메뉴 건너뛰기




Volumn 117, Issue 2, 2014, Pages 51-60

Drug/nondrug classification using Support Vector Machines with various feature selection strategies

Author keywords

Drug discovery; Feature selection; Machine learning; Molecular descriptors; Support vector machines

Indexed keywords

CORRELATION METHODS; DATA HANDLING; FEATURE EXTRACTION; LEARNING SYSTEMS; MOLECULES;

EID: 84907969343     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2014.08.009     Document Type: Article
Times cited : (75)

References (95)
  • 2
    • 46749095500 scopus 로고    scopus 로고
    • From virtuality to reality - virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective
    • Rester U. From virtuality to reality - virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel. 2008, 11:559-568.
    • (2008) Curr. Opin. Drug Discov. Devel. , vol.11 , pp. 559-568
    • Rester, U.1
  • 4
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov E., et al. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 2003, 43:1882-1889.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1882-1889
    • Byvatov, E.1
  • 5
    • 33947245022 scopus 로고    scopus 로고
    • Evaluation of machine-learning methods for ligand-based virtual screening
    • Chen B., et al. Evaluation of machine-learning methods for ligand-based virtual screening. J. Comput. Aided Mol. Des. 2007, 21:53-62.
    • (2007) J. Comput. Aided Mol. Des. , vol.21 , pp. 53-62
    • Chen, B.1
  • 6
    • 84865457697 scopus 로고    scopus 로고
    • DrugLogit: logistic discrimination between drugs and nondrugs including disease-specificity by assigning probabilities based on molecular properties
    • García-Sosa A.T., et al. DrugLogit: logistic discrimination between drugs and nondrugs including disease-specificity by assigning probabilities based on molecular properties. J. Chem. Inf. Model. 2012, 52:2165-2180.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2165-2180
    • García-Sosa, A.T.1
  • 7
    • 0035289779 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski C.A., et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46:3-26.
    • (2001) Adv. Drug Deliv. Rev. , vol.46 , pp. 3-26
    • Lipinski, C.A.1
  • 8
    • 34247245174 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?
    • Hou T., et al. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?. J. Chem. Inf. Model. 2007, 47:460-463.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 460-463
    • Hou, T.1
  • 9
    • 33846855555 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification
    • Hou T., et al. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J. Chem. Inf. Model. 2007, 47:208-218.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 208-218
    • Hou, T.1
  • 10
    • 79958266864 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints
    • Tian S., et al. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm. 2011, 8:841-851.
    • (2011) Mol. Pharm. , vol.8 , pp. 841-851
    • Tian, S.1
  • 11
    • 0032572819 scopus 로고    scopus 로고
    • Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
    • Ajay A., Walters W.P., Murcko M.A. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?. J. Med. Chem. 1998, 41:3314-3324.
    • (1998) J. Med. Chem. , vol.41 , pp. 3314-3324
    • Ajay, A.1    Walters, W.P.2    Murcko, M.A.3
  • 12
    • 0032572816 scopus 로고    scopus 로고
    • A scoring scheme for discriminating between drugs and nondrugs
    • Sadowski J., Kubinyi H. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 1998, 41:3325-3329.
    • (1998) J. Med. Chem. , vol.41 , pp. 3325-3329
    • Sadowski, J.1    Kubinyi, H.2
  • 13
    • 0033981358 scopus 로고    scopus 로고
    • Computational methods for the prediction of 'drug-likeness'
    • Clark D.E., Pickett S.D. Computational methods for the prediction of 'drug-likeness'. Drug Discov. Today 2000, 5:49-58.
    • (2000) Drug Discov. Today , vol.5 , pp. 49-58
    • Clark, D.E.1    Pickett, S.D.2
  • 14
    • 0242558534 scopus 로고    scopus 로고
    • Ajay Predicting drug-likeness: why and how?
    • Ajay Predicting drug-likeness: why and how?. Curr. Top. Med. Chem. 2002, 2:1273-1286.
    • (2002) Curr. Top. Med. Chem. , vol.2 , pp. 1273-1286
  • 15
    • 0037404468 scopus 로고    scopus 로고
    • Selection criteria for drug-like compounds
    • Muegge I. Selection criteria for drug-like compounds. Med. Res. Rev. 2003, 23:302-321.
