메뉴 건너뛰기




Volumn 39, Issue 1, 2014, Pages 17-24

The unique functions of tissue-specific proteasomes

Author keywords

Antigen presentation; Immunoproteasome; Spermatoproteasome; Thymoproteasome; Ubiquitin

Indexed keywords

GAMMA INTERFERON; IMMUNOPROTEASOME; PROTEASOME; SPERMATOPROTEASOME; STAT1 PROTEIN; STAT3 PROTEIN; THYMOPROTEASOME; TUMOR NECROSIS FACTOR ALPHA; UNCLASSIFIED DRUG;

EID: 84890859839     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.10.004     Document Type: Review
Times cited : (108)

References (72)
  • 1
    • 0029042511 scopus 로고
    • Crystal structure of the 20 S proteasome from the archaeon T. acidophilum at 3.4 A resolution
    • Löwe J., et al. Crystal structure of the 20 S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995, 268:533-539.
    • (1995) Science , vol.268 , pp. 533-539
    • Löwe, J.1
  • 2
    • 0029328494 scopus 로고
    • The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus
    • Tamura T., et al. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr. Biol. 1995, 5:766-774.
    • (1995) Curr. Biol. , vol.5 , pp. 766-774
    • Tamura, T.1
  • 3
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20 S proteasome from yeast at 2.4A resolution
    • Groll M., et al. Structure of 20 S proteasome from yeast at 2.4A resolution. Nature 1997, 386:463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 4
    • 0030774890 scopus 로고    scopus 로고
    • The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing
    • Heinemeyer W., et al. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 1997, 272:25200-25209.
    • (1997) J. Biol. Chem. , vol.272 , pp. 25200-25209
    • Heinemeyer, W.1
  • 5
    • 0037105392 scopus 로고    scopus 로고
    • Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection
    • Barton L.F., et al. Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection. J. Immunol. 2002, 169:3046-3052.
    • (2002) J. Immunol. , vol.169 , pp. 3046-3052
    • Barton, L.F.1
  • 6
    • 78149477289 scopus 로고    scopus 로고
    • Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice
    • Kremer M., et al. Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J. Immunol. 2010, 185:5549-5560.
    • (2010) J. Immunol. , vol.185 , pp. 5549-5560
    • Kremer, M.1
  • 7
    • 0035892754 scopus 로고    scopus 로고
    • Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver
    • Khan S., et al. Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J. Immunol. 2001, 167:6859-6868.
    • (2001) J. Immunol. , vol.167 , pp. 6859-6868
    • Khan, S.1
  • 8
    • 72949103056 scopus 로고    scopus 로고
    • Proteasomes in immune cells: more than peptide producers?
    • Groettrup M., et al. Proteasomes in immune cells: more than peptide producers?. Nat. Rev. Immunol. 2010, 10:72-77.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 72-77
    • Groettrup, M.1
  • 9
    • 26244445001 scopus 로고    scopus 로고
    • Interferon-gamma, the functional plasticity of the ubiquitin- proteasome system, and MHC class I antigen processing
    • Strehl B., et al. Interferon-gamma, the functional plasticity of the ubiquitin- proteasome system, and MHC class I antigen processing. Immunol. Rev. 2005, 207:19-30.
    • (2005) Immunol. Rev. , vol.207 , pp. 19-30
    • Strehl, B.1
  • 10
    • 0027980319 scopus 로고
    • Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules
    • Rock K.L., et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994, 78:761-771.
    • (1994) Cell , vol.78 , pp. 761-771
    • Rock, K.L.1
  • 11
    • 0030926777 scopus 로고    scopus 로고
    • Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation
    • Craiu A., et al. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J. Biol. Chem. 1997, 272:13437-13445.
    • (1997) J. Biol. Chem. , vol.272 , pp. 13437-13445
    • Craiu, A.1
  • 12
    • 0031228085 scopus 로고    scopus 로고
    • The effect of the proteasome inhibitor lactacystin on the presentation of transporters associated with antigen processing (TAP)-dependent and TAP-independent peptide epitopes by class I molecules
    • Bai A., Forman J. The effect of the proteasome inhibitor lactacystin on the presentation of transporters associated with antigen processing (TAP)-dependent and TAP-independent peptide epitopes by class I molecules. J. Immunol. 1997, 159:2139-2146.
