-
1
-
-
43749083041
-
Brick by brick: metabolism and tumor cell growth
-
Deberardinis R.J., Sayed N., Ditsworth D., Thompson C.B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 2008, 18:54-61.
-
(2008)
Curr. Opin. Genet. Dev.
, vol.18
, pp. 54-61
-
-
Deberardinis, R.J.1
Sayed, N.2
Ditsworth, D.3
Thompson, C.B.4
-
2
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
-
Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
3
-
-
57749187631
-
Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency
-
Barna M., Pusic A., Zollo O., Costa M., Kondrashov N., Rego E., et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008, 456:971-975.
-
(2008)
Nature
, vol.456
, pp. 971-975
-
-
Barna, M.1
Pusic, A.2
Zollo, O.3
Costa, M.4
Kondrashov, N.5
Rego, E.6
-
4
-
-
84925491509
-
MTORC1-mediated translational elongation limits intestinal tumour initiation and growth
-
Faller W.J., Jackson T.J., Knight J.R., Ridgway R.A., Jamieson T., Karim S.A., et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 2015, 517:497-500.
-
(2015)
Nature
, vol.517
, pp. 497-500
-
-
Faller, W.J.1
Jackson, T.J.2
Knight, J.R.3
Ridgway, R.A.4
Jamieson, T.5
Karim, S.A.6
-
5
-
-
84908213474
-
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
-
Sabharwal S.S., Schumacker P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?. Nat. Rev. Cancer 2014, 14:709-721.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 709-721
-
-
Sabharwal, S.S.1
Schumacker, P.T.2
-
6
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
7
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra I., Howell J.J., Asara J.M., Manning B.D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013, 339:1323-1328.
-
(2013)
Science
, vol.339
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
8
-
-
84874961313
-
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
-
Robitaille A.M., Christen S., Shimobayashi M., Cornu M., Fava L.L., Moes S., et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013, 339:1320-1323.
-
(2013)
Science
, vol.339
, pp. 1320-1323
-
-
Robitaille, A.M.1
Christen, S.2
Shimobayashi, M.3
Cornu, M.4
Fava, L.L.5
Moes, S.6
-
10
-
-
0037108750
-
Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
-
Tee A.R., Fingar D.C., Manning B.D., Kwiatkowski D.J., Cantley L.C., Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13571-13576.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 13571-13576
-
-
Tee, A.R.1
Fingar, D.C.2
Manning, B.D.3
Kwiatkowski, D.J.4
Cantley, L.C.5
Blenis, J.6
-
11
-
-
84906898355
-
Coordinated regulation of protein synthesis and degradation by mTORC1
-
Zhang Y., Nicholatos J., Dreier J.R., Ricoult S.J., Widenmaier S.B., Hotamisligil G.S., et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014, 513:440-443.
-
(2014)
Nature
, vol.513
, pp. 440-443
-
-
Zhang, Y.1
Nicholatos, J.2
Dreier, J.R.3
Ricoult, S.J.4
Widenmaier, S.B.5
Hotamisligil, G.S.6
-
12
-
-
84920415711
-
The role for autophagy in cancer
-
White E. The role for autophagy in cancer. J. Clin. Investig. 2015, 125:42-46.
-
(2015)
J. Clin. Investig.
, vol.125
, pp. 42-46
-
-
White, E.1
-
13
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
Kenific C.M., Debnath J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol. 2015, 25:37-45.
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 37-45
-
-
Kenific, C.M.1
Debnath, J.2
-
14
-
-
40649104735
-
Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
-
Ozcan U., Ozcan L., Yilmaz E., Duvel K., Sahin M., Manning B.D., et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 2008, 29:541-551.
-
(2008)
Mol. Cell
, vol.29
, pp. 541-551
-
-
Ozcan, U.1
Ozcan, L.2
Yilmaz, E.3
Duvel, K.4
Sahin, M.5
Manning, B.D.6
-
15
-
-
84900312241
-
Endoplasmic reticulum stress in malignancy
-
Clarke H.J., Chambers J.E., Liniker E., Marciniak S.J. Endoplasmic reticulum stress in malignancy. Cancer Cell 2014, 25:563-573.
