-
1
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer R.T., Baker T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 2011, 80:587-612.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
3
-
-
0032969563
-
AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
-
Neuwald A.F., et al. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999, 9:27-43.
-
(1999)
Genome Res.
, vol.9
, pp. 27-43
-
-
Neuwald, A.F.1
-
4
-
-
84055190893
-
Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine
-
Truscott K.N., et al. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life 2011, 63:955-963.
-
(2011)
IUBMB Life
, vol.63
, pp. 955-963
-
-
Truscott, K.N.1
-
5
-
-
84880736920
-
The task force that rescues stalled ribosomes in bacteria
-
Giudice E., Gillet R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem. Sci. 2013, 38:403-411.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 403-411
-
-
Giudice, E.1
Gillet, R.2
-
6
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
7
-
-
39549084936
-
Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates
-
Martin A., et al. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 2008, 29:441-450.
-
(2008)
Mol. Cell
, vol.29
, pp. 441-450
-
-
Martin, A.1
-
8
-
-
84872102009
-
Design principles of a universal protein degradation machine
-
Matyskiela M.E., Martin A. Design principles of a universal protein degradation machine. J. Mol. Biol. 2013, 425:199-213.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 199-213
-
-
Matyskiela, M.E.1
Martin, A.2
-
9
-
-
67651208925
-
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases
-
Kirstein J., et al. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat. Rev. Microbiol. 2009, 7:589-599.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 589-599
-
-
Kirstein, J.1
-
11
-
-
33751228400
-
ATP-dependent proteases of bacteria: recognition logic and operating principles
-
Baker T.A., Sauer R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 2006, 31:647-653.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 647-653
-
-
Baker, T.A.1
Sauer, R.T.2
-
12
-
-
79955534260
-
ClpX(P) generates mechanical force to unfold and translocate its protein substrates
-
Maillard R.A., et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 2011, 145:459-469.
-
(2011)
Cell
, vol.145
, pp. 459-469
-
-
Maillard, R.A.1
-
13
-
-
79953888421
-
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
-
Aubin-Tam M., et al. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 2011, 145:257-267.
-
(2011)
Cell
, vol.145
, pp. 257-267
-
-
Aubin-Tam, M.1
-
14
-
-
0035096082
-
Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
-
Wang J., et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001, 9:177-184.
-
(2001)
Structure
, vol.9
, pp. 177-184
-
-
Wang, J.1
-
15
-
-
20744457369
-
Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase
-
Park E., et al. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 2005, 280:22892-22898.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 22892-22898
-
-
Park, E.1
-
16
-
-
55549088522
-
Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
-
Martin A., et al. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 2008, 15:1147-1151.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1147-1151
-
-
Martin, A.1
-
17
-
-
70849108762
-
Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations
-
Koga N., et al. Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:18237-18242.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 18237-18242
-
-
Koga, N.1
-
18
-
-
65649123769
-
Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F., et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
-
(2009)
Mol. Cell
, vol.34
, pp. 485-496
-
-
Zhang, F.1
-
19
-
-
1542283751
-
Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates
-
Siddiqui S.M., et al. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 2004, 18:369-374.
-
(2004)
Genes Dev.
, vol.18
, pp. 369-374
-
-
Siddiqui, S.M.1
-
20
-
-
67649550852
-
Polypeptide translocation by the AAA+ ClpXP protease machine
-
Barkow S.R., et al. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 2009, 16:605-612.
-
(2009)
Chem. Biol.
, vol.16
, pp. 605-612
-
-
Barkow, S.R.1
-
21
-
-
0035266072
-
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
-
Lee C., et al. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 2001, 7:627-637.
-
(2001)
Mol. Cell
, vol.7
, pp. 627-637
-
-
Lee, C.1
-
22
-
-
84877693301
-
Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit
-
Too P.H., et al. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J. Biol. Chem. 2013, 288:13243-13257.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 13243-13257
-
-
Too, P.H.1
-
23
-
-
0036091848
-
Taking a bite: proteasomal protein processing
-
Rape M., Jentsch S. Taking a bite: proteasomal protein processing. Nat. Cell Biol. 2002, 4:E113-E116.
-
(2002)
Nat. Cell Biol.