    • (1997) J. Immunol. , vol.159 , pp. 2139-2146
    • Bai, A.1    Forman, J.2
  • 13
    • 84857313367 scopus 로고    scopus 로고
    • Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity
    • Huber E.M., et al. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 2012, 148:727-738.
    • (2012) Cell , vol.148 , pp. 727-738
    • Huber, E.M.1
  • 14
    • 0027991677 scopus 로고
    • MHC class I expression in mice lacking proteasome subunit LMP-7
    • Fehling H.J., et al. MHC class I expression in mice lacking proteasome subunit LMP-7. Science 1994, 265:1234-1237.
    • (1994) Science , vol.265 , pp. 1234-1237
    • Fehling, H.J.1
  • 15
    • 82755186804 scopus 로고    scopus 로고
    • The antiviral immune response in mice devoid of immunoproteasome activity
    • Basler M., et al. The antiviral immune response in mice devoid of immunoproteasome activity. J. Immunol. 2011, 187:5548-5557.
    • (2011) J. Immunol. , vol.187 , pp. 5548-5557
    • Basler, M.1
  • 16
    • 84855921130 scopus 로고    scopus 로고
    • Mice completely lacking immunoproteasomes show major changes in antigen presentation
    • Kincaid E.Z., et al. Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat. Immunol. 2012, 13:129-135.
    • (2012) Nat. Immunol. , vol.13 , pp. 129-135
    • Kincaid, E.Z.1
  • 17
    • 0033035759 scopus 로고    scopus 로고
    • Mutational analysis of subunit i beta 2 (MECL-1) demonstrates conservation of cleavage specificity between yeast and mammalian proteasomes
    • Salzmann U., et al. Mutational analysis of subunit i beta 2 (MECL-1) demonstrates conservation of cleavage specificity between yeast and mammalian proteasomes. FEBS Lett. 1999, 454:11-15.
    • (1999) FEBS Lett. , vol.454 , pp. 11-15
    • Salzmann, U.1
  • 18
    • 33646884677 scopus 로고    scopus 로고
    • An altered T cell repertoire in MECL-1-deficient mice
    • Basler M., et al. An altered T cell repertoire in MECL-1-deficient mice. J. Immunol. 2006, 176:6665-6672.
    • (2006) J. Immunol. , vol.176 , pp. 6665-6672
    • Basler, M.1
  • 19
    • 78649558302 scopus 로고    scopus 로고
    • Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice
    • Moebius J., et al. Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice. Eur. J. Immunol. 2010, 40:3439-3449.
    • (2010) Eur. J. Immunol. , vol.40 , pp. 3439-3449
    • Moebius, J.1
  • 20
    • 77956198116 scopus 로고    scopus 로고
    • Prevention of experimental colitis by a selective inhibitor of the immunoproteasome
    • Basler M., et al. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J. Immunol. 2010, 185:634-641.
    • (2010) J. Immunol. , vol.185 , pp. 634-641
    • Basler, M.1
  • 21
    • 0034193031 scopus 로고    scopus 로고
    • MHC class I antigen processing of an Adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells
    • Sijts A.J.A.M., et al. MHC class I antigen processing of an Adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J. Immunol. 2000, 164:4500-4506.
    • (2000) J. Immunol. , vol.164 , pp. 4500-4506
    • Sijts, A.J.A.M.1
  • 22
    • 33745830160 scopus 로고    scopus 로고
    • Role of immunoproteasomes in cross-presentation
    • Palmowski M.J., et al. Role of immunoproteasomes in cross-presentation. J. Immunol. 2006, 177:983-990.
    • (2006) J. Immunol. , vol.177 , pp. 983-990
    • Palmowski, M.J.1
  • 23
    • 0035806246 scopus 로고    scopus 로고
    • + T cells at the levels of T cell repertoire and presentation of viral antigens
    • + T cells at the levels of T cell repertoire and presentation of viral antigens. J. Exp. Med. 2001, 193:1319-1326.