    • (2003) Med. Res. Rev. , vol.23 , pp. 302-321
    • Muegge, I.1
  • 16
    • 84872081711 scopus 로고    scopus 로고
    • Drug-likeness analysis of traditional Chinese medicines: 1. Property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines
    • Shen M., et al. Drug-likeness analysis of traditional Chinese medicines: 1. Property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J. Cheminform. 2012, 4:31.
    • (2012) J. Cheminform. , vol.4 , pp. 31
    • Shen, M.1
  • 17
    • 84870177359 scopus 로고    scopus 로고
    • Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches
    • Tian S., et al. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol. Pharmacol. 2012, 9:2875-2886.
    • (2012) Mol. Pharmacol. , vol.9 , pp. 2875-2886
    • Tian, S.1
  • 18
    • 84876731496 scopus 로고    scopus 로고
    • Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines
    • Tian S., et al. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines. J. Cheminform. 2013, 5:5.
    • (2013) J. Cheminform. , vol.5 , pp. 5
    • Tian, S.1
  • 19
    • 0035438391 scopus 로고    scopus 로고
    • Is there a difference between leads and drugs? A historical perspective
    • Oprea T.I., et al. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 2001, 41:1308-1315.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1308-1315
    • Oprea, T.I.1
  • 20
    • 70350409235 scopus 로고    scopus 로고
    • The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design?
    • Ritchie T.J., Macdonald S.J.F. The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design?. Drug Discov. Today 2009, 14:1011-1020.
    • (2009) Drug Discov. Today , vol.14 , pp. 1011-1020
    • Ritchie, T.J.1    Macdonald, S.J.F.2
  • 21
    • 78650699097 scopus 로고    scopus 로고
    • Molecular topology analysis of the differences between drugs, clinical candidate compounds, and bioactive molecules
    • Chen H., Yang Y., Engkvist O. Molecular topology analysis of the differences between drugs, clinical candidate compounds, and bioactive molecules. J. Chem. Inf. Model. 2010, 50:2141-2150.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 2141-2150
    • Chen, H.1    Yang, Y.2    Engkvist, O.3
  • 22
    • 0029894013 scopus 로고    scopus 로고
    • The properties of known drugs. 1. Molecular frameworks
    • Bemis G.W., Murcko M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39:2887-2893.
    • (1996) J. Med. Chem. , vol.39 , pp. 2887-2893
    • Bemis, G.W.1    Murcko, M.A.2
  • 23
    • 78149236457 scopus 로고    scopus 로고
    • Investigation of the relationship between topology and selectivity for druglike molecules
    • Yang Y., et al. Investigation of the relationship between topology and selectivity for druglike molecules. J. Med. Chem. 2010, 53:7709-7714.
    • (2010) J. Med. Chem. , vol.53 , pp. 7709-7714
    • Yang, Y.1
  • 24
    • 0032015361 scopus 로고    scopus 로고
    • Identification of biological activity profiles using substructural analysis and genetic algorithms
    • Gillet V.J., Willett P., Bradshaw J. Identification of biological activity profiles using substructural analysis and genetic algorithms. J. Chem. Inf. Comput. Sci. 1998, 38:165-179.
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 165-179
    • Gillet, V.J.1    Willett, P.2    Bradshaw, J.3
  • 26
    • 34547678010 scopus 로고    scopus 로고
    • Mining of randomly generated molecular fragment populations uncovers activity-specific fragment hierarchies
    • Batista J., Bajorath J. Mining of randomly generated molecular fragment populations uncovers activity-specific fragment hierarchies. J. Chem. Inf. Model. 2007, 47:1405-1413.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 1405-1413
    • Batista, J.1    Bajorath, J.2
  • 27
    • 75749154412 scopus 로고    scopus 로고
    • Scaffold distributions in bioactive molecules, clinical trials compounds, and drugs
    • Hu Y., Bajorath J. Scaffold distributions in bioactive molecules, clinical trials compounds, and drugs. Chem. Med. Chem. 2010, 5:187-190.
    • (2010) Chem. Med. Chem. , vol.5 , pp. 187-190
    • Hu, Y.1    Bajorath, J.2
  • 28
    • 84655176137 scopus 로고    scopus 로고
    • Understanding drug-likeness
    • Ursu O., et al. Understanding drug-likeness. WIREs Comput. Mol. Sci. 2011, 1:760-781.