, vol.4
-
-
Rape, M.1
Jentsch, S.2
-
24
-
-
0027980321
-
The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB
-
Palombella V.J., et al. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 1994, 78:773-785.
-
(1994)
Cell
, vol.78
, pp. 773-785
-
-
Palombella, V.J.1
-
25
-
-
80655149450
-
A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome
-
Schrader E.K., et al. A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome. J. Biol. Chem. 2011, 286:39051-39058.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 39051-39058
-
-
Schrader, E.K.1
-
26
-
-
79953086676
-
The nuts and bolts of ring-translocase structure and mechanism
-
Lyubimov A.Y., et al. The nuts and bolts of ring-translocase structure and mechanism. Curr. Opin. Struct. Biol. 2011, 21:240-248.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 240-248
-
-
Lyubimov, A.Y.1
-
27
-
-
27144474906
-
Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines
-
Martin A., et al. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 2005, 437:1115-1120.
-
(2005)
Nature
, vol.437
, pp. 1115-1120
-
-
Martin, A.1
-
28
-
-
1642390881
-
A link between sequence conservation and domain motion within the AAA+ family
-
Smith G.R., et al. A link between sequence conservation and domain motion within the AAA+ family. J. Struct. Biol. 2004, 146:189-204.
-
(2004)
J. Struct. Biol.
, vol.146
, pp. 189-204
-
-
Smith, G.R.1
-
29
-
-
33745041480
-
Evolutionary relationships and structural mechanisms of AAA+ proteins
-
Erzberger J.P., Berger J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 2006, 35:93-114.
-
(2006)
Annu. Rev. Biophys. Biomol. Struct.
, vol.35
, pp. 93-114
-
-
Erzberger, J.P.1
Berger, J.M.2
-
30
-
-
84855198520
-
Structure and function of the AAA+ nucleotide binding pocket
-
Wendler P., et al. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 2012, 1823:2-14.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 2-14
-
-
Wendler, P.1
-
31
-
-
70350772363
-
Crystal structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
-
Glynn S.E., et al. Crystal structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 2010, 139:744-756.
-
(2010)
Cell
, vol.139
, pp. 744-756
-
-
Glynn, S.E.1
-
32
-
-
84876903053
-
Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine
-
Stinson B.M., et al. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 2013, 153:628-639.
-
(2013)
Cell
, vol.153
, pp. 628-639
-
-
Stinson, B.M.1
-
33
-
-
21244482459
-
Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine
-
Hersch G.L., et al. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 2005, 121:1017-1027.
-
(2005)
Cell
, vol.121
, pp. 1017-1027
-
-
Hersch, G.L.1
-
34
-
-
84861876642
-
Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine
-
Glynn S.E., et al. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat. Struct. Mol. Biol. 2012, 19:616-622.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 616-622
-
-
Glynn, S.E.1
-
35
-
-
0034677361
-
The structures of HslU and the ATP-dependent protease HslU-HslV
-
Bochtler M., et al. The structures of HslU and the ATP-dependent protease HslU-HslV. Nature 2000, 403:800-805.
-
(2000)
Nature
, vol.403
, pp. 800-805
-
-
Bochtler, M.1
-
36
-
-
77958477536
-
Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber
-
Cha S., et al. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J. 2010, 29:3520-3530.
-
(2010)
EMBO J.
, vol.29
, pp. 3520-3530
-
-
Cha, S.1
-
37
-
-
45849107940
-
Asymmetric nucleotide transactions of the HslUV protease
-
Yakamavich J.A., et al. Asymmetric nucleotide transactions of the HslUV protease. J. Mol. Biol. 2008, 380:946-957.
-
(2008)
J. Mol. Biol.
, vol.380
, pp. 946-957
-
-
Yakamavich, J.A.1
-
38
-
-
34547963061
-
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
-
Horwitz A.A., et al. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J. Biol. Chem. 2007, 282:22921-22929.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 22921-22929
-
-
Horwitz, A.A.1
-
39
-
-
76049099304
-
The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation
-
Bieniossek C., et al. The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21579-21584.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21579-21584
-
-
Bieniossek, C.1
-
40
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
-
41
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14870-14875.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
-
42
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela M.E., et al. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 2013, 20:781-788.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
-
43
-
-
67649604544
-
Mapping the structure and conformational movements of proteins with transition metal ion FRET
-
Taraska J.W., et al. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat. Methods 2009, 6:532-537.