    • (2001) J. Exp. Med. , vol.193 , pp. 1319-1326
    • Chen, W.S.1
  • 24
    • 79851488412 scopus 로고    scopus 로고
    • A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus
    • Hutchinson S., et al. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PLoS ONE 2011, 6:e14646.
    • (2011) PLoS ONE , vol.6
    • Hutchinson, S.1
  • 25
    • 4644249095 scopus 로고    scopus 로고
    • Immunoproteasomes down-regulate presentation of a subdominant T cell epitope from lymphocytic choriomeningitis virus
    • Basler M., et al. Immunoproteasomes down-regulate presentation of a subdominant T cell epitope from lymphocytic choriomeningitis virus. J. Immunol. 2004, 173:3925-3934.
    • (2004) J. Immunol. , vol.173 , pp. 3925-3934
    • Basler, M.1
  • 26
    • 0033980648 scopus 로고    scopus 로고
    • Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells
    • Morel S., et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 2000, 12:107-117.
    • (2000) Immunity , vol.12 , pp. 107-117
    • Morel, S.1
  • 27
    • 84864817282 scopus 로고    scopus 로고
    • Why the structure but not the activity of the immunoproteasome subunit LMP2 rescues antigen presentation
    • Basler M., et al. Why the structure but not the activity of the immunoproteasome subunit LMP2 rescues antigen presentation. J. Immunol. 2012, 189:1868-1877.
    • (2012) J. Immunol. , vol.189 , pp. 1868-1877
    • Basler, M.1
  • 28
    • 77956533051 scopus 로고    scopus 로고
    • Deletion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides presented by major histocompatibility complex I molecules
    • Verteuil D., et al. Deletion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides presented by major histocompatibility complex I molecules. Mol. Cell. Proteomics 2010, 9:2034-2047.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 2034-2047
    • Verteuil, D.1
  • 29
    • 33750385670 scopus 로고    scopus 로고
    • + T cells
    • + T cells. J. Immunol. 2006, 177:6238-6244.
    • (2006) J. Immunol. , vol.177 , pp. 6238-6244
    • Strehl, B.1
  • 30
    • 72949119404 scopus 로고    scopus 로고
    • Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection
    • Tu L., et al. Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection. Eur. J. Immunol. 2009, 39:3385-3394.
    • (2009) Eur. J. Immunol. , vol.39 , pp. 3385-3394
    • Tu, L.1
  • 31
    • 0035067590 scopus 로고    scopus 로고
    • Interferon-γ inducible exchanges of 20S proteasome active site subunits: Why?
    • Groettrup M., et al. Interferon-γ inducible exchanges of 20S proteasome active site subunits: Why?. Biochimie 2001, 83:367-372.
    • (2001) Biochimie , vol.83 , pp. 367-372
    • Groettrup, M.1
  • 32
    • 80052679971 scopus 로고    scopus 로고
    • Proteasome immunosubunits protect against the development of CD8 T cell-mediated autoimmune diseases
    • Zaiss D.M., et al. Proteasome immunosubunits protect against the development of CD8 T cell-mediated autoimmune diseases. J. Immunol. 2011, 187:2302-2309.
    • (2011) J. Immunol. , vol.187 , pp. 2302-2309
    • Zaiss, D.M.1
  • 33
    • 0029972701 scopus 로고    scopus 로고
    • Polymorphism in the LMP2 gene influences disease susceptibility and severity in HLA-B27 associated juvenile rheumatoid arthritis
    • Pryhuber K.G., et al. Polymorphism in the LMP2 gene influences disease susceptibility and severity in HLA-B27 associated juvenile rheumatoid arthritis. J. Rheumatol. 1996, 23:747-752.