    • (2011) WIREs Comput. Mol. Sci. , vol.1 , pp. 760-781
    • Ursu, O.1
  • 29
  • 30
    • 75749105013 scopus 로고    scopus 로고
    • Drug and drug candidate building block analysis
    • Wang J., Hou T. Drug and drug candidate building block analysis. J. Chem. Inf. Model. 2010, 50:55-67.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 55-67
    • Wang, J.1    Hou, T.2
  • 31
    • 42149109229 scopus 로고    scopus 로고
    • Gradual in silico filtering for druglike substances
    • Schneider N., et al. Gradual in silico filtering for druglike substances. J. Chem. Inf. Model. 2008, 48:613-628.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 613-628
    • Schneider, N.1
  • 34
    • 23844458045 scopus 로고    scopus 로고
    • Graph kernels for molecular structure-activity relationship analysis with support vector machines
    • Mahé P., et al. Graph kernels for molecular structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model. 2005, 45:939-951.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 939-951
    • Mahé, P.1
  • 35
    • 23844480138 scopus 로고    scopus 로고
    • Graph kernels for chemical informatics
    • Ralaivola L., et al. Graph kernels for chemical informatics. Neural Netw. 2005, 18:1093-1110.
    • (2005) Neural Netw. , vol.18 , pp. 1093-1110
    • Ralaivola, L.1
  • 36
    • 33750294461 scopus 로고    scopus 로고
    • The pharmacophore kernel for virtual screening with support vector machines
    • Mahé P., et al. The pharmacophore kernel for virtual screening with support vector machines. J. Chem. Inf. Model. 2006, 46:2003-2014.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2003-2014
    • Mahé, P.1
  • 37
    • 54249156505 scopus 로고    scopus 로고
    • Molecule kernels: a descriptor-and alignment-free quantitative structure-activity relationship approach
    • Mohr J.A., Jain B.J., Obermayer K. Molecule kernels: a descriptor-and alignment-free quantitative structure-activity relationship approach. J. Chem. Inf. Model. 2008, 48:1868-1881.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1868-1881
    • Mohr, J.A.1    Jain, B.J.2    Obermayer, K.3
  • 38
    • 34250813174 scopus 로고    scopus 로고
    • One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
    • Azencott C.A., et al. One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J. Chem. Inf. Model. 2007, 47:965-974.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 965-974
    • Azencott, C.A.1
  • 39
    • 33646251586 scopus 로고    scopus 로고
    • Collaborative filtering on a family of biological targets
    • Erhan D., et al. Collaborative filtering on a family of biological targets. J. Chem. Inf. Model. 2006, 46:626-635.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 626-635
    • Erhan, D.1
  • 40
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: an improved chemogenomics approach
    • Jacob L., Vert J.P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 2008, 24:2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 41
    • 79960721268 scopus 로고    scopus 로고
    • Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel
    • Meslamani J., Rognan D. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. J. Chem. Inf. Model. 2011, 51:1593-1603.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1593-1603
    • Meslamani, J.1    Rognan, D.2
  • 42
    • 78650095648 scopus 로고    scopus 로고
    • Potency-directed similarity searching using support vector machines
    • Wassermann A.M., Heikamp K., Bajorath J. Potency-directed similarity searching using support vector machines. Chem. Biol. Drug Des. 2011, 77:30-38.
    • (2011) Chem. Biol. Drug Des. , vol.77 , pp. 30-38
    • Wassermann, A.M.1    Heikamp, K.2    Bajorath, J.3
  • 43
    • 84866700901 scopus 로고    scopus 로고
    • Prediction of activity cliffs using support vector machines
    • Heikamp K., et al. Prediction of activity cliffs using support vector machines. J. Chem. Inf. Model. 2012, 52:2354-2365.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2354-2365
    • Heikamp, K.1
  • 44
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Jorissen R.N., Gilson M.K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model. 2005, 45:549-561.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 45
    • 66149099982 scopus 로고    scopus 로고
    • SVM model for virtual screening of Lck inhibitors
    • Liew C.Y., et al. SVM model for virtual screening of Lck inhibitors. J. Chem. Inf. Model. 2009, 49:877-885.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 877-885
    • Liew, C.Y.1
  • 46
    • 75849120416 scopus 로고    scopus 로고
    • Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
    • Lv W., Xue Y. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Eur. J. Med. Chem. 2010, 45:1167-1172.
