메뉴 건너뛰기




Volumn 19, Issue 25, 2012, Pages 4289-4297

Machine learning techniques and drug design

Author keywords

Drug design; Machine learning; Medicinal chemistry; QSAR

Indexed keywords

3 HYDROXYPYRIDINE 4 ONE; ANTIINFECTIVE AGENT; MELANOCORTIN 4 RECEPTOR; UNCLASSIFIED DRUG; VESICULAR MONOAMINE TRANSPORTER 2;

EID: 84866686849     PISSN: 09298673     EISSN: 1875533X     Source Type: Journal    
DOI: 10.2174/092986712802884259     Document Type: Review
Times cited : (159)

References (148)
  • 1
    • 77957682824 scopus 로고    scopus 로고
    • Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR
    • De Benedetti, P.G.; Fanelli, F. Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR. DDT, 2010, 15(19-20), 859-866.
    • (2010) DDT , vol.15 , Issue.19-20 , pp. 859-866
    • De Benedetti, P.G.1    Fanelli, F.2
  • 2
    • 84860265647 scopus 로고    scopus 로고
    • A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis
    • Castillo-Garit, J.A.; Abad, C.; Rodríguez-Borges, J.E.; Marrero-Ponce, Y.; Torrens, F. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis. Curr. Top. Med. Chem., 2012, 12(8), 852-65.
    • (2012) Curr. Top. Med. Chem. , vol.12 , Issue.8 , pp. 852-865
    • Castillo-Garit, J.A.1    Abad, C.2    Rodríguez-Borges, J.E.3    Marrero-Ponce, Y.4    Torrens, F.5
  • 4
    • 0036985975 scopus 로고    scopus 로고
    • On the information content of 2D and 3D descriptors for QSAR
    • Oprea, T.I. On the information content of 2D and 3D descriptors for QSAR. J. Braz. Chem. Soc., 2002, 13(6), 811-815.
    • (2002) J. Braz. Chem. Soc. , vol.13 , Issue.6 , pp. 811-815
    • Oprea, T.I.1
  • 5
    • 15044339524 scopus 로고    scopus 로고
    • QSAR: A abordagem de hansch
    • Tavares, L.C. QSAR: a abordagem de Hansch. Quim. Nova, 2004, 27(4), 631-639.
    • (2004) Quim. Nova , vol.27 , Issue.4 , pp. 631-639
    • Tavares, L.C.1
  • 6
    • 0036520301 scopus 로고    scopus 로고
    • Validação lateral em relações quantitativas entre estrutura e atividade farmacológica
    • Montanari, M.L.C.; Montanari, C.A.; Gaudio, A.C. Validação lateral em relações quantitativas entre estrutura e atividade farmacológica. Quim. Nova, 2002, 25(2), 231-240.
    • (2002) Quim. Nova , vol.25 , Issue.2 , pp. 231-240
    • Montanari, M.L.C.1    Montanari, C.A.2    Gaudio, A.C.3
  • 7
    • 0010465904 scopus 로고    scopus 로고
    • Proposição validação e análise dos modelos que correlacionam estrutura química e atividade biológica
    • Gaudio, A.C.; Zandonade, E. Proposição, validaç ão e análise dos modelos que correlacionam estrutura química e atividade biológica. Quim. Nova, 2001, 24(5), 658-671.
    • (2001) Quim. Nova , vol.24 , Issue.5 , pp. 658-671
    • Gaudio, A.C.1    Zandonade, E.2
  • 8
    • 77952324100 scopus 로고    scopus 로고
    • Propriedades químicoquânticas empregadas em estudos das relações estrutura-atividade
    • Arroio, A.; Honório, K.M.; da Silva, A.B.F. da. Propriedades químicoquânticas empregadas em estudos das relações estrutura-atividade. Quim. Nova, 2010, 33(3), 694-699.
    • (2010) Quim. Nova , vol.33 , Issue.3 , pp. 694-699
    • Arroio, A.1    Honório, K.M.2    Da Silva, A.B.F.3
  • 9
    • 70349162515 scopus 로고    scopus 로고
    • Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application
    • Kiralj, R.; Ferreira, M.M.C. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Braz. Chem. Soc., 2009, 20(4), 770-787.
    • (2009) J. Braz. Chem. Soc. , vol.20 , Issue.4 , pp. 770-787
    • Kiralj, R.1    Ferreira, M.M.C.2
  • 10
    • 0036982903 scopus 로고    scopus 로고
    • Multivariate QSAR
    • Ferreira, M.M.C. Multivariate QSAR. J. Braz. Chem. Soc., 2002, 13(6), 742-753.
    • (2002) J. Braz. Chem. Soc. , vol.13 , Issue.6 , pp. 742-753
    • Ferreira, M.M.C.1
  • 11
    • 84861871524 scopus 로고    scopus 로고
    • QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions
    • Goudarzi, N.; Goodarzi, M.; Chen, T. QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions. Med. Chem. Res., 2012, 21(4), 437-443.
    • (2012) Med. Chem. Res. , vol.21 , Issue.4 , pp. 437-443
    • Goudarzi, N.1    Goodarzi, M.2    Chen, T.3
  • 12
    • 80053200197 scopus 로고    scopus 로고
    • QSPR study of setschenow constants of organic compounds using MLR, ANN, and SVM analyses
    • Xu, J.; Wang, L.; Wang, L.; Shen, X.; Xu, W. QSPR Study of Setschenow Constants of Organic Compounds Using MLR, ANN, and SVM Analyses. J. Comp. Chem., 2011, 32(15), 3241-3252.
    • (2011) J. Comp. Chem. , vol.32 , Issue.15 , pp. 3241-3252
    • Xu, J.1    Wang, L.2    Wang, L.3    Shen, X.4    Xu, W.5
  • 14
    • 78650170085 scopus 로고    scopus 로고
    • Comparative QSAR modeling of antitumor activity of ARC-111 analogues using stepwise MLR, PLS, and ANN techniques
    • Yu, Y.; Su, R.; Wang, L.; Qi, W.; He, Z. Comparative QSAR modeling of antitumor activity of ARC-111 analogues using stepwise MLR, PLS, and ANN techniques. Med. Chem. Res., 2010, 19(9), 1233-1244.
    • (2010) Med. Chem. Res. , vol.19 , Issue.9 , pp. 1233-1244
    • Yu, Y.1    Su, R.2    Wang, L.3    Qi, W.4    He, Z.5
  • 15
    • 80052639727 scopus 로고    scopus 로고
    • Activity prediction of some nontested anticancer compounds using GA-based PLS regression models
    • Nandi, S.; Bagchi, M.C. Activity Prediction of Some Nontested Anticancer Compounds Using GA-Based PLS Regression Models. Chem. Biol. Drug Des., 2011, 78(4), 587-595.
    • (2011) Chem. Biol. Drug Des. , vol.78 , Issue.4 , pp. 587-595
    • Nandi, S.1    Bagchi, M.C.2
  • 16
    • 79955750664 scopus 로고    scopus 로고
    • Comparative QSAR analysis of quinazoline analogues as tyrosine kinase (erbB-2) inhibitors
    • Noolvi, M.N.; Patel, H.M.; Bhardwaj V.A. Comparative QSAR Analysis of Quinazoline Analogues as Tyrosine Kinase (erbB-2) Inhibitors. Med. Chem., 2011, 7(3), 200-212.