-
(2014)
Cancer Cell
, vol.25
, pp. 563-573
-
-
Clarke, H.J.1
Chambers, J.E.2
Liniker, E.3
Marciniak, S.J.4
-
16
-
-
82255173966
-
The unfolded protein response: from stress pathway to homeostatic regulation
-
Walter P., Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 334:1081-1086.
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
17
-
-
33744539521
-
Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells
-
Obeng E.A., Carlson L.M., Gutman D.M., Harrington W.J., Lee K.P., Boise L.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006, 107:4907-4916.
-
(2006)
Blood
, vol.107
, pp. 4907-4916
-
-
Obeng, E.A.1
Carlson, L.M.2
Gutman, D.M.3
Harrington, W.J.4
Lee, K.P.5
Boise, L.H.6
-
18
-
-
45849137877
-
Regulation of hepatic lipogenesis by the transcription factor XBP1
-
Lee A.H., Scapa E.F., Cohen D.E., Glimcher L.H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008, 320:1492-1496.
-
(2008)
Science
, vol.320
, pp. 1492-1496
-
-
Lee, A.H.1
Scapa, E.F.2
Cohen, D.E.3
Glimcher, L.H.4
-
19
-
-
79957605136
-
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
-
Fu S., Yang L., Li P., Hofmann O., Dicker L., Hide W., et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011, 473:528-531.
-
(2011)
Nature
, vol.473
, pp. 528-531
-
-
Fu, S.1
Yang, L.2
Li, P.3
Hofmann, O.4
Dicker, L.5
Hide, W.6
-
20
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., Yecies J.L., Menon S., Raman P., Lipovsky A.I., Souza A.L., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
21
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann T., Santos C.R., Griffiths B., Cully M., Wu M., Leevers S., et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8:224-236.
-
(2008)
Cell Metab.
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
Leevers, S.6
-
22
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson T.R., Sengupta S.S., Harris T.E., Carmack A.E., Kang S.A., Balderas E., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
Balderas, E.6
-
23
-
-
84877984661
-
Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress
-
Young R.M., Ackerman D., Quinn Z.L., Mancuso A., Gruber M., Liu L., et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 2013, 27:1115-1131.
-
(2013)
Genes Dev.
, vol.27
, pp. 1115-1131
-
-
Young, R.M.1
Ackerman, D.2
Quinn, Z.L.3
Mancuso, A.4
Gruber, M.5
Liu, L.6
-
24
-
-
84877961669
-
Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth
-
Griffiths B., Lewis C.A., Bensaad K., Ros S., Zhang Q., Ferber E.C., et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 2013, 1:3.
-
(2013)
Cancer Metab.
, vol.1
, pp. 3
-
-
Griffiths, B.1
Lewis, C.A.2
Bensaad, K.3
Ros, S.4
Zhang, Q.5
Ferber, E.C.6
-
25
-
-
84921824443
-
Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift
-
Medvetz D., Priolo C., Henske E.P. Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift. Mol. Cancer Res. 2015, 13:3-8.
-
(2015)
Mol. Cancer Res.
, vol.13
, pp. 3-8
-
-
Medvetz, D.1
Priolo, C.2
Henske, E.P.3
-
26
-
-
84859171807
-
MYC on the path to cancer
-
Dang C.V. MYC on the path to cancer. Cell 2012, 149:22-35.
-
(2012)
Cell
, vol.149
, pp. 22-35
-
-
Dang, C.V.1
-
27
-
-
84870546460
-
ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth
-
Hart L.S., Cunningham J.T., Datta T., Dey S., Tameire F., Lehman S.L., et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Investig. 2012, 122:4621-4634.
