메뉴 건너뛰기




Volumn 39, Issue 2, 2014, Pages 53-60

Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases

Author keywords

AAA+ protease; ATP hydrolysis; Protein translocation; Subunit coordination

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; ADENOSINE TRIPHOSPHATE DEPENDENT PROTEINASE; ENDOPEPTIDASE CLPX; POLYPEPTIDE; PROTEASOME; PROTEOME;

EID: 84892882219     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.11.003     Document Type: Review
Times cited : (36)

References (57)
  • 1
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer R.T., Baker T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 2011, 80:587-612.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 3
    • 0032969563 scopus 로고    scopus 로고
    • AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
    • Neuwald A.F., et al. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999, 9:27-43.
    • (1999) Genome Res. , vol.9 , pp. 27-43
    • Neuwald, A.F.1
  • 4
    • 84055190893 scopus 로고    scopus 로고
    • Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine
    • Truscott K.N., et al. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life 2011, 63:955-963.
    • (2011) IUBMB Life , vol.63 , pp. 955-963
    • Truscott, K.N.1
  • 5
    • 84880736920 scopus 로고    scopus 로고
    • The task force that rescues stalled ribosomes in bacteria
    • Giudice E., Gillet R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem. Sci. 2013, 38:403-411.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 403-411
    • Giudice, E.1    Gillet, R.2
  • 6
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 7
    • 39549084936 scopus 로고    scopus 로고
    • Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates
    • Martin A., et al. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 2008, 29:441-450.
    • (2008) Mol. Cell , vol.29 , pp. 441-450
    • Martin, A.1
  • 8
    • 84872102009 scopus 로고    scopus 로고
    • Design principles of a universal protein degradation machine
    • Matyskiela M.E., Martin A. Design principles of a universal protein degradation machine. J. Mol. Biol. 2013, 425:199-213.
    • (2013) J. Mol. Biol. , vol.425 , pp. 199-213
    • Matyskiela, M.E.1    Martin, A.2
  • 9
    • 67651208925 scopus 로고    scopus 로고
    • Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases
    • Kirstein J., et al. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat. Rev. Microbiol. 2009, 7:589-599.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 589-599
    • Kirstein, J.1
  • 10
    • 39149135202 scopus 로고    scopus 로고
    • Protein targeting to ATP-dependent proteases
    • Inobe T., Matouschek A. Protein targeting to ATP-dependent proteases. Curr. Opin. Struct. Biol. 2008, 18:43-51.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 43-51
    • Inobe, T.1    Matouschek, A.2
  • 11
    • 33751228400 scopus 로고    scopus 로고
    • ATP-dependent proteases of bacteria: recognition logic and operating principles
    • Baker T.A., Sauer R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 2006, 31:647-653.
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 647-653
    • Baker, T.A.1    Sauer, R.T.2
  • 12
    • 79955534260 scopus 로고    scopus 로고
    • ClpX(P) generates mechanical force to unfold and translocate its protein substrates
    • Maillard R.A., et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 2011, 145:459-469.
    • (2011) Cell , vol.145 , pp. 459-469
    • Maillard, R.A.1
  • 13
    • 79953888421 scopus 로고    scopus 로고
    • Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
    • Aubin-Tam M., et al. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 2011, 145:257-267.
    • (2011) Cell , vol.145 , pp. 257-267
    • Aubin-Tam, M.1
  • 14
    • 0035096082 scopus 로고    scopus 로고
    • Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
    • Wang J., et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001, 9:177-184.
    • (2001) Structure , vol.9 , pp. 177-184
    • Wang, J.1
  • 15
    • 20744457369 scopus 로고    scopus 로고
    • Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase
    • Park E., et al. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 2005, 280:22892-22898.
    • (2005) J. Biol. Chem. , vol.280 , pp. 22892-22898
    • Park, E.1
  • 16
    • 55549088522 scopus 로고    scopus 로고
    • Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
    • Martin A., et al. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 2008, 15:1147-1151.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1147-1151
    • Martin, A.1
  • 17
    • 70849108762 scopus 로고    scopus 로고
    • Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations
    • Koga N., et al. Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:18237-18242.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 18237-18242
    • Koga, N.1
  • 18
    • 65649123769 scopus 로고    scopus 로고
    • Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
    • (2009) Mol. Cell , vol.34 , pp. 485-496
    • Zhang, F.1
  • 19
    • 1542283751 scopus 로고    scopus 로고
    • Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates
    • Siddiqui S.M., et al. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 2004, 18:369-374.
    • (2004) Genes Dev. , vol.18 , pp. 369-374
    • Siddiqui, S.M.1
  • 20