    • (2011) Med. Chem. , vol.7 , Issue.3 , pp. 200-212
    • Noolvi, M.N.1    Patel, H.M.2    Bhardwaj, V.A.3
  • 17
  • 18
    • 78650942476 scopus 로고    scopus 로고
    • Two-dimensional quantitative structure-activity relationship studies on bioactive ligands of peroxisome proliferator-activated receptor delta
    • Garcia, T.S.; Honorio, K.M. Two-Dimensional Quantitative Structure-Activity Relationship Studies on Bioactive Ligands of Peroxisome Proliferator-Activated Receptor delta. J. Braz. Chem. Soc., 2011, 22(1), 65-72.
    • (2011) J. Braz. Chem. Soc. , vol.22 , Issue.1 , pp. 65-72
    • Garcia, T.S.1    Honorio, K.M.2
  • 19
    • 77649189967 scopus 로고    scopus 로고
    • Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands
    • Weber, K.C.; Honório, K.M.; Andricopulo, A.D.; da Silva, A.B.F. Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. Eur. J. Med. Chem., 2010, 45(4), 1508-1514.
    • (2010) Eur. J. Med. Chem. , vol.45 , Issue.4 , pp. 1508-1514
    • Weber, K.C.1    Honório, K.M.2    Andricopulo, A.D.3    Da Silva, A.B.F.4
  • 20
    • 80255127569 scopus 로고    scopus 로고
    • Role of physicochemical properties in the activation of peroxisome proliferator-activated receptor delta
    • Maltarollo, V.G.; Homem-de-Mello P.; Honório K.M. Role of physicochemical properties in the activation of peroxisome proliferator- activated receptor delta. J. Mol. Model., 2011, 17(10), 2549-2558.
    • (2011) J. Mol. Model. , vol.17 , Issue.10 , pp. 2549-2558
    • Maltarollo, V.G.1    Homem-De-Mello, P.2    Honório, K.M.3
  • 22
    • 83655201097 scopus 로고    scopus 로고
    • The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers
    • Moss, G.P.; Shah, A.J.; Adams, R.G.; Davey, N.; Wilkinson, S.C.; Pugh, W.J.; Sun, Y. The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers. Eur. J. Pharm. Sci., 2012, 45(1-2), 116-127.
    • (2012) Eur. J. Pharm. Sci. , vol.45 , Issue.1-2 , pp. 116-127
    • Moss, G.P.1    Shah, A.J.2    Adams, R.G.3    Davey, N.4    Wilkinson, S.C.5    Pugh, W.J.6    Sun, Y.7
  • 23
    • 77950570306 scopus 로고    scopus 로고
    • In silico prediction and screening of gamma-secretase inhibitors by molecular descriptors and machine learning methods
    • Yang, X.G.; Lv, W.; Chen, Y.Z.; Xue, Y. In Silico Prediction and Screening of gamma-Secretase Inhibitors by Molecular Descriptors and Machine Learning Methods. J. Comp. Chem., 2010, 31(6), 1249-1258.
    • (2010) J. Comp. Chem. , vol.31 , Issue.6 , pp. 1249-1258
    • Yang, X.G.1    Lv, W.2    Chen, Y.Z.3    Xue, Y.4
  • 26
    • 34147168239 scopus 로고    scopus 로고
    • Computational notes on structural, electronic and QSAR properties of Fulleropyrrolidine-1-carbodithioic acid 2; 3 and 4-substituted-benzyl esters
    • Hameed, A.J.; Ibrahim, M.; ElHaes, H. Computational notes on structural, electronic and QSAR properties of Fulleropyrrolidine-1-carbodithioic acid 2; 3 and 4-substituted-benzyl esters. J. Mol. Struct. THEOCHEM, 2007, 809(1-3), 131-136.
    • (2007) J. Mol. Struct. THEOCHEM , vol.809 , Issue.1-3 , pp. 131-136
    • Hameed, A.J.1    Ibrahim, M.2    Elhaes, H.3
  • 27
    • 49949103969 scopus 로고    scopus 로고
    • Theoretical investigation of 3'-subtituted-2'-3'-dideoxythymidines related to AZT. QSAR infrared and substituent electronic effect studies
    • Essa, A.H.; Ibrahem, M.; Hameed, A.J.; Al-Masoudi, N.A. Theoretical investigation of 3'-subtituted-2'-3'-dideoxythymidines related to AZT. QSAR infrared and substituent electronic effect studies. ARKIVOC, 2008, xiii, 255-265.
    • (2008) ARKIVOC , vol.8 , pp. 255-265
    • Essa, A.H.1    Ibrahem, M.2    Hameed, A.J.3    Al-Masoudi, N.A.4
  • 28
    • 73749087546 scopus 로고    scopus 로고
    • Structural and electronic properties of new fullerene derivatives and their possible application as HIV-1 protease inhibitors
    • Ibrahim, M.; Saleh, N.A.; Hameed, A.J.; Elshemey, W.M.; Elsayed, A.A. Structural and Electronic Properties of new Fullerene Derivatives and their Possible Application as HIV-1 Protease Inhibitors. Spectrochim. Acta A, 2010, 75(2), 702-709.
    • (2010) Spectrochim. Acta A , vol.75 , Issue.2 , pp. 702-709
    • Ibrahim, M.1    Saleh, N.A.2    Hameed, A.J.3    Elshemey, W.M.4    Elsayed, A.A.5
  • 29
    • 84861150209 scopus 로고    scopus 로고
    • Fullerene derivative as anti-HIV protease inhibitor: Molecular modeling and QSAR approaches
    • Ibrahim, M.; Saleh, N.A.; Elshemey, W.M.; Elsayed, A.A. Fullerene Derivative as anti-HIV Protease Inhibitor: Molecular Modeling and QSAR Approaches. Mini Rev. Med. Chem., 2012, 12(6), 447-451.
    • (2012) Mini Rev. Med. Chem. , vol.12 , Issue.6 , pp. 447-451
    • Ibrahim, M.1    Saleh, N.A.2    Elshemey, W.M.3    Elsayed, A.A.4
  • 30
    • 80051566363 scopus 로고    scopus 로고
    • First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines
    • Garcia, I.; Fall, Y.; Gomez, G.; Gonzalez-Diaz, H. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol. Divers., 2011, 15(2), 561-567.
    • (2011) Mol. Divers. , vol.15 , Issue.2 , pp. 561-567
    • Garcia, I.1    Fall, Y.2    Gomez, G.3    Gonzalez-Diaz, H.4
  • 32
    • 80053383769 scopus 로고    scopus 로고
    • Linear and nonlinear quantitative structure-activity relationship modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates
    • Goodarzi, M.; Freitas, M.P.; Vander Heyden, Y. Linear and nonlinear quantitative structure-activity relationship modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates. Anal. Chim. Acta, 2011, 705(1-2), 166-173.
    • (2011) Anal. Chim. Acta , vol.705 , Issue.1-2 , pp. 166-173
    • Goodarzi, M.1    Freitas, M.P.2    Vander Heyden, Y.3
  • 33
    • 79953290551 scopus 로고    scopus 로고
    • An accurate nonlinear QSAR model for the antitumor activities of chloroethylnitrosoureas using neural networks
    • Qin, Y.; Deng, H.; Yan, H.; Zhong, R. An accurate nonlinear QSAR model for the antitumor activities of chloroethylnitrosoureas using neural networks. J. Mol. Graph. Model., 2011, 29(6), 826-833.
    • (2011) J. Mol. Graph. Model. , vol.29 , Issue.6 , pp. 826-833
    • Qin, Y.1    Deng, H.2    Yan, H.3    Zhong, R.4
  • 34
    • 79951876692 scopus 로고    scopus 로고
    • Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors
    • Fu, G.H.; Cao, D.S.; Xu, Q.S.; Li, H.D.; Liang, Y.Z. Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors. J. Chemometr., 2011, 25(2), 92-99.
