-
2
-
-
46749095500
-
From virtuality to reality - virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective
-
Rester U. From virtuality to reality - virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel. 2008, 11:559-568.
-
(2008)
Curr. Opin. Drug Discov. Devel.
, vol.11
, pp. 559-568
-
-
Rester, U.1
-
4
-
-
0345548661
-
Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
-
Byvatov E., et al. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 2003, 43:1882-1889.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1882-1889
-
-
Byvatov, E.1
-
5
-
-
33947245022
-
Evaluation of machine-learning methods for ligand-based virtual screening
-
Chen B., et al. Evaluation of machine-learning methods for ligand-based virtual screening. J. Comput. Aided Mol. Des. 2007, 21:53-62.
-
(2007)
J. Comput. Aided Mol. Des.
, vol.21
, pp. 53-62
-
-
Chen, B.1
-
6
-
-
84865457697
-
DrugLogit: logistic discrimination between drugs and nondrugs including disease-specificity by assigning probabilities based on molecular properties
-
García-Sosa A.T., et al. DrugLogit: logistic discrimination between drugs and nondrugs including disease-specificity by assigning probabilities based on molecular properties. J. Chem. Inf. Model. 2012, 52:2165-2180.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2165-2180
-
-
García-Sosa, A.T.1
-
7
-
-
0035289779
-
Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
-
Lipinski C.A., et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46:3-26.
-
(2001)
Adv. Drug Deliv. Rev.
, vol.46
, pp. 3-26
-
-
Lipinski, C.A.1
-
8
-
-
34247245174
-
ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?
-
Hou T., et al. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?. J. Chem. Inf. Model. 2007, 47:460-463.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 460-463
-
-
Hou, T.1
-
9
-
-
33846855555
-
ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification
-
Hou T., et al. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J. Chem. Inf. Model. 2007, 47:208-218.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 208-218
-
-
Hou, T.1
-
10
-
-
79958266864
-
ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints
-
Tian S., et al. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm. 2011, 8:841-851.
-
(2011)
Mol. Pharm.
, vol.8
, pp. 841-851
-
-
Tian, S.1
-
11
-
-
0032572819
-
Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
-
Ajay A., Walters W.P., Murcko M.A. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?. J. Med. Chem. 1998, 41:3314-3324.
-
(1998)
J. Med. Chem.
, vol.41
, pp. 3314-3324
-
-
Ajay, A.1
Walters, W.P.2
Murcko, M.A.3
-
12
-
-
0032572816
-
A scoring scheme for discriminating between drugs and nondrugs
-
Sadowski J., Kubinyi H. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 1998, 41:3325-3329.
-
(1998)
J. Med. Chem.
, vol.41
, pp. 3325-3329
-
-
Sadowski, J.1
Kubinyi, H.2
-
13
-
-
0033981358
-
Computational methods for the prediction of 'drug-likeness'
-
Clark D.E., Pickett S.D. Computational methods for the prediction of 'drug-likeness'. Drug Discov. Today 2000, 5:49-58.
-
(2000)
Drug Discov. Today
, vol.5
, pp. 49-58
-
-
Clark, D.E.1
Pickett, S.D.2
-
14
-
-
0242558534
-
Ajay Predicting drug-likeness: why and how?
-
Ajay Predicting drug-likeness: why and how?. Curr. Top. Med. Chem. 2002, 2:1273-1286.
-
(2002)
Curr. Top. Med. Chem.
, vol.2
, pp. 1273-1286
-
-
-
15
-
-
0037404468
-
Selection criteria for drug-like compounds
-
Muegge I. Selection criteria for drug-like compounds. Med. Res. Rev. 2003, 23:302-321.
-
(2003)
Med. Res. Rev.
, vol.23
, pp. 302-321
-
-
Muegge, I.1
-
16
-
-
84872081711
-
Drug-likeness analysis of traditional Chinese medicines: 1. Property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines
-
Shen M., et al. Drug-likeness analysis of traditional Chinese medicines: 1. Property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J. Cheminform. 2012, 4:31.