    • (2010) Eur. J. Med. Chem. , vol.45 , pp. 1167-1172
    • Lv, W.1    Xue, Y.2
  • 47
    • 80054909003 scopus 로고    scopus 로고
    • Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data
    • Sun H., et al. Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data. J. Chem. Inf. Model. 2011, 51:2474-2481.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2474-2481
    • Sun, H.1
  • 48
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: a new machine learning approach
    • Agarwal S., Dugar D., Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model. 2010, 50:716-731.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupta, S.3
  • 49
    • 79952593481 scopus 로고    scopus 로고
    • StructRank: a new approach for ligand-based virtual screening
    • Rathke F., et al. StructRank: a new approach for ligand-based virtual screening. J. Chem. Inf. Model. 2010, 51:83-92.
    • (2010) J. Chem. Inf. Model. , vol.51 , pp. 83-92
    • Rathke, F.1
  • 50
    • 84864185732 scopus 로고    scopus 로고
    • Structure based model for the prediction of phospholipidosis induction potential of small molecules
    • Sun H., et al. Structure based model for the prediction of phospholipidosis induction potential of small molecules. J. Chem. Inf. Model. 2012, 52:1798-1805.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1798-1805
    • Sun, H.1
  • 51
    • 54249154267 scopus 로고    scopus 로고
    • Predicting kinase selectivity profiles using free-Wilson QSAR analysis
    • Sciabola S., et al. Predicting kinase selectivity profiles using free-Wilson QSAR analysis. J. Chem. Inf. Model. 2008, 48:1851-1867.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1851-1867
    • Sciabola, S.1
  • 52
    • 84879570665 scopus 로고    scopus 로고
    • Beyond the scope of free-Wilson analysis: building interpretable QSAR models with machine learning algorithms
    • Chen H., et al. Beyond the scope of free-Wilson analysis: building interpretable QSAR models with machine learning algorithms. J. Chem. Inf. Model. 2013, 53:1324-1336.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1324-1336
    • Chen, H.1
  • 53
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: an in silico chemogenomics approach
    • Jacob L., et al. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC Bioinform. 2008, 9:363-379.
    • (2008) BMC Bioinform. , vol.9 , pp. 363-379
    • Jacob, L.1
  • 54
    • 80155156908 scopus 로고    scopus 로고
    • Kernel-based data fusion improves the drug-protein interaction prediction
    • Wang Y.C., et al. Kernel-based data fusion improves the drug-protein interaction prediction. Comput. Biol. Chem. 2011, 35:53-362.
    • (2011) Comput. Biol. Chem. , vol.35 , pp. 53-362
    • Wang, Y.C.1
  • 55
    • 82355168473 scopus 로고    scopus 로고
    • Computational screening for active compounds targeting protein sequences: methodology and experimental validation
    • Wang F., et al. Computational screening for active compounds targeting protein sequences: methodology and experimental validation. J. Chem. Inf. Model. 2011, 51:2821-2828.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2821-2828
    • Wang, F.1
  • 56
    • 70350495651 scopus 로고    scopus 로고
    • Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
    • Wassermann A.M., Geppert H., Bajorath J. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J. Chem. Inf. Model. 2009, 49:2155-2167.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2155-2167
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 57
    • 66149090260 scopus 로고    scopus 로고
    • Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
    • Geppert H., et al. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J. Chem. Inf. Model. 2009, 49:767-779.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 767-779
    • Geppert, H.1
  • 58
    • 0344254815 scopus 로고    scopus 로고
    • Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
    • Zernov V.V., et al. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J. Chem. Inf. Comput. Sci. 2003, 43:2048-2056.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2048-2056
    • Zernov, V.V.1
  • 59
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann A.M., Geppert H., Bajorath J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model. 2009, 49:582-592.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 60
    • 73349125784 scopus 로고    scopus 로고
    • Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study
    • Michielan L., et al. Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study. J. Chem. Inf. Model. 2009, 49:2820-2836.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2820-2836
    • Michielan, L.1
  • 61
    • 84876577793 scopus 로고    scopus 로고
    • Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations
    • Heikamp K., Bajorath J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J. Chem. Inf. Model. 2013, 53:791-801.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 791-801
    • Heikamp, K.1    Bajorath, J.2
  • 62
    • 47349113899 scopus 로고    scopus 로고
    • Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines
    • Kawai K., Fujishima S., Takahashi Y. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. J. Chem. Inf. Model. 2008, 48:1152-1160.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1152-1160
    • Kawai, K.1    Fujishima, S.2    Takahashi, Y.3
  • 63
    • 58149099516 scopus 로고    scopus 로고
    • In silico functional profiling of small molecules and its applications
    • Sato T., et al. In silico functional profiling of small molecules and its applications. J. Med. Chem. 2008, 51:7705-7716.