    • (2011) J. Chemometr. , vol.25 , Issue.2 , pp. 92-99
    • Fu, G.H.1    Cao, D.S.2    Xu, Q.S.3    Li, H.D.4    Liang, Y.Z.5
  • 35
    • 0040287998 scopus 로고
    • Artificial neural network models of knowledge representation in chemical engineering
    • Hoskins, J.C.; Himmelbau, D.M. Artificial Neural Network Models of Knowledge Representation in Chemical Engineering. Comput. Chem. Eng., 1988, 12(9-10), 881-890.
    • (1988) Comput. Chem. Eng. , vol.12 , Issue.9-10 , pp. 881-890
    • Hoskins, J.C.1    Himmelbau, D.M.2
  • 36
    • 60849108682 scopus 로고    scopus 로고
    • Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-gaussian processes
    • Zhou, P.; Tian, F.; Chen, X.; Shang, Z. Modeling and Prediction of Binding Affinities Between the Human Amphiphysin SH3 Domain and Its Peptide Ligands Using Genetic Algorithm-Gaussian Processes. Biopolymers, 2008, 90(6), 792-802.
    • (2008) Biopolymers , vol.90 , Issue.6 , pp. 792-802
    • Zhou, P.1    Tian, F.2    Chen, X.3    Shang, Z.4
  • 37
    • 79959924555 scopus 로고    scopus 로고
    • Intelligent control based on wavelet decomposition and neural network for predicting of human trajectories with a novel vision-based robotic
    • Soyguder, S. Intelligent control based on wavelet decomposition and neural network for predicting of human trajectories with a novel vision-based robotic. Expert Syst. Appl., 2011, 38(11), 13994-14000.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.11 , pp. 13994-14000
    • Soyguder, S.1
  • 38
    • 37149042923 scopus 로고    scopus 로고
    • The state of play in machine/ environment interactions
    • Aitkenhead, M.J.; McDonald, A.J.S. The state of play in machine/ environment interactions. Artif. Intell. Rev., 2006, 25(3), 247-276.
    • (2006) Artif. Intell. Rev. , vol.25 , Issue.3 , pp. 247-276
    • Aitkenhead, M.J.1    McDonald, A.J.S.2
  • 39
    • 45949096079 scopus 로고    scopus 로고
    • Computational intelligence approaches for pattern discovery in biological systems
    • Fogel G.B. Computational intelligence approaches for pattern discovery in biological systems. Brief Bioinform., 2008, 9(4), 307-316.
    • (2008) Brief Bioinform. , vol.9 , Issue.4 , pp. 307-316
    • Fogel, G.B.1
  • 40
    • 32244437883 scopus 로고    scopus 로고
    • Toward physics of the mind: Concepts, emotions, consciousness, and symbols
    • Perlovsky, L.I. Toward physics of the mind: Concepts, emotions, consciousness, and symbols. Phys. Life. Rev., 2006, 3(1), 23-55.
    • (2006) Phys. Life. Rev. , vol.3 , Issue.1 , pp. 23-55
    • Perlovsky, L.I.1
  • 41
    • 33646147797 scopus 로고    scopus 로고
    • Neural networks for animal science applications: Two case studies
    • Fernandez, C.; Soria, E.; Martin, J.D.; Serrano, A.J. Neural networks for animal science applications: Two case studies. Expert Syst. Appl., 2006, 31(2), 444-450.
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 444-450
    • Fernandez, C.1    Soria, E.2    Martin, J.D.3    Serrano, A.J.4
  • 42
    • 80055065816 scopus 로고    scopus 로고
    • Avoiding pitfalls in applying prediction models, as illustrated by the example of prostate cancer diagnosis
    • Cammann, H.; Jung, K.; Meyer, H.A.; Stephan, C. Avoiding Pitfalls in Applying Prediction Models, As Illustrated by the Example of Prostate Cancer Diagnosis. Clin. Chem., 2011, 57(11), 1490-1498.
    • (2011) Clin. Chem. , vol.57 , Issue.11 , pp. 1490-1498
    • Cammann, H.1    Jung, K.2    Meyer, H.A.3    Stephan, C.4
  • 43
    • 0036254780 scopus 로고    scopus 로고
    • Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: Statistical, neural network and fuzzy approaches
    • Seker, H.; Odetayo, M.O.; Petrovic, D.; Naguib, R.N.G.; Bartoli, C.; Alasio, L.; Lakshmi, M S.; Sherbet, G.V. Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: Statistical, neural network and fuzzy approaches. Anticancer Res., 2002, 22(1A), 433-438.
    • (2002) Anticancer Res. , vol.22 , Issue.1 A , pp. 433-438
    • Seker, H.1    Odetayo, M.O.2    Petrovic, D.3    Naguib, R.N.G.4    Bartoli, C.5    Alasio, L.6    Lakshmi, M.S.7    Sherbet, G.V.8
  • 44
    • 33646420101 scopus 로고    scopus 로고
    • Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic, or toxicological properties of pharmaceutical agents
    • Li H.; Yap, C. W.; Xue, Y.; Li, Z.R.; Ung, C.Y.; Han, L.Y.; Chen Y.Z. Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic, or toxicological properties of pharmaceutical agents. Drug Develop. Res., 2005, 66(4), 245-259.
    • (2005) Drug Develop. Res. , vol.66 , Issue.4 , pp. 245-259
    • Li, H.1    Yap, C.W.2    Xue, Y.3    Li, Z.R.4    Ung, C.Y.5    Han, L.Y.6    Chen, Y.Z.7
  • 45
    • 30544446631 scopus 로고    scopus 로고
    • Mapping the dose-effect relationship of orbofiban from sparse data with an artificial neural network
    • Mager, D.E.; Shirey, J.D.; Cox, D.; Fitzgerald, D.J.; Abernethy, D.R. Mapping the dose-effect relationship of orbofiban from sparse data with an artificial neural network. J. Pharm. Sci., 2005, 94(11), 2475-2486.
    • (2005) J. Pharm. Sci. , vol.94 , Issue.11 , pp. 2475-2486
    • Mager, D.E.1    Shirey, J.D.2    Cox, D.3    Fitzgerald, D.J.4    Abernethy, D.R.5
  • 46
    • 0033576604 scopus 로고    scopus 로고
    • Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques
    • Schneider, G.; Coassolo, P.; Lavé, T. Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. J. Med. Chem., 1999, 42(25), 5072-5076.
    • (1999) J. Med. Chem. , vol.42 , Issue.25 , pp. 5072-5076
    • Schneider, G.1    Coassolo, P.2    Lavé, T.3
  • 47
    • 79851510251 scopus 로고    scopus 로고
    • Predicting protein folding rate from amino acid sequence
    • Guo, J.; Rao, N. Predicting Protein Folding Rate From Amino Acid Sequence. J. Bioinform. Comp. Biol., 2011, 9(1), 1-13.
    • (2011) J. Bioinform. Comp. Biol. , vol.9 , Issue.1 , pp. 1-13
    • Guo, J.1    Rao, N.2
  • 48
    • 27844596815 scopus 로고    scopus 로고
    • Transmembrane segments prediction and understanding using support vector machine and decision tree
    • He, J.Y.; Hu, H.J.; Harrison, R.; Tai, P.C.; Pan, Y. Transmembrane segments prediction and understanding using support vector machine and decision tree. Expert Syst. Appl., 2006, 30(1), 64-72.