    • (1996) J. Rheumatol. , vol.23 , pp. 747-752
    • Pryhuber, K.G.1
  • 34
    • 80053397654 scopus 로고    scopus 로고
    • A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans
    • Kitamura A., et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 2011, 121:4150-4160.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4150-4160
    • Kitamura, A.1
  • 35
    • 80052565561 scopus 로고    scopus 로고
    • Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome
    • Arima K., et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14914-14919.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14914-14919
    • Arima, K.1
  • 36
    • 78649775528 scopus 로고    scopus 로고
    • PSMB8 encoding the beta 5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis- induced lipodystrophy syndrome
    • Agarwal A.K., et al. PSMB8 encoding the beta 5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis- induced lipodystrophy syndrome. Am. J. Hum. Genet. 2010, 87:866-872.
    • (2010) Am. J. Hum. Genet. , vol.87 , pp. 866-872
    • Agarwal, A.K.1
  • 37
    • 67650388103 scopus 로고    scopus 로고
    • A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis
    • Muchamuel T., et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 2009, 15:781-787.
    • (2009) Nat. Med. , vol.15 , pp. 781-787
    • Muchamuel, T.1
  • 38
    • 77954008149 scopus 로고    scopus 로고
    • Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis
    • Schmidt N., et al. Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut 2010, 59:896-906.
    • (2010) Gut , vol.59 , pp. 896-906
    • Schmidt, N.1
  • 39
    • 33748433821 scopus 로고    scopus 로고
    • Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice
    • Fitzpatrick L.R., et al. Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Digest Dis. Sci. 2006, 51:1269-1276.
    • (2006) Digest Dis. Sci. , vol.51 , pp. 1269-1276
    • Fitzpatrick, L.R.1
  • 40
    • 84863012127 scopus 로고    scopus 로고
    • Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells
    • Ichikawa H.T., et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis. Rheum. 2012, 64:493-503.
    • (2012) Arthritis. Rheum. , vol.64 , pp. 493-503
    • Ichikawa, H.T.1
  • 41
    • 84867324545 scopus 로고    scopus 로고
    • Immunoproteasome subunit LMP7 deficiency and inhibition suppresses Th1 and Th17 but enhances regulatory T cell differentiation
    • Kalim K.W., et al. Immunoproteasome subunit LMP7 deficiency and inhibition suppresses Th1 and Th17 but enhances regulatory T cell differentiation. J. Immunol. 2012, 189:4182-4193.
    • (2012) J. Immunol. , vol.189 , pp. 4182-4193
    • Kalim, K.W.1
  • 42
    • 79955938711 scopus 로고    scopus 로고
    • The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages
    • Reis J., et al. The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages. Cell Biochem. Biophys. 2011, 60:119-126.
    • (2011) Cell Biochem. Biophys. , vol.60 , pp. 119-126
    • Reis, J.1
  • 43
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-κB1 percursor protein and the activation of NF-κB
    • Palombella V.J., et al. The ubiquitin-proteasome pathway is required for processing the NF-κB1 percursor protein and the activation of NF-κB. Cell 1994, 78:773-785.
    • (1994) Cell , vol.78 , pp. 773-785
    • Palombella, V.J.1
  • 44
    • 0034268493 scopus 로고    scopus 로고
    • Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing
    • Hoppe T., et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000, 102:577-586.
    • (2000) Cell , vol.102 , pp. 577-586
    • Hoppe, T.1
  • 45
    • 0033499621 scopus 로고    scopus 로고
    • NOD mice are defective in proteasome production and activation of NF-kappa B
    • Hayashi T., Faustman D. NOD mice are defective in proteasome production and activation of NF-kappa B. Mol. Cell. Biol. 1999, 19:8646-8659.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8646-8659
    • Hayashi, T.1    Faustman, D.2
  • 46
    • 0033782756 scopus 로고    scopus 로고
    • LMP2 expression and proteasome activity in NOD mice
    • Kessler B.M., et al. LMP2 expression and proteasome activity in NOD mice. Nat. Med. 2000, 6:1064.
    • (2000) Nat. Med. , vol.6 , pp. 1064
    • Kessler, B.M.1
  • 47
    • 0033782756 scopus 로고    scopus 로고
    • LMP2 expression and proteasome activity in NOD mice
    • Runnels H.A., et al. LMP2 expression and proteasome activity in NOD mice. Nat. Med. 2000, 6:1064-1065.