-
(2012)
J. Cheminform.
, vol.4
, pp. 31
-
-
Shen, M.1
-
17
-
-
84870177359
-
Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches
-
Tian S., et al. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol. Pharmacol. 2012, 9:2875-2886.
-
(2012)
Mol. Pharmacol.
, vol.9
, pp. 2875-2886
-
-
Tian, S.1
-
18
-
-
84876731496
-
Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines
-
Tian S., et al. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines. J. Cheminform. 2013, 5:5.
-
(2013)
J. Cheminform.
, vol.5
, pp. 5
-
-
Tian, S.1
-
19
-
-
0035438391
-
Is there a difference between leads and drugs? A historical perspective
-
Oprea T.I., et al. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 2001, 41:1308-1315.
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1308-1315
-
-
Oprea, T.I.1
-
20
-
-
70350409235
-
The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design?
-
Ritchie T.J., Macdonald S.J.F. The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design?. Drug Discov. Today 2009, 14:1011-1020.
-
(2009)
Drug Discov. Today
, vol.14
, pp. 1011-1020
-
-
Ritchie, T.J.1
Macdonald, S.J.F.2
-
21
-
-
78650699097
-
Molecular topology analysis of the differences between drugs, clinical candidate compounds, and bioactive molecules
-
Chen H., Yang Y., Engkvist O. Molecular topology analysis of the differences between drugs, clinical candidate compounds, and bioactive molecules. J. Chem. Inf. Model. 2010, 50:2141-2150.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 2141-2150
-
-
Chen, H.1
Yang, Y.2
Engkvist, O.3
-
22
-
-
0029894013
-
The properties of known drugs. 1. Molecular frameworks
-
Bemis G.W., Murcko M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39:2887-2893.
-
(1996)
J. Med. Chem.
, vol.39
, pp. 2887-2893
-
-
Bemis, G.W.1
Murcko, M.A.2
-
23
-
-
78149236457
-
Investigation of the relationship between topology and selectivity for druglike molecules
-
Yang Y., et al. Investigation of the relationship between topology and selectivity for druglike molecules. J. Med. Chem. 2010, 53:7709-7714.
-
(2010)
J. Med. Chem.
, vol.53
, pp. 7709-7714
-
-
Yang, Y.1
-
24
-
-
0032015361
-
Identification of biological activity profiles using substructural analysis and genetic algorithms
-
Gillet V.J., Willett P., Bradshaw J. Identification of biological activity profiles using substructural analysis and genetic algorithms. J. Chem. Inf. Comput. Sci. 1998, 38:165-179.
-
(1998)
J. Chem. Inf. Comput. Sci.
, vol.38
, pp. 165-179
-
-
Gillet, V.J.1
Willett, P.2
Bradshaw, J.3
-
26
-
-
34547678010
-
Mining of randomly generated molecular fragment populations uncovers activity-specific fragment hierarchies
-
Batista J., Bajorath J. Mining of randomly generated molecular fragment populations uncovers activity-specific fragment hierarchies. J. Chem. Inf. Model. 2007, 47:1405-1413.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 1405-1413
-
-
Batista, J.1
Bajorath, J.2
-
27
-
-
75749154412
-
Scaffold distributions in bioactive molecules, clinical trials compounds, and drugs
-
Hu Y., Bajorath J. Scaffold distributions in bioactive molecules, clinical trials compounds, and drugs. Chem. Med. Chem. 2010, 5:187-190.
-
(2010)
Chem. Med. Chem.
, vol.5
, pp. 187-190
-
-
Hu, Y.1
Bajorath, J.2
-
28
-
-
84655176137
-
Understanding drug-likeness
-
Ursu O., et al. Understanding drug-likeness. WIREs Comput. Mol. Sci. 2011, 1:760-781.
-
(2011)
WIREs Comput. Mol. Sci.