    • (2006) Expert Syst. Appl. , vol.30 , Issue.1 , pp. 64-72
    • He, J.Y.1    Hu, H.J.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5
  • 49
    • 34250851283 scopus 로고    scopus 로고
    • Principal component analysis-ranking as method for the simulation of 13 C nuclear a variable selection ma netic resonance spectra of xanthones using artificial neural networks
    • Jalali-Heravi, M.; Shahbazikhah, P.; Zekavat, B.; Ardejani, M.S. Principal component analysis-ranking as method for the simulation of 13 C nuclear a variable selection ma netic resonance spectra of xanthones using artificial neural networks. QSAR Comb. Sci., 2007, 26(6), 764-772.
    • (2007) QSAR Comb. Sci. , vol.26 , Issue.6 , pp. 764-772
    • Jalali-Heravi, M.1    Shahbazikhah, P.2    Zekavat, B.3    Ardejani, M.S.4
  • 50
    • 77951979146 scopus 로고    scopus 로고
    • Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition
    • Reddy, A.S.; Kumar, S.; Garg, R. Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition. J. Mol. Graph. Model., 2010, 28(8), 852-862.
    • (2010) J. Mol. Graph. Model. , vol.28 , Issue.8 , pp. 852-862
    • Reddy, A.S.1    Kumar, S.2    Garg, R.3
  • 51
    • 80052071999 scopus 로고    scopus 로고
    • Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for water management and risk analysis
    • Carafa, R.; Faggiano, L.; Real, M.; Munne, A.; Ginebreda, A.; Guasch, H.; Flo, M.; Tirapu, L.; von der Ohe, P.C. Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for water management and risk analysis. Sci. Tot. Environ., 2011, 409(20), 4269-4279.
    • (2011) Sci. Tot. Environ. , vol.409 , Issue.20 , pp. 4269-4279
    • Carafa, R.1    Faggiano, L.2    Real, M.3    Munne, A.4    Ginebreda, A.5    Guasch, H.6    Flo, M.7    Tirapu, L.8    Von Der Ohe, P.C.9
  • 52
    • 77950906295 scopus 로고    scopus 로고
    • QSAR in the pharmaceutical research setting: QSAR models for broad, large problems
    • Sprous, D.G.; Palmer, R.K.; Swanson, J.T.; Lawless, M. QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems. Curr. Top. Med. Chem., 2010, 10(6), 619-637.
    • (2010) Curr. Top. Med. Chem. , vol.10 , Issue.6 , pp. 619-637
    • Sprous, D.G.1    Palmer, R.K.2    Swanson, J.T.3    Lawless, M.4
  • 53
    • 33747875018 scopus 로고    scopus 로고
    • Evaluation of a neural networks QSAR method based on ligand representation using substituent descriptors Application to HIV-1 protease inhibitors
    • Milac, A.L.; Avram, S.; Petrescu, A.J. Evaluation of a neural networks QSAR method based on ligand representation using substituent descriptors Application to HIV-1 protease inhibitors. J. Graph. Mol. Model., 2006, 25(1), 37-45.
    • (2006) J. Graph. Mol. Model. , vol.25 , Issue.1 , pp. 37-45
    • Milac, A.L.1    Avram, S.2    Petrescu, A.J.3
  • 55
    • 70450205031 scopus 로고    scopus 로고
    • QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection
    • Ghosh, P.; Bagchi, M.C. QSAR Modeling for Quinoxaline Derivatives using Genetic Algorithm and Simulated Annealing Based Feature Selection. Curr. Med. Chem., 2009, 16(30), 4032-4048.
    • (2009) Curr. Med. Chem. , vol.16 , Issue.30 , pp. 4032-4048
    • Ghosh, P.1    Bagchi, M.C.2
  • 56
    • 59149092067 scopus 로고    scopus 로고
    • Artificial neural networks from MATLAB (R) in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): Application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1)
    • Caballero, J.; Fernandez, M. Artificial Neural Networks from MATLAB (R) in Medicinal Chemistry. Bayesian-Regularized Genetic Neural Networks (BRGNN): Application to the Prediction of the Antagonistic Activity Against Human Platelet Thrombin Receptor (PAR-1). Curr. Top. Med. Chem., 2008, 8(18), 1580-1605.
    • (2008) Curr. Top. Med. Chem. , vol.8 , Issue.18 , pp. 1580-1605
    • Caballero, J.1    Fernandez, M.2
  • 57
    • 0042199118 scopus 로고    scopus 로고
    • Neural networks: Accurate nonlinear QSAR model for HEPT derivatives
    • Douali, L.; Villemin, D.; Cherqaoui, D. Neural networks: Accurate nonlinear QSAR model for HEPT derivatives. J. Chem. Inf. Comp. Sci., 2003, 43(4), 1200-1207.
    • (2003) J. Chem. Inf. Comp. Sci. , vol.43 , Issue.4 , pp. 1200-1207
    • Douali, L.1    Villemin, D.2    Cherqaoui, D.3
  • 58
    • 61949313682 scopus 로고    scopus 로고
    • Self-organizing maps in drug discovery: Compound library design, scaffold-hopping, repurposing
    • Schneider, P.; Tanrikulu, Y.; Schneider, G. Self-Organizing Maps in Drug Discovery: Compound Library Design, Scaffold-Hopping, Repurposing. Curr. Med. Chem., 2009, 16(3), 258-266.
    • (2009) Curr. Med. Chem. , vol.16 , Issue.3 , pp. 258-266
    • Schneider, P.1    Tanrikulu, Y.2    Schneider, G.3
  • 60
    • 19744378059 scopus 로고    scopus 로고
    • Classification of Antarctic algae by applying Kohonen neural network with 14 elements determined by inductively coupled plasma optical emission spectrometry
    • Balbinot, L.; Smichowski, P.; Farias, S.; Arruda, M.A.Z.; Vodopivez, C.; Poppi, R.J. Classification of Antarctic algae by applying Kohonen neural network with 14 elements determined by inductively coupled plasma optical emission spectrometry. Spectrochim. Acta B, 2005, 60(5), 725-730.
    • (2005) Spectrochim. Acta B , vol.60 , Issue.5 , pp. 725-730
    • Balbinot, L.1    Smichowski, P.2    Farias, S.3    Arruda, M.A.Z.4    Vodopivez, C.5    Poppi, R.J.6
  • 61
    • 51349164718 scopus 로고    scopus 로고
    • An ensemble method based on a self-organizing map for near-infrared spectral calibration of complex beverage samples
    • Tan, C.; Qin, X.; Li, M. An ensemble method based on a self-organizing map for near-infrared spectral calibration of complex beverage samples. Anal. Bioanal. Chem., 2008, 392(3), 515-521.
    • (2008) Anal. Bioanal. Chem. , vol.392 , Issue.3 , pp. 515-521
    • Tan, C.1    Qin, X.2    Li, M.3
  • 62
    • 33645242166 scopus 로고    scopus 로고
    • Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies
    • Vracko, M. Kohonen Artificial Neural Network and Counter Propagation Neural Network in Molecular Structure-Toxicity Studies. Curr. Comput-Aid. Drug., 2005, 1(1), 73-78.
    • (2005) Curr. Comput-Aid. Drug. , vol.1 , Issue.1 , pp. 73-78
    • Vracko, M.1
  • 63
    • 4344698366 scopus 로고    scopus 로고
    • Generation of QSAR sets with a selforganizing map
    • Guha, R.; Serra, J.R.; Jurs, P.C. Generation of QSAR sets with a selforganizing map. J. Mol. Graph. Model., 2004, 23(1), 1-14.