    • (2000) Nat. Med. , vol.6 , pp. 1064-1065
    • Runnels, H.A.1
  • 48
    • 77955596988 scopus 로고    scopus 로고
    • Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress
    • Seifert U., et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 2010, 142:613-624.
    • (2010) Cell , vol.142 , pp. 613-624
    • Seifert, U.1
  • 49
    • 84874787780 scopus 로고    scopus 로고
    • Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins
    • Nathan J.A., et al. Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 2013, 152:1184-1194.
    • (2013) Cell , vol.152 , pp. 1184-1194
    • Nathan, J.A.1
  • 50
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome- mediated degradation
    • Prakash S., et al. An unstructured initiation site is required for efficient proteasome- mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 830-837
    • Prakash, S.1
  • 51
    • 34249883977 scopus 로고    scopus 로고
    • + T cell development by thymus-specific proteasomes
    • + T cell development by thymus-specific proteasomes. Science 2007, 316:1349-1353.
    • (2007) Science , vol.316 , pp. 1349-1353
    • Murata, S.1
  • 52
    • 72949104779 scopus 로고    scopus 로고
    • Antigen presentation in the thymus for positive selection and central tolerance induction
    • Klein L., et al. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 2009, 9:833-844.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 833-844
    • Klein, L.1
  • 53
    • 7244239199 scopus 로고    scopus 로고
    • Expression of housekeeping and immunoproteasome subunit genes is differentially regulated in positively and negatively selecting thymic stroma subsets
    • Nil A., et al. Expression of housekeeping and immunoproteasome subunit genes is differentially regulated in positively and negatively selecting thymic stroma subsets. Eur. J. Immunol. 2004, 34:2681-2689.
    • (2004) Eur. J. Immunol. , vol.34 , pp. 2681-2689
    • Nil, A.1
  • 54
    • 0032730872 scopus 로고    scopus 로고
    • Dendritic cells upregulate immunoproteasomes and the proteasome regulator PA28 during maturation
    • Macagno A., et al. Dendritic cells upregulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur. J. Immunol. 1999, 29:4037-4042.
    • (1999) Eur. J. Immunol. , vol.29 , pp. 4037-4042
    • Macagno, A.1
  • 55
    • 74549144385 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Immunity 2010, 32:29-40.
    • (2010) Immunity , vol.32 , pp. 29-40
    • Nitta, T.1
  • 56
    • 44749085669 scopus 로고    scopus 로고
    • Thymoproteasome: probable role in generating positively selecting peptides
    • Murata S., et al. Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 2008, 20:192-196.
    • (2008) Curr. Opin. Immunol. , vol.20 , pp. 192-196
    • Murata, S.1
  • 57
    • 0027399243 scopus 로고
    • Peptides naturally presented by MHC class I molecules
    • Rammensee H.G., et al. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 1993, 11:213-244.
    • (1993) Annu. Rev. Immunol. , vol.11 , pp. 213-244
    • Rammensee, H.G.1
  • 58
    • 68149100669 scopus 로고    scopus 로고
    • Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis
    • Belote J.M., Zhong L. Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity 2009, 103:23-31.
    • (2009) Heredity , vol.103 , pp. 23-31
    • Belote, J.M.1    Zhong, L.2
  • 59
    • 0029761569 scopus 로고    scopus 로고
    • Duplicated proteasome subunit genes in Drosophila melanogaster encoding testes-specific isoforms
    • Yuan X., et al. Duplicated proteasome subunit genes in Drosophila melanogaster encoding testes-specific isoforms. Genetics 1996, 144:147-157.
    • (1996) Genetics , vol.144 , pp. 147-157
    • Yuan, X.1
  • 60
    • 35649014794 scopus 로고    scopus 로고
    • The testis-specific proteasome subunit Pros alpha 6T of D-melanogaster is required for individualization and nuclear maturation during spermatogenesis
    • Zhong L., Belote J.M. The testis-specific proteasome subunit Pros alpha 6T of D-melanogaster is required for individualization and nuclear maturation during spermatogenesis. Development 2007, 134:3517-3525.