    • 67649550852 scopus 로고    scopus 로고
    • Polypeptide translocation by the AAA+ ClpXP protease machine
    • Barkow S.R., et al. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 2009, 16:605-612.
    • (2009) Chem. Biol. , vol.16 , pp. 605-612
    • Barkow, S.R.1
  • 21
    • 0035266072 scopus 로고    scopus 로고
    • ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
    • Lee C., et al. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 2001, 7:627-637.
    • (2001) Mol. Cell , vol.7 , pp. 627-637
    • Lee, C.1
  • 22
    • 84877693301 scopus 로고    scopus 로고
    • Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit
    • Too P.H., et al. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J. Biol. Chem. 2013, 288:13243-13257.
    • (2013) J. Biol. Chem. , vol.288 , pp. 13243-13257
    • Too, P.H.1
  • 23
    • 0036091848 scopus 로고    scopus 로고
    • Taking a bite: proteasomal protein processing
    • Rape M., Jentsch S. Taking a bite: proteasomal protein processing. Nat. Cell Biol. 2002, 4:E113-E116.
    • (2002) Nat. Cell Biol. , vol.4
    • Rape, M.1    Jentsch, S.2
  • 24
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB
    • Palombella V.J., et al. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 1994, 78:773-785.
    • (1994) Cell , vol.78 , pp. 773-785
    • Palombella, V.J.1
  • 25
    • 80655149450 scopus 로고    scopus 로고
    • A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome
    • Schrader E.K., et al. A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome. J. Biol. Chem. 2011, 286:39051-39058.
    • (2011) J. Biol. Chem. , vol.286 , pp. 39051-39058
    • Schrader, E.K.1
  • 26
    • 79953086676 scopus 로고    scopus 로고
    • The nuts and bolts of ring-translocase structure and mechanism
    • Lyubimov A.Y., et al. The nuts and bolts of ring-translocase structure and mechanism. Curr. Opin. Struct. Biol. 2011, 21:240-248.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 240-248
    • Lyubimov, A.Y.1
  • 27
    • 27144474906 scopus 로고    scopus 로고
    • Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines
    • Martin A., et al. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 2005, 437:1115-1120.
    • (2005) Nature , vol.437 , pp. 1115-1120
    • Martin, A.1
  • 28
    • 1642390881 scopus 로고    scopus 로고
    • A link between sequence conservation and domain motion within the AAA+ family
    • Smith G.R., et al. A link between sequence conservation and domain motion within the AAA+ family. J. Struct. Biol. 2004, 146:189-204.
    • (2004) J. Struct. Biol. , vol.146 , pp. 189-204
    • Smith, G.R.1
  • 29
    • 33745041480 scopus 로고    scopus 로고
    • Evolutionary relationships and structural mechanisms of AAA+ proteins
    • Erzberger J.P., Berger J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 2006, 35:93-114.
    • (2006) Annu. Rev. Biophys. Biomol. Struct. , vol.35 , pp. 93-114
    • Erzberger, J.P.1    Berger, J.M.2
  • 30
    • 84855198520 scopus 로고    scopus 로고
    • Structure and function of the AAA+ nucleotide binding pocket
    • Wendler P., et al. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 2012, 1823:2-14.
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 2-14
    • Wendler, P.1
  • 31
    • 70350772363 scopus 로고    scopus 로고
    • Crystal structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
    • Glynn S.E., et al. Crystal structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 2010, 139:744-756.
    • (2010) Cell , vol.139 , pp. 744-756
    • Glynn, S.E.1
  • 32
    • 84876903053 scopus 로고    scopus 로고
    • Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine
    • Stinson B.M., et al. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 2013, 153:628-639.
    • (2013) Cell , vol.153 , pp. 628-639
    • Stinson, B.M.1
  • 33
    • 21244482459 scopus 로고    scopus 로고
    • Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine
    • Hersch G.L., et al. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 2005, 121:1017-1027.
    • (2005) Cell , vol.121 , pp. 1017-1027
    • Hersch, G.L.1
  • 34
    • 84861876642 scopus 로고    scopus 로고
    • Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine
    • Glynn S.E., et al. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat. Struct. Mol. Biol. 2012, 19:616-622.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 616-622
    • Glynn, S.E.1
  • 35
    • 0034677361 scopus 로고    scopus 로고
    • The structures of HslU and the ATP-dependent protease HslU-HslV
    • Bochtler M., et al. The structures of HslU and the ATP-dependent protease HslU-HslV. Nature 2000, 403:800-805.
    • (2000) Nature , vol.403 , pp. 800-805
    • Bochtler, M.1
  • 36
    • 77958477536 scopus 로고    scopus 로고
    • Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber
    • Cha S., et al. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J. 2010, 29:3520-3530.
    • (2010) EMBO J. , vol.29 , pp. 3520-3530
    • Cha, S.1
  • 37
    • 45849107940 scopus 로고    scopus 로고
    • Asymmetric nucleotide transactions of the HslUV protease
    • Yakamavich J.A., et al. Asymmetric nucleotide transactions of the HslUV protease. J. Mol. Biol. 2008, 380:946-957.
    • (2008) J. Mol. Biol. , vol.380 , pp. 946-957
    • Yakamavich, J.A.1
  • 38
    • 34547963061 scopus 로고    scopus 로고
    • ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
    • Horwitz A.A., et al. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J. Biol. Chem. 2007, 282:22921-22929.
    • (2007) J. Biol. Chem. , vol.282 , pp. 22921-22929
    • Horwitz, A.A.1
  • 39
    • 76049099304 scopus 로고    scopus 로고
    • The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation
    • Bieniossek C., et al. The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21579-21584.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21579-21584
    • Bieniossek, C.1
  • 40
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 41
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14870-14875.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14870-14875
    • Beck, F.1
  • 42
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela M.E., et al. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 2013, 20:781-788.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1
  • 43
    • 67649604544 scopus 로고    scopus 로고
    • Mapping the structure and conformational movements of proteins with transition metal ion FRET
    • Taraska J.W., et al. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat. Methods 2009, 6:532-537.
    • (2009) Nat. Methods , vol.6 , pp. 532-537
    • Taraska, J.W.1
  • 44
    • 84875222659 scopus 로고    scopus 로고
    • Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors
    • Hwang W., Lang M.J. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Cell. Mol. Bioeng. 2013, 6:65-73.
    • (2013) Cell. Mol. Bioeng. , vol.6 , pp. 65-73
    • Hwang, W.1    Lang, M.J.2
  • 45
    • 84860721580 scopus 로고    scopus 로고
    • Insights into dynein motor domain function from a 3.3-Å crystal structure
    • S1
    • Schmidt H., et al. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat. Struct. Mol. Biol. 2012, 19:492-497. S1.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 492-497
    • Schmidt, H.1
  • 46
    • 84865679752 scopus 로고    scopus 로고
    • Lis1 acts as a 'clutch' between the ATPase and microtubule-binding domains of the dynein motor
    • Huang J., et al. Lis1 acts as a 'clutch' between the ATPase and microtubule-binding domains of the dynein motor. Cell 2012, 150:975-986.
    • (2012) Cell , vol.150 , pp. 975-986
    • Huang, J.1
  • 47
    • 0034625236 scopus 로고    scopus 로고
    • Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides
    • Singleton M.R., et al. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 2000, 101:589-600.
    • (2000) Cell , vol.101 , pp. 589-600
    • Singleton, M.R.1
  • 48
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • Smith D.M., et al. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011, 144:526-538.
    • (2011) Cell , vol.144 , pp. 526-538
    • Smith, D.M.1
  • 49
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Śledź P., et al. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7264-7269.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7264-7269
    • Śledź, P.1
  • 50
    • 58749087869 scopus 로고    scopus 로고
    • Intersubunit coordination in a homomeric ring ATPase
    • Moffitt J.R., et al. Intersubunit coordination in a homomeric ring ATPase. Nature 2009, 457:446-450.
    • (2009) Nature , vol.457 , pp. 446-450
    • Moffitt, J.R.1
  • 51
    • 84869987562 scopus 로고    scopus 로고
    • High degree of coordination and division of labor among subunits in a homomeric ring ATPase
    • Chistol G., et al. High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 2012, 151:1017-1028.
    • (2012) Cell , vol.151 , pp. 1017-1028
    • Chistol, G.1
  • 52
    • 84886776909 scopus 로고    scopus 로고
    • The ClpXP protease unfolds substrates with a constant pulling frequency but using different gears
    • Sen M., et al. The ClpXP protease unfolds substrates with a constant pulling frequency but using different gears. Cell 2013, 155:636-646.
    • (2013) Cell , vol.155 , pp. 636-646
    • Sen, M.1
  • 53
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2
  • 54
    • 70350344051 scopus 로고    scopus 로고
    • Running in reverse: the structural basis for translocation polarity in hexameric helicases
    • Thomsen N.D., Berger J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 2009, 139:523-534.
    • (2009) Cell , vol.139 , pp. 523-534
    • Thomsen, N.D.1    Berger, J.M.2
  • 55
    • 84867538324 scopus 로고    scopus 로고
    • The hexameric helicase DnaB adopts a nonplanar conformation during translocation
    • Itsathitphaisarn O., et al. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 2012, 151:267-277.
    • (2012) Cell , vol.151 , pp. 267-277
    • Itsathitphaisarn, O.1
  • 56
    • 5344266886 scopus 로고    scopus 로고
    • Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease
    • Bolon D.N., et al. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell 2004, 16:343-350.
    • (2004) Mol. Cell , vol.16 , pp. 343-350
    • Bolon, D.N.1
  • 57
    • 41249097479 scopus 로고    scopus 로고
    • Structural basis of mechanochemical coupling in a hexameric molecular motor
    • Kainov D.E., et al. Structural basis of mechanochemical coupling in a hexameric molecular motor. J. Biol. Chem. 2008, 283:3607-3617.
    • (2008) J. Biol. Chem. , vol.283 , pp. 3607-3617
    • Kainov, D.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.