    • (2004) J. Mol. Graph. Model. , vol.23 , Issue.1 , pp. 1-14
    • Guha, R.1    Serra, J.R.2    Jurs, P.C.3
  • 64
  • 65
    • 35348967842 scopus 로고    scopus 로고
    • Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks
    • Nandi, S.; Vracko, M.; Bagchi, M.C. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Chem. Biol. Drug Des., 2007, 70(5), 424-436.
    • (2007) Chem. Biol. Drug Des. , vol.70 , Issue.5 , pp. 424-436
    • Nandi, S.1    Vracko, M.2    Bagchi, M.C.3
  • 66
    • 28944437860 scopus 로고    scopus 로고
    • Supervised self-organizing maps in drug discovery. 1. Robust behavior with overdetermined data sets
    • Xiao, Y.D.; Clauset, A.; Harris, R.; Bayram, E.; Santago, P.; Schmitt, J.D. Supervised self-organizing maps in drug discovery. 1. Robust behavior with overdetermined data sets. J. Chem. Inf. Model., 2005, 45(6), 1749-1758.
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.6 , pp. 1749-1758
    • Xiao, Y.D.1    Clauset, A.2    Harris, R.3    Bayram, E.4    Santago, P.5    Schmitt, J.D.6
  • 67
    • 54349105915 scopus 로고    scopus 로고
    • Prediction of human intestinal absorption by GA feature selection and support vector machine regression
    • Yan, A.; Wang, Z.; Cai, Z. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int. J. Mol. Sci., 2008, 9(10), 1961-1976.
    • (2008) Int. J. Mol. Sci. , vol.9 , Issue.10 , pp. 1961-1976
    • Yan, A.1    Wang, Z.2    Cai, Z.3
  • 68
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K.; Stinchcombe M.; White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5), 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 71
    • 33947103708 scopus 로고    scopus 로고
    • Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2
    • Zheng, F.; Zheng, G.; Deaciuc, A.G.; Zhan, C.G.; Dwoskin, L.P.; Crooks, P.A. Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2. Bioorg. Med. Chem., 2007, 15(8), 2975-2992.
    • (2007) Bioorg. Med. Chem. , vol.15 , Issue.8 , pp. 2975-2992
    • Zheng, F.1    Zheng, G.2    Deaciuc, A.G.3    Zhan, C.G.4    Dwoskin, L.P.5    Crooks, P.A.6
  • 72
    • 36849005551 scopus 로고    scopus 로고
    • Counter-propagation neural networks in Matlab
    • Kuzmanovski, I.; Novi, M. Counter-propagation neural networks in Matlab. Chemometr. Intell. Lab., 2008, 90(1), 84-91.
    • (2008) Chemometr. Intell. Lab. , vol.90 , Issue.1 , pp. 84-91
    • Kuzmanovski, I.1    Novi, M.2
  • 74
    • 0347238366 scopus 로고    scopus 로고
    • Prediction of enzyme binding: Human thrombin inhibition study by quantum chemical and artificial intelligence methods based on X-ray structures
    • Mlinsek, G.; Novi, M.; Hodoscek, M.; Solmajer, T. Prediction of Enzyme Binding: Human Thrombin Inhibition Study by Quantum Chemical and Artificial Intelligence Methods Based on X-ray Structures. J. Chem. Inf. Comp. Sci., 2001, 41(3-6), 1286-1294.
    • (2001) J. Chem. Inf. Comp. Sci. , vol.41 , Issue.3-6 , pp. 1286-1294
    • Mlinsek, G.1    Novi, M.2    Hodoscek, M.3    Solmajer, T.4
  • 75
    • 84863105870 scopus 로고    scopus 로고
    • Computer-aided design of novel antibacterial 3-hydroxypyridine-4-ones: Application of QSAR methods based on the MOLMAP approach
    • Sabet, R.; Fassihi, A.; Hemmateenejad, B.; Saghaei, L.; Miri, R.; Gholami, M. Computer-aided design of novel antibacterial 3-hydroxypyridine-4- ones: application of QSAR methods based on the MOLMAP approach. J. Comput-Aid. Mol. Des., 2012, 26(3), 349-361.
    • (2012) J. Comput-Aid. Mol. Des. , vol.26 , Issue.3 , pp. 349-361
    • Sabet, R.1    Fassihi, A.2    Hemmateenejad, B.3    Saghaei, L.4    Miri, R.5    Gholami, M.6
  • 76
    • 80051553414 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship study of antitubercular fluoroquinolones
    • Minovski, N.; Vrako, M.;Šolmajer, T. Quantitative structure-activity relationship study of antitubercular fluoroquinolones. Mol. Divers., 2011, 15(2), 417-426.
    • (2011) Mol. Divers. , vol.15 , Issue.2 , pp. 417-426
    • Minovski, N.1    Vrako, M.2    Šolmajer, T.3
  • 78
    • 0036368719 scopus 로고    scopus 로고
    • Application of neural networks to large dataset QSAR, virtual screening, and library design
    • English, L. B. (Eds.), Springer Protocols
    • Winkler, D.A.; Burden, F.R. Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design. In:Combinatorial Library, Methods in Molecular Biology . English, L. B. (Eds.), Springer Protocols, 2002, 325-367.
    • (2002) Combinatorial Library, Methods in Molecular Biology , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 81
    • 27744524965 scopus 로고    scopus 로고
    • Modeling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural networks
    • Fernandez, M.; Caballero, J. Modeling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural networks. Bioorg. Med. Chem., 2006, 14(1), 280-294.
    • (2006) Bioorg. Med. Chem. , vol.14 , Issue.1 , pp. 280-294
    • Fernandez, M.1    Caballero, J.2
  • 83
    • 44449158893 scopus 로고    scopus 로고
    • Structural requirements of pyrido[2, 3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses
    • Caballero, J.; Fernandez, M.; Gonzalez-Nilo, F.D. Structural requirements of pyrido[2, 3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses. Bioorg. Med. Chem., 2008, 16(11), 6103-6115.
    • (2008) Bioorg. Med. Chem. , vol.16 , Issue.11 , pp. 6103-6115
    • Caballero, J.1    Fernandez, M.2    Gonzalez-Nilo, F.D.3
  • 84
    • 0032572819 scopus 로고    scopus 로고
    • Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
    • Ajay; Walters, W.P.; Murcko, M.A. Can We Learn To Distinguish between "Drug-like" and "Nondrug-like" Molecules? J. Med. Chem., 1998, 41(18), 3314-3324.
    • (1998) J. Med. Chem. , vol.41 , Issue.18 , pp. 3314-3324
    • Ajay1    Walters, W.P.2    Murcko, M.A.3
  • 85
    • 23644443521 scopus 로고    scopus 로고
    • Modeling Km values using electrotopological state: Substrates for cytochrome P450 3A4-mediated metabolism
    • Wang, Y.; Li, Y.; Li, Y.; Yang, S.; Yang, L. Modeling Km values using electrotopological state: Substrates for cytochrome P450 3A4-mediated metabolism. Bioorg. Med. Chem. Letters., 2005, 15(18), 4076-4084.
    • (2005) Bioorg. Med. Chem. Letters. , vol.15 , Issue.18 , pp. 4076-4084
    • Wang, Y.1    Li, Y.2    Li, Y.3    Yang, S.4    Yang, L.5
  • 86
    • 0001245212 scopus 로고    scopus 로고
    • Use of automatic relevance determination in QSAR studies using bayesian neural networks
    • Burden, F.R.; Ford, M.G.; Whitley, D.C.; Winkler, D.A. Use of Automatic Relevance Determination in QSAR Studies Using Bayesian Neural Networks. J. Chem. Inf. Comp. Sci., 2000, 40(6), 1423-1430.