-
(2012)
J. Clin. Investig.
, vol.122
, pp. 4621-4634
-
-
Hart, L.S.1
Cunningham, J.T.2
Datta, T.3
Dey, S.4
Tameire, F.5
Lehman, S.L.6
-
28
-
-
84887613799
-
SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
-
Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 2013, 5:654-665.
-
(2013)
Cell Rep.
, vol.5
, pp. 654-665
-
-
Shin, J.1
He, M.2
Liu, Y.3
Paredes, S.4
Villanova, L.5
Brown, K.6
-
29
-
-
84922784813
-
Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis
-
Carroll P.A., Diolaiti D., McFerrin L., Gu H., Djukovic D., Du J., et al. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 2015, 27:271-285.
-
(2015)
Cancer Cell
, vol.27
, pp. 271-285
-
-
Carroll, P.A.1
Diolaiti, D.2
McFerrin, L.3
Gu, H.4
Djukovic, D.5
Du, J.6
-
30
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P., Tchernyshyov I., Chang T.C., Lee Y.S., Kita K., Ochi T., et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009, 458:762-765.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
31
-
-
70350728803
-
MYC-induced cancer cell energy metabolism and therapeutic opportunities
-
Dang C.V., Le A., Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 2009, 15:6479-6483.
-
(2009)
Clin. Cancer Res.
, vol.15
, pp. 6479-6483
-
-
Dang, C.V.1
Le, A.2
Gao, P.3
-
32
-
-
21744442902
-
Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis
-
Li F., Wang Y., Zeller K.I., Potter J.J., Wonsey D.R., O'Donnell K.A., et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 2005, 25:6225-6234.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 6225-6234
-
-
Li, F.1
Wang, Y.2
Zeller, K.I.3
Potter, J.J.4
Wonsey, D.R.5
O'Donnell, K.A.6
-
33
-
-
1542373685
-
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
-
Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18:357-368.
-
(2004)
Genes Dev.
, vol.18
, pp. 357-368
-
-
Kelly, D.P.1
Scarpulla, R.C.2
-
34
-
-
84859167179
-
Deregulated MYC expression induces dependence upon AMPK-related kinase 5
-
Liu L., Ulbrich J., Muller J., Wustefeld T., Aeberhard L., Kress T.R., et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 2012, 483:608-612.
-
(2012)
Nature
, vol.483
, pp. 608-612
-
-
Liu, L.1
Ulbrich, J.2
Muller, J.3
Wustefeld, T.4
Aeberhard, L.5
Kress, T.R.6
-
36
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F., Hamanaka R., Wheaton W.W., Weinberg S., Joseph J., Lopez M., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8788-8793.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
-
37
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
38
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
Fan J., Ye J., Kamphorst J.J., Shlomi T., Thompson C.B., Rabinowitz J.D. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014, 510:298-302.
-
(2014)
Nature
, vol.510
, pp. 298-302
-
-
Fan, J.1
Ye, J.2
Kamphorst, J.J.3
Shlomi, T.4
Thompson, C.B.5
Rabinowitz, J.D.6
-
39
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H., Kimmelman A.C., Lyssiotis C.A., Hua S., Chu G.C., Fletcher-Sananikone E., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149:656-670.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
Hua, S.4
Chu, G.C.5
Fletcher-Sananikone, E.6
-
40
-
-
84873678601
-
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence
-
Jiang P., Du W., Mancuso A., Wellen K.E., Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013, 493:689-693.
-
(2013)
Nature
, vol.493
, pp. 689-693
-
-
Jiang, P.1
Du, W.2
Mancuso, A.3
Wellen, K.E.4
Yang, X.5
-
41
-
-
84879777723
-
Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo J.Y., Karsli-Uzunbas G., Mathew R., Aisner S.C., Kamphorst J.J., Strohecker A.M., et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013, 27:1447-1461.
-
(2013)
Genes Dev.