    • (2008) J. Med. Chem. , vol.51 , pp. 7705-7716
    • Sato, T.1
  • 64
    • 0345548663 scopus 로고    scopus 로고
    • Support vector machines for the estimation of aqueous solubility
    • Lind P., Maltseva T. Support vector machines for the estimation of aqueous solubility. J. Chem. Inf. Comput. Sci. 2003, 43:1855-1859.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1855-1859
    • Lind, P.1    Maltseva, T.2
  • 65
    • 79952229990 scopus 로고    scopus 로고
    • Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
    • Cheng T., et al. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J. Chem. Inf. Model. 2011, 51:229-236.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 229-236
    • Cheng, T.1
  • 66
    • 77954068708 scopus 로고    scopus 로고
    • Estimation of ADME properties with substructure pattern recognition
    • Shen J., et al. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf. Model. 2010, 50:1034-1041.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1034-1041
    • Shen, J.1
  • 67
    • 37249042636 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine
    • Hou T., Wang J., Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model. 2007, 47:2408-2415.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 2408-2415
    • Hou, T.1    Wang, J.2    Li, Y.3
  • 68
    • 84878744355 scopus 로고    scopus 로고
    • A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine
    • Kumar R., Sharma A., Varadwaj P.K. A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J. Nat. Sci. Biol. Med. 2011, 2:168-173.
    • (2011) J. Nat. Sci. Biol. Med. , vol.2 , pp. 168-173
    • Kumar, R.1    Sharma, A.2    Varadwaj, P.K.3
  • 69
    • 33845772315 scopus 로고    scopus 로고
    • Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
    • Bhavani S., et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs. J. Chem. Inf. Model. 2006, 46:2478-2486.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2478-2486
    • Bhavani, S.1
  • 70
    • 82655172584 scopus 로고    scopus 로고
    • Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method
    • Zhang H., et al. Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol. In Vitro 2011, 25:1848-1854.
    • (2011) Toxicol. In Vitro , vol.25 , pp. 1848-1854
    • Zhang, H.1
  • 71
    • 84862922236 scopus 로고    scopus 로고
    • In silico models to discriminate compounds inducing and noninducing toxic myopathy
    • Hu X., Yan A. In silico models to discriminate compounds inducing and noninducing toxic myopathy. Mol. Inf. 2012, 31:27-39.
    • (2012) Mol. Inf. , vol.31 , pp. 27-39
    • Hu, X.1    Yan, A.2
  • 72
    • 84862843449 scopus 로고    scopus 로고
    • Predictive toxicology modeling: protocols for exploring hERG classification and tetrahymenapyriformis end point predictions
    • Su B.H., et al. Predictive toxicology modeling: protocols for exploring hERG classification and tetrahymenapyriformis end point predictions. J. Chem. Inf. Model. 2012, 52:1660-1673.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1660-1673
    • Su, B.H.1
  • 73
    • 84878176071 scopus 로고    scopus 로고
    • Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures
    • Ding B., Li N., Wang W. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. J. Chem. Inf. Model. 2013, 53:1213-1222.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1213-1222
    • Ding, B.1    Li, N.2    Wang, W.3
  • 74
    • 77954054048 scopus 로고    scopus 로고
    • Assessing synthetic accessibility of chemical compounds using machine learning methods
    • Podolyan Y., Walters M.A., Karypis G. Assessing synthetic accessibility of chemical compounds using machine learning methods. J. Chem. Inf. Model. 2010, 50:979-991.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 979-991
    • Podolyan, Y.1    Walters, M.A.2    Karypis, G.3
  • 75
    • 18344381621 scopus 로고    scopus 로고
    • Classifying 'drug-likeness' with kernel-based learning methods
    • Müller K.R., et al. Classifying 'drug-likeness' with kernel-based learning methods. J. Chem. Inf. Model. 2005, 45:249-253.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 249-253
    • Müller, K.R.1
  • 76
    • 46749128531 scopus 로고    scopus 로고
    • New predictive models for blood-brain barrier permeability of drug-like molecules
    • Kortagere S., et al. New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm. Res. 2008, 25:1836-1845.