-
(2009)
Nat. Methods
, vol.6
, pp. 532-537
-
-
Taraska, J.W.1
-
44
-
-
84875222659
-
Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors
-
Hwang W., Lang M.J. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Cell. Mol. Bioeng. 2013, 6:65-73.
-
(2013)
Cell. Mol. Bioeng.
, vol.6
, pp. 65-73
-
-
Hwang, W.1
Lang, M.J.2
-
45
-
-
84860721580
-
Insights into dynein motor domain function from a 3.3-Å crystal structure
-
S1
-
Schmidt H., et al. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat. Struct. Mol. Biol. 2012, 19:492-497. S1.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 492-497
-
-
Schmidt, H.1
-
46
-
-
84865679752
-
Lis1 acts as a 'clutch' between the ATPase and microtubule-binding domains of the dynein motor
-
Huang J., et al. Lis1 acts as a 'clutch' between the ATPase and microtubule-binding domains of the dynein motor. Cell 2012, 150:975-986.
-
(2012)
Cell
, vol.150
, pp. 975-986
-
-
Huang, J.1
-
47
-
-
0034625236
-
Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides
-
Singleton M.R., et al. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 2000, 101:589-600.
-
(2000)
Cell
, vol.101
, pp. 589-600
-
-
Singleton, M.R.1
-
48
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith D.M., et al. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011, 144:526-538.
-
(2011)
Cell
, vol.144
, pp. 526-538
-
-
Smith, D.M.1
-
49
-
-
84876909425
-
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Śledź P., et al. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7264-7269.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 7264-7269
-
-
Śledź, P.1
-
50
-
-
58749087869
-
Intersubunit coordination in a homomeric ring ATPase
-
Moffitt J.R., et al. Intersubunit coordination in a homomeric ring ATPase. Nature 2009, 457:446-450.
-
(2009)
Nature
, vol.457
, pp. 446-450
-
-
Moffitt, J.R.1
-
51
-
-
84869987562
-
High degree of coordination and division of labor among subunits in a homomeric ring ATPase
-
Chistol G., et al. High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 2012, 151:1017-1028.
-
(2012)
Cell
, vol.151
, pp. 1017-1028
-
-
Chistol, G.1
-
52
-
-
84886776909
-
The ClpXP protease unfolds substrates with a constant pulling frequency but using different gears
-
Sen M., et al. The ClpXP protease unfolds substrates with a constant pulling frequency but using different gears. Cell 2013, 155:636-646.
-
(2013)
Cell
, vol.155
, pp. 636-646
-
-
Sen, M.1
-
53
-
-
33746375404
-
Mechanism of DNA translocation in a replicative hexameric helicase
-
Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
-
(2006)
Nature
, vol.442
, pp. 270-275
-
-
Enemark, E.J.1
Joshua-Tor, L.2
-
54
-
-
70350344051
-
Running in reverse: the structural basis for translocation polarity in hexameric helicases
-
Thomsen N.D., Berger J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 2009, 139:523-534.
-
(2009)
Cell
, vol.139
, pp. 523-534
-
-
Thomsen, N.D.1
Berger, J.M.2
-
55
-
-
84867538324
-
The hexameric helicase DnaB adopts a nonplanar conformation during translocation
-
Itsathitphaisarn O., et al. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 2012, 151:267-277.
-
(2012)
Cell
, vol.151
, pp. 267-277
-
-
Itsathitphaisarn, O.1
-
56
-
-
5344266886
-
Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease
-
Bolon D.N., et al. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell 2004, 16:343-350.
-
(2004)
Mol. Cell
, vol.16
, pp. 343-350
-
-
Bolon, D.N.1
-
57
-
-
41249097479
-
Structural basis of mechanochemical coupling in a hexameric molecular motor
-
Kainov D.E., et al. Structural basis of mechanochemical coupling in a hexameric molecular motor. J. Biol. Chem. 2008, 283:3607-3617.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3607-3617
-
-
Kainov, D.E.1
|