    • (2007) Development , vol.134 , pp. 3517-3525
    • Zhong, L.1    Belote, J.M.2
  • 61
    • 0036899899 scopus 로고    scopus 로고
    • Expression of proteasome subunit isoforms during spermatogenesis in Drosophila melanogaster
    • Ma J., et al. Expression of proteasome subunit isoforms during spermatogenesis in Drosophila melanogaster. Insect Mol. Biol. 2002, 11:627-639.
    • (2002) Insect Mol. Biol. , vol.11 , pp. 627-639
    • Ma, J.1
  • 62
    • 84890858246 scopus 로고    scopus 로고
    • The rhesus macaque (Macaca mulatta) sperm proteome
    • Skerget S., et al. The rhesus macaque (Macaca mulatta) sperm proteome. Mol. Cell. Proteomics 2013, 1:1.
    • (2013) Mol. Cell. Proteomics , vol.1 , pp. 1
    • Skerget, S.1
  • 63
    • 84878314537 scopus 로고    scopus 로고
    • Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis
    • Qian M.X., et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 2013, 153:1012-1024.
    • (2013) Cell , vol.153 , pp. 1012-1024
    • Qian, M.X.1
  • 64
    • 5144231426 scopus 로고    scopus 로고
    • Proteasomal interference prevents zona pellucida penetration and fertilization in mammals
    • Sutovsky P., et al. Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biol. Reprod. 2004, 71:1625-1637.
    • (2004) Biol. Reprod. , vol.71 , pp. 1625-1637
    • Sutovsky, P.1
  • 65
    • 0036646488 scopus 로고    scopus 로고
    • PA200, a nuclear proteasome activator involved in DNA repair
    • Ustrell V., et al. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002, 21:3516-3525.
    • (2002) EMBO J. , vol.21 , pp. 3516-3525
    • Ustrell, V.1
  • 66
    • 33645813390 scopus 로고    scopus 로고
    • Proteasome activator PA200 is required for normal spermatogenesis
    • Khor B., et al. Proteasome activator PA200 is required for normal spermatogenesis. Mol. Cell. Biol. 2006, 26:2999-3007.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2999-3007
    • Khor, B.1
  • 67
    • 75149186088 scopus 로고    scopus 로고
    • From meiosis to postmeiotic events: the secrets of histone disappearance
    • Gaucher J., et al. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 2010, 277:599-604.
    • (2010) FEBS J. , vol.277 , pp. 599-604
    • Gaucher, J.1
  • 68
    • 84865405382 scopus 로고    scopus 로고
    • Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development
    • Huber E.M., Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew. Chem. Int. Ed. Engl. 2012, 51:8708-8720.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 8708-8720
    • Huber, E.M.1    Groll, M.2
  • 69
    • 34247190754 scopus 로고    scopus 로고
    • LMP2-specific inhibitors: chemical genetic tools for proteasome biology
    • Ho Y.K., et al. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 2007, 14:419-430.
    • (2007) Chem. Biol. , vol.14 , pp. 419-430
    • Ho, Y.K.1
  • 70
    • 66549099025 scopus 로고    scopus 로고
    • Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors
    • Kuhn D.J., et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 2009, 113:4667-4676.
    • (2009) Blood , vol.113 , pp. 4667-4676
    • Kuhn, D.J.1
  • 71
    • 79957477617 scopus 로고    scopus 로고
    • Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib
    • Mirabella A.C., et al. Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem. Biol. 2011, 18:608-618.
    • (2011) Chem. Biol. , vol.18 , pp. 608-618
    • Mirabella, A.C.1
  • 72
    • 84875258216 scopus 로고    scopus 로고
    • The immunoproteasome in antigen processing and other immunological functions
    • Basler M., et al. The immunoproteasome in antigen processing and other immunological functions. Cur. Opin. Immunol. 2013, 25:74-80.
    • (2013) Cur. Opin. Immunol. , vol.25 , pp. 74-80
    • Basler, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.