, vol.1
, pp. 760-781
-
-
Ursu, O.1
-
30
-
-
75749105013
-
Drug and drug candidate building block analysis
-
Wang J., Hou T. Drug and drug candidate building block analysis. J. Chem. Inf. Model. 2010, 50:55-67.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 55-67
-
-
Wang, J.1
Hou, T.2
-
31
-
-
42149109229
-
Gradual in silico filtering for druglike substances
-
Schneider N., et al. Gradual in silico filtering for druglike substances. J. Chem. Inf. Model. 2008, 48:613-628.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 613-628
-
-
Schneider, N.1
-
32
-
-
23844510632
-
-
Springer, Berlin, M.K. Warmuth, B. Schölkopf (Eds.)
-
Gärtner T., Flach P., Wrobel S. Learning Theory and Kernel Machines 2003, Springer, Berlin. 1st ed. M.K. Warmuth, B. Schölkopf (Eds.).
-
(2003)
Learning Theory and Kernel Machines
-
-
Gärtner, T.1
Flach, P.2
Wrobel, S.3
-
34
-
-
23844458045
-
Graph kernels for molecular structure-activity relationship analysis with support vector machines
-
Mahé P., et al. Graph kernels for molecular structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model. 2005, 45:939-951.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 939-951
-
-
Mahé, P.1
-
35
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola L., et al. Graph kernels for chemical informatics. Neural Netw. 2005, 18:1093-1110.
-
(2005)
Neural Netw.
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
-
36
-
-
33750294461
-
The pharmacophore kernel for virtual screening with support vector machines
-
Mahé P., et al. The pharmacophore kernel for virtual screening with support vector machines. J. Chem. Inf. Model. 2006, 46:2003-2014.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2003-2014
-
-
Mahé, P.1
-
37
-
-
54249156505
-
Molecule kernels: a descriptor-and alignment-free quantitative structure-activity relationship approach
-
Mohr J.A., Jain B.J., Obermayer K. Molecule kernels: a descriptor-and alignment-free quantitative structure-activity relationship approach. J. Chem. Inf. Model. 2008, 48:1868-1881.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1868-1881
-
-
Mohr, J.A.1
Jain, B.J.2
Obermayer, K.3
-
38
-
-
34250813174
-
One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
-
Azencott C.A., et al. One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J. Chem. Inf. Model. 2007, 47:965-974.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 965-974
-
-
Azencott, C.A.1
-
39
-
-
33646251586
-
Collaborative filtering on a family of biological targets
-
Erhan D., et al. Collaborative filtering on a family of biological targets. J. Chem. Inf. Model. 2006, 46:626-635.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 626-635
-
-
Erhan, D.1
-
40
-
-
52749085437
-
Protein-ligand interaction prediction: an improved chemogenomics approach
-
Jacob L., Vert J.P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 2008, 24:2149-2156.
-
(2008)
Bioinformatics
, vol.24
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.P.2
-
41
-
-
79960721268
-
Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel
-
Meslamani J., Rognan D. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. J. Chem. Inf. Model. 2011, 51:1593-1603.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 1593-1603
-
-
Meslamani, J.1
Rognan, D.2
-
42
-
-
78650095648
-
Potency-directed similarity searching using support vector machines
-
Wassermann A.M., Heikamp K., Bajorath J. Potency-directed similarity searching using support vector machines. Chem. Biol. Drug Des. 2011, 77:30-38.
-
(2011)
Chem. Biol. Drug Des.
, vol.77
, pp. 30-38
-
-
Wassermann, A.M.1
Heikamp, K.2
Bajorath, J.3
-
43
-
-
84866700901
-
Prediction of activity cliffs using support vector machines
-
Heikamp K., et al. Prediction of activity cliffs using support vector machines. J. Chem. Inf. Model. 2012, 52:2354-2365.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2354-2365
-
-
Heikamp, K.1
-
44
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
Jorissen R.N., Gilson M.K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model. 2005, 45:549-561.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
45
-
-
66149099982
-
SVM model for virtual screening of Lck inhibitors
-
Liew C.Y., et al. SVM model for virtual screening of Lck inhibitors. J. Chem. Inf. Model. 2009, 49:877-885.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 877-885
-
-
Liew, C.Y.1
-
46
-
-
75849120416
-
Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
-
Lv W., Xue Y. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Eur. J. Med. Chem. 2010, 45:1167-1172.