    • (2000) J. Chem. Inf. Comp. Sci. , vol.40 , Issue.6 , pp. 1423-1430
    • Burden, F.R.1    Ford, M.G.2    Whitley, D.C.3    Winkler, D.A.4
  • 90
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc., 1998, 2(2), 121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 91
    • 77955557553 scopus 로고    scopus 로고
    • Prediction of intrinsic solubility of generic drugs using mlr, ann and svm analyses
    • Louis, B.; Agrawal, V.K.; Khadikar, P.V. Prediction of intrinsic solubility of generic drugs using mlr, ann and svm analyses. Eur. J. Med. Chem., 2010, 45(9), 4018-4025.
    • (2010) Eur. J. Med. Chem. , vol.45 , Issue.9 , pp. 4018-4025
    • Louis, B.1    Agrawal, V.K.2    Khadikar, P.V.3
  • 92
    • 0038035650 scopus 로고    scopus 로고
    • New horizons in drug metabolism, pharmacokinetics and drug discovery
    • Palmer, A.M. New horizons in drug metabolism, pharmacokinetics and drug discovery. Drug News Perspect., 2003, 16(1), 57-62.
    • (2003) Drug News Perspect. , vol.16 , Issue.1 , pp. 57-62
    • Palmer, A.M.1
  • 94
    • 85047681614 scopus 로고    scopus 로고
    • In vitro models for processes involved in intestinal absorption
    • Nigsch, F.; Klaffke, W.; Miret, S. In vitro models for processes involved in intestinal absorption. Expert. Opin. Drug Met., 2007, 3(4), 545-556.
    • (2007) Expert. Opin. Drug Met. , vol.3 , Issue.4 , pp. 545-556
    • Nigsch, F.1    Klaffke, W.2    Miret, S.3
  • 96
    • 0030886937 scopus 로고    scopus 로고
    • Managing the drug discovery/development interface
    • Kennedy, T. Managing the drug discovery/development interface. DDT., 1997, 2(10), 436-444.
    • (1997) DDT , vol.2 , Issue.10 , pp. 436-444
    • Kennedy, T.1
  • 97
    • 79953290551 scopus 로고    scopus 로고
    • An accurate nonlinear qsar model for the antitumor activities of chloroethylnitrosoureas using neural networks
    • Qin, Y.; Deng, H.; Yan, H.; Zhong, R. An accurate nonlinear qsar model for the antitumor activities of chloroethylnitrosoureas using neural networks. J. Mol. Graph. Model., 2011, 29(6), 826-833.
    • (2011) J. Mol. Graph. Model. , vol.29 , Issue.6 , pp. 826-833
    • Qin, Y.1    Deng, H.2    Yan, H.3    Zhong, R.4
  • 98
    • 77649185953 scopus 로고    scopus 로고
    • Support vector machines: Development of qsar models for predicting anti-hiv-1 activity of tibo derivatives
    • Darnag, R.; Mostapha Mazouz, E.L.; Schmitzer, A.; Villemin, D.; Jarid, A.; Cherqaoui, D. Support vector machines: Development of qsar models for predicting anti-hiv-1 activity of tibo derivatives. Eur. J. Med. Chem., 2010, 45(4), 1590-1597.
    • (2010) Eur. J. Med. Chem. , vol.45 , Issue.4 , pp. 1590-1597
    • Darnag, R.1    Mostapha Mazouz, E.L.2    Schmitzer, A.3    Villemin, D.4    Jarid, A.5    Cherqaoui, D.6
  • 99
    • 0345117343 scopus 로고    scopus 로고
    • Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human udpglucuronosyltransferase isoforms
    • Sorich, M.J.; Miners, J.O.; McKinnon, R.A.; Winkler, D.A.; Burden, F.R.; Smith, P.A. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human udpglucuronosyltransferase isoforms. J. Chem. Inf. Comp. Sci., 2003, 43(6), 2019-2024.
    • (2003) J. Chem. Inf. Comp. Sci. , vol.43 , Issue.6 , pp. 2019-2024
    • Sorich, M.J.1    Miners, J.O.2    McKinnon, R.A.3    Winkler, D.A.4    Burden, F.R.5    Smith, P.A.6
  • 100
    • 78649356495 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of drug-like compounds by using an artificial neural network and leastsquares support vector machine
    • Fatemi, M.H.; Heidari, A.; Ghorbanzade, M. Prediction of aqueous solubility of drug-like compounds by using an artificial neural network and leastsquares support vector machine. Bull. Chem. Soc. Jpn., 2010, 83(11), 1338-1345.
    • (2010) Bull. Chem. Soc. Jpn. , vol.83 , Issue.11 , pp. 1338-1345
    • Fatemi, M.H.1    Heidari, A.2    Ghorbanzade, M.3
  • 101
    • 75849119135 scopus 로고    scopus 로고
    • Qsar study on melanocortin-4 receptors by support vector machine
    • Pourbasheer, E.; Riahi, S.; Ganjali, M.R.; Norouzi, P. Qsar study on melanocortin-4 receptors by support vector machine. Eur. J. Med. Chem., 2010, 45(3), 1087-1093.
    • (2010) Eur. J. Med. Chem. , vol.45 , Issue.3 , pp. 1087-1093
    • Pourbasheer, E.1    Riahi, S.2    Ganjali, M.R.3    Norouzi, P.4
  • 102
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica, 2007, 31(3), 249-268.
    • (2007) Informatica , vol.31 , Issue.3 , pp. 249-268
    • Kotsiantis, S.B.1
  • 103
    • 84860234398 scopus 로고    scopus 로고
    • A support vector machine classification model for benzo[c]phenathridine analogues with topoisomerase-I inhibitory activity
    • Thai, K.; Nguyen, T.; Ngo, T.; Tran, T.; Huynh, T. A Support Vector Machine Classification Model for Benzo[c]phenathridine Analogues with Topoisomerase-I Inhibitory Activity. Molecules, 2012, 17(4), 4560-4582.
    • (2012) Molecules , vol.17 , Issue.4 , pp. 4560-4582
    • Thai, K.1    Nguyen, T.2    Ngo, T.3    Tran, T.4    Huynh, T.5
  • 105
    • 4043071270 scopus 로고    scopus 로고
    • Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression
    • Yao, X.J.; Panaye, A.; Doucet, J.P.; Zhang, R.S.; Chen, H.F.; Liu, M.C.; Hu, Z.D.; Fan, B. T. Comparative Study of QSAR/QSPR Correlations Using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1257-1266.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.4 , pp. 1257-1266
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Zhang, R.S.4    Chen, H.F.5    Liu, M.C.6    Hu, Z.D.7    Fan, B.T.8
  • 106
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem., 2001, 26(1), 5-14.
    • (2001) Comput. Chem. , vol.26 , Issue.1 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 107
    • 34848824629 scopus 로고    scopus 로고
    • Applications of support vector machines in chemistry
    • Lipkowitz, K. B.; Cundari, T. R. Wiley-VCH, John Wiley & Sons, Inc
    • Ivanciuc, O. Applications of Support Vector Machines in Chemistry. In: Lipkowitz, K. B.; Cundari, T. R. Reviews in Computational Chemistry. Wiley-VCH, John Wiley & Sons, Inc. 2007, 23, 291-400.