, vol.27
, pp. 1447-1461
-
-
Guo, J.Y.1
Karsli-Uzunbas, G.2
Mathew, R.3
Aisner, S.C.4
Kamphorst, J.J.5
Strohecker, A.M.6
-
42
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang S., Wang X., Contino G., Liesa M., Sahin E., Ying H., et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25:717-729.
-
(2011)
Genes Dev.
, vol.25
, pp. 717-729
-
-
Yang, S.1
Wang, X.2
Contino, G.3
Liesa, M.4
Sahin, E.5
Ying, H.6
-
43
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo J.Y., Chen H.Y., Mathew R., Fan J., Strohecker A.M., Karsli-Uzunbas G., et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011, 25:460-470.
-
(2011)
Genes Dev.
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
Karsli-Uzunbas, G.6
-
44
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
-
Commisso C., Davidson S.M., Soydaner-Azeloglu R.G., Parker S.J., Kamphorst J.J., Hackett S., et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013, 497:633-637.
-
(2013)
Nature
, vol.497
, pp. 633-637
-
-
Commisso, C.1
Davidson, S.M.2
Soydaner-Azeloglu, R.G.3
Parker, S.J.4
Kamphorst, J.J.5
Hackett, S.6
-
45
-
-
84878464291
-
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst J.J., Cross J.R., Fan J., de Stanchina E., Mathew R., White E.P., et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:8882-8887.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 8882-8887
-
-
Kamphorst, J.J.1
Cross, J.R.2
Fan, J.3
de Stanchina, E.4
Mathew, R.5
White, E.P.6
-
46
-
-
78649364332
-
Hypoxia-inducible factors and the response to hypoxic stress
-
Majmundar A.J., Wong W.J., Simon M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 2010, 40:294-309.
-
(2010)
Mol. Cell
, vol.40
, pp. 294-309
-
-
Majmundar, A.J.1
Wong, W.J.2
Simon, M.C.3
-
47
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148:399-408.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
48
-
-
43649093915
-
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
-
Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30:393-402.
-
(2008)
Mol. Cell
, vol.30
, pp. 393-402
-
-
Kaelin, W.G.1
Ratcliffe, P.J.2
-
49
-
-
84655161946
-
HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression
-
Keith B., Johnson R.S., Simon M.C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2012, 12:9-22.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 9-22
-
-
Keith, B.1
Johnson, R.S.2
Simon, M.C.3
-
50
-
-
58049216350
-
Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2
-
Toschi A., Lee E., Gadir N., Ohh M., Foster D.A. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J. Biol. Chem. 2008, 283:34495-34499.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 34495-34499
-
-
Toschi, A.1
Lee, E.2
Gadir, N.3
Ohh, M.4
Foster, D.A.5
-
51
-
-
13444283313
-
Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death
-
Blum R., Jacob-Hirsch J., Amariglio N., Rechavi G., Kloog Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res. 2005, 65:999-1006.
-
(2005)
Cancer Res.
, vol.65
, pp. 999-1006
-
-
Blum, R.1
Jacob-Hirsch, J.2
Amariglio, N.3
Rechavi, G.4
Kloog, Y.5
-
52
-
-
0035937715
-
Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia
-
Chen C., Pore N., Behrooz A., Ismail-Beigi F., Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 2001, 276:9519-9525.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 9519-9525
-
-
Chen, C.1
Pore, N.2
Behrooz, A.3
Ismail-Beigi, F.4
Maity, A.5
-
53
-
-
34548257176
-
HIF-dependent antitumorigenic effect of antioxidants in vivo
-
Gao P., Zhang H., Dinavahi R., Li F., Xiang Y., Raman V., et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007, 12:230-238.
-
(2007)
Cancer Cell
, vol.12
, pp. 230-238
-
-
Gao, P.1
Zhang, H.2
Dinavahi, R.3
Li, F.4
Xiang, Y.5
Raman, V.6
-
54
-
-
84894359469
-
Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha
-
Faubert B., Vincent E.E., Griss T., Samborska B., Izreig S., Svensson R.U., et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:2554-2559.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 2554-2559
-
-
Faubert, B.1
Vincent, E.E.2
Griss, T.3
Samborska, B.4
Izreig, S.5
Svensson, R.U.6
-
55
-
-
84893465244
-
Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
-
Sun R.C., Denko N.C. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014, 19:285-292.