-
(2010)
Eur. J. Med. Chem.
, vol.45
, pp. 1167-1172
-
-
Lv, W.1
Xue, Y.2
-
47
-
-
80054909003
-
Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data
-
Sun H., et al. Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data. J. Chem. Inf. Model. 2011, 51:2474-2481.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2474-2481
-
-
Sun, H.1
-
48
-
-
77952768125
-
Ranking chemical structures for drug discovery: a new machine learning approach
-
Agarwal S., Dugar D., Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model. 2010, 50:716-731.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupta, S.3
-
49
-
-
79952593481
-
StructRank: a new approach for ligand-based virtual screening
-
Rathke F., et al. StructRank: a new approach for ligand-based virtual screening. J. Chem. Inf. Model. 2010, 51:83-92.
-
(2010)
J. Chem. Inf. Model.
, vol.51
, pp. 83-92
-
-
Rathke, F.1
-
50
-
-
84864185732
-
Structure based model for the prediction of phospholipidosis induction potential of small molecules
-
Sun H., et al. Structure based model for the prediction of phospholipidosis induction potential of small molecules. J. Chem. Inf. Model. 2012, 52:1798-1805.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1798-1805
-
-
Sun, H.1
-
51
-
-
54249154267
-
Predicting kinase selectivity profiles using free-Wilson QSAR analysis
-
Sciabola S., et al. Predicting kinase selectivity profiles using free-Wilson QSAR analysis. J. Chem. Inf. Model. 2008, 48:1851-1867.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1851-1867
-
-
Sciabola, S.1
-
52
-
-
84879570665
-
Beyond the scope of free-Wilson analysis: building interpretable QSAR models with machine learning algorithms
-
Chen H., et al. Beyond the scope of free-Wilson analysis: building interpretable QSAR models with machine learning algorithms. J. Chem. Inf. Model. 2013, 53:1324-1336.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1324-1336
-
-
Chen, H.1
-
53
-
-
52749098733
-
Virtual screening of GPCRs: an in silico chemogenomics approach
-
Jacob L., et al. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC Bioinform. 2008, 9:363-379.
-
(2008)
BMC Bioinform.
, vol.9
, pp. 363-379
-
-
Jacob, L.1
-
54
-
-
80155156908
-
Kernel-based data fusion improves the drug-protein interaction prediction
-
Wang Y.C., et al. Kernel-based data fusion improves the drug-protein interaction prediction. Comput. Biol. Chem. 2011, 35:53-362.
-
(2011)
Comput. Biol. Chem.