    • (2008) Pharm. Res. , vol.25 , pp. 1836-1845
    • Kortagere, S.1
  • 77
    • 84857531280 scopus 로고    scopus 로고
    • Combining global and local measures for structure-based druggability predictions
    • Volkamer A., et al. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 2012, 52:360-372.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 360-372
    • Volkamer, A.1
  • 78
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
    • Li L., Wang B., Meroueh S.O. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J. Chem. Inf. Model. 2011, 51:2132-2138.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 79
    • 84875428269 scopus 로고    scopus 로고
    • ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
    • Li G.B., et al. ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 2013, 53:592-600.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 592-600
    • Li, G.B.1
  • 80
    • 66149146342 scopus 로고    scopus 로고
    • Characterization of domain-peptide interaction interface a generic structure-based model to decipher the binding specificity of SH3 domains
    • Hou T., et al. Characterization of domain-peptide interaction interface a generic structure-based model to decipher the binding specificity of SH3 domains. Mol. Cell. Proteomics 2009, 8:639-649.
    • (2009) Mol. Cell. Proteomics , vol.8 , pp. 639-649
    • Hou, T.1
  • 81
    • 84860635411 scopus 로고    scopus 로고
    • Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models
    • Hou T., et al. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J. Proteome Res. 2012, 11:2982-2995.
    • (2012) J. Proteome Res. , vol.11 , pp. 2982-2995
    • Hou, T.1
  • 83
    • 84887493813 scopus 로고    scopus 로고
    • Bagging support vector machines for leukemia classification
    • Zararsiz G., Elmali F., Ozturk A. Bagging support vector machines for leukemia classification. Int. J. Comput. Sci. Issues 2012, 9:355-358.
    • (2012) Int. J. Comput. Sci. Issues , vol.9 , pp. 355-358
    • Zararsiz, G.1    Elmali, F.2    Ozturk, A.3
  • 84
    • 34249753618 scopus 로고
    • Support vector network
    • Cortes C., Vapnik V. Support vector network. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 86
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., et al. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 88
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 90
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: an update
    • Hall M., et al. The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 2009, 11:10-18.
    • (2009) ACM SIGKDD Explor. Newsl. , vol.11 , pp. 10-18
    • Hall, M.1
  • 91
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue Y., et al. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci. 2004, 44:1630-1638.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1630-1638
    • Xue, Y.1
  • 92
    • 26944502743 scopus 로고    scopus 로고
    • Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
    • Li H., et al. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model. 2005, 45:1376-1384.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1376-1384
    • Li, H.1
  • 93
    • 0037030653 scopus 로고    scopus 로고
    • Molecular properties that influence the oral bioavailability of drug candidates
    • Veber D.F., et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45:2615-2623.
    • (2002) J. Med. Chem. , vol.45 , pp. 2615-2623
    • Veber, D.F.1
  • 94
    • 66849113847 scopus 로고    scopus 로고
    • Recent developments of in silico predictions of intestinal absorption and oral bioavailability
    • Hou T.J., et al. Recent developments of in silico predictions of intestinal absorption and oral bioavailability. Comb. Chem. High Throughput Screen. 2009, 12:497-506.
    • (2009) Comb. Chem. High Throughput Screen. , vol.12 , pp. 497-506
    • Hou, T.J.1
  • 95
    • 33748545599 scopus 로고    scopus 로고
    • Recent advances in computational prediction of drug absorption and permeability in drug discovery
    • Hou T.J., et al. Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr. Med. Chem. 2006, 13:2653-2667.
    • (2006) Curr. Med. Chem. , vol.13 , pp. 2653-2667
    • Hou, T.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.