    • (2007) Reviews in Computational Chemistry , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 108
    • 33947402294 scopus 로고    scopus 로고
    • Clustering of gene expression data: Performance and similarity analysis
    • Yin, L.; Huang, C.H.; Ni, J. Clustering of gene expression data: Performance and similarity analysis. BMC Bioinformatics, 2006, 7(4), S19.
    • (2006) BMC Bioinformatics , vol.7 , Issue.4
    • Yin, L.1    Huang, C.H.2    Ni, J.3
  • 109
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • Schneider, G.; Wrede, P. Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol., 1998, 70(3), 175-222.
    • (1998) Prog. Biophys. Mol. Biol. , vol.70 , Issue.3 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 110
    • 0030741254 scopus 로고    scopus 로고
    • Artificial neural network based in vitro-in vivo correlations
    • Hussain, A.S. Artificial neural network based in vitro-in vivo correlations. Adv. Exp. Med. Biol., 1997, 423, 149-58.
    • (1997) Adv. Exp. Med. Biol. , vol.423 , pp. 149-158
    • Hussain, A.S.1
  • 111
    • 11244335581 scopus 로고    scopus 로고
    • Neural networks in ADME and toxicity prediction
    • Winkler, D.A. Neural networks in ADME and toxicity prediction. Drug Future, 2004, 29(10), 1043-1057.
    • (2004) Drug Future , vol.29 , Issue.10 , pp. 1043-1057
    • Winkler, D.A.1
  • 115
    • 33846487854 scopus 로고    scopus 로고
    • Advances in virtual screening
    • Muegge, I.; Oloff, S. Advances in virtual screening. DDT., 2006, 3(4), 405-411.
    • (2006) DDT , vol.3 , Issue.4 , pp. 405-411
    • Muegge, I.1    Oloff, S.2
  • 116
    • 67349104587 scopus 로고    scopus 로고
    • Targeted scoring functions for virtual screening
    • Seifert, M.H.J. Targeted scoring functions for virtual screening. DDT., 2009, 14(11-12), 562-569.
    • (2009) DDT , vol.14 , Issue.11-12 , pp. 562-569
    • Seifert, M.H.J.1
  • 117
    • 28544437675 scopus 로고    scopus 로고
    • Application of validated qsar models of d1 dopaminergic antagonists for database mining
    • Oloff, S.; Mailman, R.B.; Tropsha, A. Application of validated qsar models of d1 dopaminergic antagonists for database mining. J. Med. Chem., 2005, 48(23), 7322-7332.
    • (2005) J. Med. Chem. , vol.48 , Issue.23 , pp. 7322-7332
    • Oloff, S.1    Mailman, R.B.2    Tropsha, A.3
  • 118
    • 80052150096 scopus 로고    scopus 로고
    • Insilco qsar modeling and drug development process
    • Mishra, P.; Tripathi, V.; Yadav, B.S. Insilco qsar modeling and drug development process. GERF Bull. Biosci., 2010, 1(1), 37-40.
    • (2010) GERF Bull. Biosci. , vol.1 , Issue.1 , pp. 37-40
    • Mishra, P.1    Tripathi, V.2    Yadav, B.S.3
  • 119
    • 11144354205 scopus 로고    scopus 로고
    • Application of predictive qsar models to database mining: Identification and experimental validation of novel anticonvulsant compounds
    • Shen, M.; Béguin, C.; Golbraikh, A.; Stables, J.P.; Kohn, H.; Tropsha, A. Application of predictive qsar models to database mining: identification and experimental validation of novel anticonvulsant compounds. J. Med. Chem., 2004, 47(9), 2356-2364.
    • (2004) J. Med. Chem. , vol.47 , Issue.9 , pp. 2356-2364
    • Shen, M.1    Béguin, C.2    Golbraikh, A.3    Stables, J.P.4    Kohn, H.5    Tropsha, A.6
  • 120
    • 18244370519 scopus 로고    scopus 로고
    • Successful in silico discovery of novel nonsteroidal ligands for human sex hormone binding globulin
    • Cherkasov, A.; Shi, Z.; Fallahi, M.; Hammond, G.L. Successful in silico discovery of novel nonsteroidal ligands for human sex hormone binding globulin. J. Med. Chem., 2005, 48(9), 3203-3213.
    • (2005) J. Med. Chem. , vol.48 , Issue.9 , pp. 3203-3213
    • Cherkasov, A.1    Shi, Z.2    Fallahi, M.3    Hammond, G.L.4
  • 123
    • 28944447255 scopus 로고    scopus 로고
    • A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors
    • Hu, L.; Chen, G.; Chau, R.M.W. A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors. J. Mol. Graph. Model., 2006, 24(4), 244-253.
    • (2006) J. Mol. Graph. Model. , vol.24 , Issue.4 , pp. 244-253
    • Hu, L.1    Chen, G.2    Chau, R.M.W.3
  • 124
    • 79151478389 scopus 로고    scopus 로고
    • Ligand -based virtual screening procedure for the prediction and the identification of novel -amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks
    • Afantitis, A.; Melagraki, G.; Koutentis, P.A.; Sarimveis, H.; Kollias, G. Ligand -based virtual screening procedure for the prediction and the identification of novel -amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks. Eur. J. Med. Chem., 2011, 46(2), 497-508.
    • (2011) Eur. J. Med. Chem. , vol.46 , Issue.2 , pp. 497-508
    • Afantitis, A.1    Melagraki, G.2    Koutentis, P.A.3    Sarimveis, H.4    Kollias, G.5
  • 125
    • 67749130920 scopus 로고    scopus 로고
    • Synergism of virtual screening and medicinal chemistry: Identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1
    • Noeske, T.; Trifanova, D.; Kauss, V.; Renner, S.; Parsons, C.G.; Schneider, G.; Weil, T. Synergism of virtual screening and medicinal chemistry: Identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. Bioorg. Med. Chem., 2009, 17(15), 5708-5715.
    • (2009) Bioorg. Med. Chem. , vol.17 , Issue.15 , pp. 5708-5715
    • Noeske, T.1    Trifanova, D.2    Kauss, V.3    Renner, S.4    Parsons, C.G.5    Schneider, G.6    Weil, T.7
  • 126
    • 0141563645 scopus 로고    scopus 로고
    • Ligand-based combinatorial design of selective purinergic receptor (a2a) antagonists using self-organizing maps
    • Schneider, G.; Nettekoven, M. Ligand-based combinatorial design of selective purinergic receptor (a2a) antagonists using self-organizing maps. J. Comb. Chem., 2003, 5(3), 233-237.
    • (2003) J. Comb. Chem. , vol.5 , Issue.3 , pp. 233-237
    • Schneider, G.1    Nettekoven, M.2
  • 127
    • 80054751602 scopus 로고    scopus 로고
    • One-class classification as a novel method of ligand-based virtual screening: The case of glycogen synthase kinase 3-inhibitors
    • Karpov, P.V.; Osolodkin, D.I.; Baskin, I.I.; Palyulin, V.A.; Zefirov, N.S. One-class classification as a novel method of ligand-based virtual screening: The case of glycogen synthase kinase 3-inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(22), 6728-6731.
    • (2011) Bioorg. Med. Chem. Lett. , vol.21 , Issue.22 , pp. 6728-6731
    • Karpov, P.V.1    Osolodkin, D.I.2    Baskin, I.I.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 128
    • 0037059925 scopus 로고    scopus 로고
    • A neural network based virtual screening of cytochrome p450 3a4 inhibitors
    • Molnar, L.; Keseru, G.M. A neural network based virtual screening of cytochrome p450 3a4 inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(3), 419-421.