, vol.35
, pp. 53-362
-
-
Wang, Y.C.1
-
55
-
-
82355168473
-
Computational screening for active compounds targeting protein sequences: methodology and experimental validation
-
Wang F., et al. Computational screening for active compounds targeting protein sequences: methodology and experimental validation. J. Chem. Inf. Model. 2011, 51:2821-2828.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2821-2828
-
-
Wang, F.1
-
56
-
-
70350495651
-
Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
-
Wassermann A.M., Geppert H., Bajorath J. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J. Chem. Inf. Model. 2009, 49:2155-2167.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2155-2167
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
57
-
-
66149090260
-
Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
-
Geppert H., et al. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J. Chem. Inf. Model. 2009, 49:767-779.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 767-779
-
-
Geppert, H.1
-
58
-
-
0344254815
-
Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
-
Zernov V.V., et al. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J. Chem. Inf. Comput. Sci. 2003, 43:2048-2056.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 2048-2056
-
-
Zernov, V.V.1
-
59
-
-
65249163404
-
Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
-
Wassermann A.M., Geppert H., Bajorath J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model. 2009, 49:582-592.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 582-592
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
60
-
-
73349125784
-
Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study
-
Michielan L., et al. Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study. J. Chem. Inf. Model. 2009, 49:2820-2836.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2820-2836
-
-
Michielan, L.1
-
61
-
-
84876577793
-
Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations
-
Heikamp K., Bajorath J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J. Chem. Inf. Model. 2013, 53:791-801.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 791-801
-
-
Heikamp, K.1
Bajorath, J.2
-
62
-
-
47349113899
-
Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines
-
Kawai K., Fujishima S., Takahashi Y. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. J. Chem. Inf. Model. 2008, 48:1152-1160.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1152-1160
-
-
Kawai, K.1
Fujishima, S.2
Takahashi, Y.3
-
63
-
-
58149099516
-
In silico functional profiling of small molecules and its applications
-
Sato T., et al. In silico functional profiling of small molecules and its applications. J. Med. Chem. 2008, 51:7705-7716.
-
(2008)
J. Med. Chem.
, vol.51
, pp. 7705-7716
-
-
Sato, T.1
-
64
-
-
0345548663
-
Support vector machines for the estimation of aqueous solubility
-
Lind P., Maltseva T. Support vector machines for the estimation of aqueous solubility. J. Chem. Inf. Comput. Sci. 2003, 43:1855-1859.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1855-1859
-
-
Lind, P.1
Maltseva, T.2
-
65
-
-
79952229990
-
Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
-
Cheng T., et al. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J. Chem. Inf. Model. 2011, 51:229-236.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 229-236
-
-
Cheng, T.1
-
66
-
-
77954068708
-
Estimation of ADME properties with substructure pattern recognition
-
Shen J., et al. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf. Model. 2010, 50:1034-1041.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1034-1041
-
-
Shen, J.1
-
67
-
-
37249042636
-
ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine
-
Hou T., Wang J., Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model. 2007, 47:2408-2415.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 2408-2415
-
-
Hou, T.1
Wang, J.2
Li, Y.3
-
68
-
-
84878744355
-
A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine
-
Kumar R., Sharma A., Varadwaj P.K. A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J. Nat. Sci. Biol. Med. 2011, 2:168-173.
-
(2011)
J. Nat. Sci. Biol. Med.
, vol.2
, pp. 168-173
-
-
Kumar, R.1
Sharma, A.2
Varadwaj, P.K.3
-
69
-
-
33845772315
-
Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
-
Bhavani S., et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs. J. Chem. Inf. Model. 2006, 46:2478-2486.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2478-2486
-
-
Bhavani, S.1
-
70
-
-
82655172584
-
Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method
-
Zhang H., et al. Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol. In Vitro 2011, 25:1848-1854.
-
(2011)
Toxicol. In Vitro
, vol.25
, pp. 1848-1854
-
-
Zhang, H.1
-
71
-
-
84862922236
-
In silico models to discriminate compounds inducing and noninducing toxic myopathy
-
Hu X., Yan A. In silico models to discriminate compounds inducing and noninducing toxic myopathy. Mol. Inf. 2012, 31:27-39.
-
(2012)
Mol. Inf.
