • 60
    • 84876020270 scopus 로고    scopus 로고
    • In silico model of drug permeability across sublingual mucosa
    • Goswami T, Kokate A, Jasti BR, Li X. In silico model of drug permeability across sublingual mucosa. Arch Oral Biol 2013;58:545-51
    • (2013) Arch Oral Biol , vol.58 , pp. 545-551
    • Goswami, T.1    Kokate, A.2    Jasti, B.R.3    Li, X.4
  • 61
    • 84862502609 scopus 로고    scopus 로고
    • A novel chemometric method for the prediction of human oral bioavailability
    • Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012;13:6964-82
    • (2012) Int J Mol Sci , vol.13 , pp. 6964-6982
    • Xu, X.1    Zhang, W.2    Huang, C.3
  • 62
    • 84871348189 scopus 로고    scopus 로고
    • Models to predict intestinal absorption of therapeutic peptides and proteins
    • Antunes F, Andrade F, Ferreira D, et al. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab 2013;14:4-20
    • (2013) Curr Drug Metab , vol.14 , pp. 4-20
    • Antunes, F.1    Andrade, F.2    Ferreira, D.3
  • 63
    • 76649085489 scopus 로고    scopus 로고
    • Significance of Protein Binding in Pharmacokinetics and Pharmacodynamics
    • Schmidt S, Gonzalez D, Derendorf H. Significance of Protein Binding in Pharmacokinetics and Pharmacodynamics. J Pharm Sci 2010;99:1107-22
    • (2010) J Pharm Sci , vol.99 , pp. 1107-1122
    • Schmidt, S.1    Gonzalez, D.2    Derendorf, H.3
  • 64
    • 84879192625 scopus 로고    scopus 로고
    • Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics
    • Foye WO, Lemke TL, Williams DA, editors. Lippincott Williams and Wilkins, New York
    • Jambhekar S. Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics. In: Foye WO, Lemke TL, Williams DA, editors. Foye's principles of medicinal chemistry. Lippincott Williams and Wilkins, New York; 2008;p. 247-50
    • (2008) Foye's Principles of Medicinal Chemistry , pp. 247-250
    • Jambhekar, S.1
  • 65
    • 33846230530 scopus 로고    scopus 로고
    • Plasma protein binding affinity and its relationship to molecular structure: An in-silico analysis
    • Gleeson M. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007;50:101-12
    • (2007) J Med Chem , vol.50 , pp. 101-112
    • Gleeson, M.1
  • 66
    • 44749088791 scopus 로고    scopus 로고
    • Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method
    • Ma CY, Yang SY, Zhang H, et al. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J Pharm Biomed Anal 2008;47:677-82
    • (2008) J Pharm Biomed Anal , vol.47 , pp. 677-682
    • Ma, C.Y.1    Yang, S.Y.2    Zhang, H.3
  • 67
    • 84879193775 scopus 로고    scopus 로고
    • QSAR models for the prediction of plasma protein binding
    • Ghafourian T, Amin Z. QSAR models for the prediction of plasma protein binding. BioImpacts 2013;3:21-7
    • (2013) BioImpacts , vol.3 , pp. 21-27
    • Ghafourian, T.1    Amin, Z.2
  • 68
    • 84855237775 scopus 로고    scopus 로고
    • Results of molecular docking as descriptors to predict human serum albumin binding affinity
    • Chen L, Chen X. Results of molecular docking as descriptors to predict human serum albumin binding affinity. J Mol Graph Model 2012;33:35-43
    • (2012) J Mol Graph Model , vol.33 , pp. 35-43
    • Chen, L.1    Chen, X.2
  • 69
    • 84855861782 scopus 로고    scopus 로고
    • Toward in silico structure-based ADMET prediction in drug discovery
    • Moroy G, Martiny VY, Vayer P, et al. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2012;17:44-55
    • (2012) Drug Discov Today , vol.17 , pp. 44-55
    • Moroy, G.1    Martiny, V.Y.2    Vayer, P.3
  • 70
    • 71449103290 scopus 로고    scopus 로고
    • Structure-based Drug metabolism predictions for drug design
    • Sun H, Scott DO. Structure-based Drug metabolism predictions for drug design. Chem Biol Drug Design 2010;75:3-17
    • (2010) Chem Biol Drug Design , vol.75 , pp. 3-17
    • Sun, H.1    Scott, D.O.2
  • 71
    • 84880979312 scopus 로고    scopus 로고
    • Development of quantitative structure-metabolism (QSMR) relationships for substituted anilines based on computational chemistry
    • Athersuch TJ, Wilson ID, Keun HC, Lindon JC. Development of quantitative structure-metabolism (QSMR) relationships for substituted anilines based on computational chemistry. Xenobiotica 2013;43:792-802
    • (2013) Xenobiotica , vol.43 , pp. 792-802
    • Athersuch, T.J.1    Wilson, I.D.2    Keun, H.C.3    Lindon, J.C.4
  • 72
    • 78650509649 scopus 로고    scopus 로고
    • A rapid computational filter for predicting the rate of human renal clearance
    • Paine SW, Barton P, Bird J, et al. A rapid computational filter for predicting the rate of human renal clearance. J Mol Graph Model 2010;29:529-37