    • (2002) Bioorg. Med. Chem. Lett. , vol.12 , Issue.3 , pp. 419-421
    • Molnar, L.1    Keseru, G.M.2
  • 129
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Jorissen, R.N.; Gilson, M.K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model., 2005, 45(3), 549-561.
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.3 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 130
    • 33745420796 scopus 로고    scopus 로고
    • Assessing different classification methods for virtual screening
    • Plewczynski, D.; Spieser, S.A.; Koch, U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model., 2006, 46(3), 1098-1106.
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.3 , pp. 1098-1106
    • Plewczynski, D.1    Spieser, S.A.2    Koch, U.3
  • 131
    • 12344276385 scopus 로고    scopus 로고
    • Using artificial neural networks to drive virtual screening of combinatorial libraries
    • Lobanov, V. Using artificial neural networks to drive virtual screening of combinatorial libraries. DDT., 2004, 2(4), 149-156.
    • (2004) DDT , vol.2 , Issue.4 , pp. 149-156
    • Lobanov, V.1
  • 132
    • 0037364162 scopus 로고    scopus 로고
    • Admet in silico modelling: Towards prediction paradise?
    • van de Waterbeemd, H.; Gifford, E. Admet in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
    • (2003) Nat. Rev. Drug Discov. , vol.2 , Issue.3 , pp. 192-204
    • Van De Waterbeemd, H.1    Gifford, E.2
  • 133
    • 10844227564 scopus 로고    scopus 로고
    • The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development
    • Walker, D.K. The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development. Brit. J. Clin. Pharmaco., 2004, 58(6), 601-608.
    • (2004) Brit. J. Clin. Pharmaco. , vol.58 , Issue.6 , pp. 601-608
    • Walker, D.K.1
  • 134
    • 0038255018 scopus 로고    scopus 로고
    • Chemoinformatics and drug discovery
    • Xu, J.; Hagler, A. Chemoinformatics and drug discovery. Molecules, 2002, 7(8), 566-600.
    • (2002) Molecules , vol.7 , Issue.8 , pp. 566-600
    • Xu, J.1    Hagler, A.2
  • 135
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 136
    • 1142309574 scopus 로고    scopus 로고
    • A neural network for predicting the stability of RNA/DNA hybrid duplexes
    • Ma, L.; Cheng, C.; Liu, X.; Zhao, Y.; Wang, A.; Herdewijn, P. A neural network for predicting the stability of RNA/DNA hybrid duplexes. Chem. Int. Lab. Sys., 2004, 70(2), 123-128.
    • (2004) Chem. Int. Lab. Sys. , vol.70 , Issue.2 , pp. 123-128
    • Ma, L.1    Cheng, C.2    Liu, X.3    Zhao, Y.4    Wang, A.5    Herdewijn, P.6
  • 137
    • 2342565108 scopus 로고    scopus 로고
    • Prediction of biological targets using probabilistic neural networks and atom-type descriptors
    • Niwa, T. Prediction of Biological Targets Using Probabilistic Neural Networks and Atom-Type Descriptors. J. Med. Chem., 2004, 47(10), 2645-2650.
    • (2004) J. Med. Chem. , vol.47 , Issue.10 , pp. 2645-2650
    • Niwa, T.1
  • 138
    • 0043235835 scopus 로고    scopus 로고
    • Prediction of physicochemical properties based on neural network modelling
    • Taskinen, J.; Yliruusi, J. Prediction of physicochemical properties based on neural network modelling. Adv. Drug Deliv. Rev., 2003, 55(9), 1163-1183.
    • (2003) Adv. Drug Deliv. Rev. , vol.55 , Issue.9 , pp. 1163-1183
    • Taskinen, J.1    Yliruusi, J.2
  • 139
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • Niculescu, S.P. Artificial neural networks and genetic algorithms in QSAR. J. Mol. Struct. THEOCHEM, 2003, 622(1-2), 71-83.
    • (2003) J. Mol. Struct. THEOCHEM , vol.622 , Issue.1-2 , pp. 71-83
    • Niculescu, S.P.1
  • 141
    • 28044462192 scopus 로고    scopus 로고
    • Predicting the antihypertensive effect of nitrendipine from plasma concentration profiles using artificial neural networks
    • Belic, A.; Grabnar, I.; Belic, I.; Karba, R.; Mrhar, A. Predicting the antihypertensive effect of nitrendipine from plasma concentration profiles using artificial neural networks. Comput. Biol. Med., 2005, 35(10), 892-904.
    • (2005) Comput. Biol. Med. , vol.35 , Issue.10 , pp. 892-904
    • Belic, A.1    Grabnar, I.2    Belic, I.3    Karba, R.4    Mrhar, A.5
  • 142
    • 72049089038 scopus 로고    scopus 로고
    • A tentative quantitative structuretoxicity relationship study of benzodiazepine drugs
    • Funar-Timofei, S.; Ionescu, D.; Suzuki, T. A tentative quantitative structuretoxicity relationship study of benzodiazepine drugs. Toxicol. In Vitro, 2010, 24(1), 184-200.
    • (2010) Toxicol. in Vitro , vol.24 , Issue.1 , pp. 184-200
    • Funar-Timofei, S.1    Ionescu, D.2    Suzuki, T.3
  • 143
    • 44149114693 scopus 로고    scopus 로고
    • Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shufflingadaptive neuro fuzzy inference system and artificial neural networks
    • Jalali-Heravi, M.; Kyani, A. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shufflingadaptive neuro fuzzy inference system and artificial neural networks. Chemosphere, 2008, 72(5), 733-740.
    • (2008) Chemosphere , vol.72 , Issue.5 , pp. 733-740
    • Jalali-Heravi, M.1    Kyani, A.2
  • 144
    • 0037289638 scopus 로고    scopus 로고
    • Qsar modeling with the electrotopological state indices: Predicting the toxicity of organic chemicals
    • Huuskonen, J. Qsar modeling with the electrotopological state indices: predicting the toxicity of organic chemicals. Chemosphere, 2003, 50(7), 949-953.
    • (2003) Chemosphere , vol.50 , Issue.7 , pp. 949-953
    • Huuskonen, J.1
  • 146
    • 84866677810 scopus 로고    scopus 로고
    • Quantitative structure pharmacokinetic relationship using artificial neural network: A review
    • Singh, S.K.; Saini, S.; Verma B.; Mishra, D.N. Quantitative structure pharmacokinetic relationship using artificial neural network: A review. IJPSDR., 2009, 1(3), 144-153.
    • (2009) IJPSDR , vol.1 , Issue.3 , pp. 144-153
    • Singh, S.K.1    Saini, S.2    Verma, B.3    Mishra, D.N.4
  • 147
    • 78649522324 scopus 로고    scopus 로고
    • Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counterpropagation artificial neural networks
    • Stojic, N.; Eric, S.; Kuzmanovski, I. Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counterpropagation artificial neural networks. J. Mol. Graph. Model., 2010, 29(3), 450-460.
    • (2010) J. Mol. Graph. Model. , vol.29 , Issue.3 , pp. 450-460
    • Stojic, N.1    Eric, S.2    Kuzmanovski, I.3
  • 148
    • 16544393180 scopus 로고    scopus 로고
    • Neural networks as robust tools in drug lead discovery and development
    • Winkler, D. Neural networks as robust tools in drug lead discovery and development. Mol. Biotechnol., 2004, 27(2), 139-167.
    • (2004) Mol. Biotechnol. , vol.27 , Issue.2 , pp. 139-167
    • Winkler, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.