, vol.31
, pp. 27-39
-
-
Hu, X.1
Yan, A.2
-
72
-
-
84862843449
-
Predictive toxicology modeling: protocols for exploring hERG classification and tetrahymenapyriformis end point predictions
-
Su B.H., et al. Predictive toxicology modeling: protocols for exploring hERG classification and tetrahymenapyriformis end point predictions. J. Chem. Inf. Model. 2012, 52:1660-1673.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1660-1673
-
-
Su, B.H.1
-
73
-
-
84878176071
-
Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures
-
Ding B., Li N., Wang W. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. J. Chem. Inf. Model. 2013, 53:1213-1222.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1213-1222
-
-
Ding, B.1
Li, N.2
Wang, W.3
-
74
-
-
77954054048
-
Assessing synthetic accessibility of chemical compounds using machine learning methods
-
Podolyan Y., Walters M.A., Karypis G. Assessing synthetic accessibility of chemical compounds using machine learning methods. J. Chem. Inf. Model. 2010, 50:979-991.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 979-991
-
-
Podolyan, Y.1
Walters, M.A.2
Karypis, G.3
-
75
-
-
18344381621
-
Classifying 'drug-likeness' with kernel-based learning methods
-
Müller K.R., et al. Classifying 'drug-likeness' with kernel-based learning methods. J. Chem. Inf. Model. 2005, 45:249-253.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 249-253
-
-
Müller, K.R.1
-
76
-
-
46749128531
-
New predictive models for blood-brain barrier permeability of drug-like molecules
-
Kortagere S., et al. New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm. Res. 2008, 25:1836-1845.
-
(2008)
Pharm. Res.
, vol.25
, pp. 1836-1845
-
-
Kortagere, S.1
-
77
-
-
84857531280
-
Combining global and local measures for structure-based druggability predictions
-
Volkamer A., et al. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 2012, 52:360-372.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 360-372
-
-
Volkamer, A.1
-
78
-
-
80053313926
-
Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
-
Li L., Wang B., Meroueh S.O. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J. Chem. Inf. Model. 2011, 51:2132-2138.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2132-2138
-
-
Li, L.1
Wang, B.2
Meroueh, S.O.3
-
79
-
-
84875428269
-
ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
-
Li G.B., et al. ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 2013, 53:592-600.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 592-600
-
-
Li, G.B.1
-
80
-
-
66149146342
-
Characterization of domain-peptide interaction interface a generic structure-based model to decipher the binding specificity of SH3 domains
-
Hou T., et al. Characterization of domain-peptide interaction interface a generic structure-based model to decipher the binding specificity of SH3 domains. Mol. Cell. Proteomics 2009, 8:639-649.
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 639-649
-
-
Hou, T.1
-
81
-
-
84860635411
-
Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models
-
Hou T., et al. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J. Proteome Res. 2012, 11:2982-2995.
-
(2012)
J. Proteome Res.
, vol.11
, pp. 2982-2995
-
-
Hou, T.1
-
84
-
-
34249753618
-
Support vector network
-
Cortes C., Vapnik V. Support vector network. Mach. Learn. 1995, 20:273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
86
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., et al. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
-
88
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
90
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall M., et al. The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 2009, 11:10-18.
-
(2009)
ACM SIGKDD Explor. Newsl.
, vol.11
, pp. 10-18
-
-
Hall, M.1
-
91
-
-
5444272497
-
Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
-
Xue Y., et al. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci. 2004, 44:1630-1638.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 1630-1638
-
-
Xue, Y.1
-
92
-
-
26944502743
-
Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
-
Li H., et al. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model. 2005, 45:1376-1384.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1376-1384
-
-
Li, H.1
-
93
-
-
0037030653
-
Molecular properties that influence the oral bioavailability of drug candidates
-
Veber D.F., et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45:2615-2623.
-
(2002)
J. Med. Chem.
, vol.45
, pp. 2615-2623
-
-
Veber, D.F.1
-
94
-
-
66849113847
-
Recent developments of in silico predictions of intestinal absorption and oral bioavailability
-
Hou T.J., et al. Recent developments of in silico predictions of intestinal absorption and oral bioavailability. Comb. Chem. High Throughput Screen. 2009, 12:497-506.
-
(2009)
Comb. Chem. High Throughput Screen.
, vol.12
, pp. 497-506
-
-
Hou, T.J.1
-
95
-
-
33748545599
-
Recent advances in computational prediction of drug absorption and permeability in drug discovery
-
Hou T.J., et al. Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr. Med. Chem. 2006, 13:2653-2667.
-
(2006)
Curr. Med. Chem.
, vol.13
, pp. 2653-2667
-
-
Hou, T.J.1
|