    • (2010) J Mol Graph Model , vol.29 , pp. 529-537
    • Paine, S.W.1    Barton, P.2    Bird, J.3
  • 73
    • 84875761618 scopus 로고    scopus 로고
    • In Silico Categorization of in vivo intrinsic clearance using machine learning
    • Hsiao Y-W, Fagerholm U, Norinder U. In Silico Categorization of in vivo intrinsic clearance using machine learning. Mol Pharm 2013;10:1318-21
    • (2013) Mol Pharm , vol.10 , pp. 1318-1321
    • Hsiao, Y.-W.1    Fagerholm, U.2    Norinder, U.3
  • 74
    • 58149291856 scopus 로고    scopus 로고
    • In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach
    • Zhang H, Chen QY, Xiang ML, et al. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 2009;23:134-40
    • (2009) Toxicol in Vitro , vol.23 , pp. 134-140
    • Zhang, H.1    Chen, Q.Y.2    Xiang, M.L.3
  • 75
    • 84864137933 scopus 로고    scopus 로고
    • Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations
    • Myshkin E, Brennan R, Khasanova T, et al. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Chem Biol Drug Design 2012;80:406-16
    • (2012) Chem Biol Drug Design , vol.80 , pp. 406-416
    • Myshkin, E.1    Brennan, R.2    Khasanova, T.3
  • 76
    • 84857770428 scopus 로고    scopus 로고
    • The challenges involved in modeling toxicity data in silico: A review
    • Gleeson MP, Modi S, Bender A, et al. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des 2012;18:1266-91
    • (2012) Curr Pharm des , vol.18 , pp. 1266-1291
    • Gleeson, M.P.1    Modi, S.2    Bender, A.3
  • 78
    • 84869885324 scopus 로고    scopus 로고
    • CORAL: QSPR model of water solubility based on local and global SMILES attributes
    • Toropov AA, Toropova AP, Benfenati E, et al. CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere 2013;90:877-80
    • (2013) Chemosphere , vol.90 , pp. 877-880
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3
  • 79
    • 67349205580 scopus 로고    scopus 로고
    • Three-class classification models of logS and logP derived by using GA-CG-SVM approach
    • Zhang H, Xiang ML, Ma CY, et al. Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol Divers 2009;13:261-8
    • (2009) Mol Divers , vol.13 , pp. 261-268
    • Zhang, H.1    Xiang, M.L.2    Ma, C.Y.3
  • 80
    • 59549104238 scopus 로고    scopus 로고
    • Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors
    • Zhang H, Xiang ML, Zhao YL, et al. Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors. Eur J Pharm Sci 2009;36:451-7
    • (2009) Eur J Pharm Sci , vol.36 , pp. 451-457
    • Zhang, H.1    Xiang, M.L.2    Zhao, Y.L.3
  • 81
    • 2942704243 scopus 로고    scopus 로고
    • ESOL: Estimating aqueous solubility directly from molecular structure
    • Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 2004;44:1000-5
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1000-1005
    • Delaney, J.S.1
  • 82
    • 1542741028 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
    • Hou TJ, Xia K, Zhang W, Xu XJ. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 2004;44:266-75
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 266-275
    • Hou, T.J.1    Xia, K.2    Zhang, W.3    Xu, X.J.4
  • 83
    • 0037361981 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of organic compounds based on a 3D structure representation
    • Yan A, Gasteiger J. Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 2002;43:429-34
    • (2002) J Chem Inf Comput Sci , vol.43 , pp. 429-434
    • Yan, A.1    Gasteiger, J.2
  • 85
    • 0036115689 scopus 로고    scopus 로고
    • Estimation of aqueous solubility of organic compounds with QSPR approach
    • Gao H, Shanmugasundaram V, Lee P. Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res 2002;19:497-503
    • (2002) Pharm Res , vol.19 , pp. 497-503
    • Gao, H.1    Shanmugasundaram, V.2    Lee, P.3
  • 86
    • 0035526162 scopus 로고    scopus 로고
    • Estimation of aqueous solubility of chemical compounds using E-state indices
    • Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inf Comput Sci 2001;41:1488-93.
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1488-1493
    • Tetko, I.V.1    Tanchuk, V.Y.2    Kasheva, T.N.3    Villa, A.E.4
  • 87
    • 0001645890 scopus 로고    scopus 로고
    • Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology
    • Huuskonen J. Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. J Chem Inf Comput Sci 2000;40:773-7
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 773-777
    • Huuskonen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.