-
(2014)
Cell Metab.
, vol.19
, pp. 285-292
-
-
Sun, R.C.1
Denko, N.C.2
-
56
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo C.M., Gameiro P.A., Bell E.L., Mattaini K.R., Yang J., Hiller K., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012, 481:380-384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
57
-
-
84875354450
-
In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation
-
Gameiro P.A., Yang J., Metelo A.M., Perez-Carro R., Baker R., Wang Z., et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 2013, 17:372-385.
-
(2013)
Cell Metab.
, vol.17
, pp. 372-385
-
-
Gameiro, P.A.1
Yang, J.2
Metelo, A.M.3
Perez-Carro, R.4
Baker, R.5
Wang, Z.6
-
58
-
-
68949098346
-
Hypoxia-inducible factor 2 regulates hepatic lipid metabolism
-
Rankin E.B., Rha J., Selak M.A., Unger T.L., Keith B., Liu Q., et al. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 2009, 29:4527-4538.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4527-4538
-
-
Rankin, E.B.1
Rha, J.2
Selak, M.A.3
Unger, T.L.4
Keith, B.5
Liu, Q.6
-
59
-
-
84910142171
-
Hif-2alpha promotes degradation of Mammalian peroxisomes by selective autophagy
-
Walter K.M., Schonenberger M.J., Trotzmuller M., Horn M., Elsasser H.P., Moser A.B., et al. Hif-2alpha promotes degradation of Mammalian peroxisomes by selective autophagy. Cell Metab. 2014, 20:882-897.
-
(2014)
Cell Metab.
, vol.20
, pp. 882-897
-
-
Walter, K.M.1
Schonenberger, M.J.2
Trotzmuller, M.3
Horn, M.4
Elsasser, H.P.5
Moser, A.B.6
-
60
-
-
84980050613
-
HIF-2alpha dependent lipid storage promotes endoplasmic reticulum homeostasis in clear cell renal cell carcinoma
-
Qiu B., Ackerman D., Sanchez D.J., Li B., Ochocki J.D., Grazioli A., et al. HIF-2alpha dependent lipid storage promotes endoplasmic reticulum homeostasis in clear cell renal cell carcinoma. Cancer Discov. 2015, 5(6):652-667.
-
(2015)
Cancer Discov.
, vol.5
, Issue.6
, pp. 652-667
-
-
Qiu, B.1
Ackerman, D.2
Sanchez, D.J.3
Li, B.4
Ochocki, J.D.5
Grazioli, A.6
-
61
-
-
80054771537
-
Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene
-
Shen C., Beroukhim R., Schumacher S.E., Zhou J., Chang M., Signoretti S., et al. Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov. 2011, 1:222-235.
-
(2011)
Cancer Discov.
, vol.1
, pp. 222-235
-
-
Shen, C.1
Beroukhim, R.2
Schumacher, S.E.3
Zhou, J.4
Chang, M.5
Signoretti, S.6
-
62
-
-
20744445650
-
Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma
-
Raval R.R., Lau K.W., Tran M.G., Sowter H.M., Mandriota S.J., Li J.L., et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 2005, 25:5675-5686.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 5675-5686
-
-
Raval, R.R.1
Lau, K.W.2
Tran, M.G.3
Sowter, H.M.4
Mandriota, S.J.5
Li, J.L.6
-
63
-
-
0036527785
-
The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma
-
Maranchie J.K., Vasselli J.R., Riss J., Bonifacino J.S., Linehan W.M., Klausner R.D. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002, 1:247-255.
-
(2002)
Cancer Cell
, vol.1
, pp. 247-255
-
-
Maranchie, J.K.1
Vasselli, J.R.2
Riss, J.3
Bonifacino, J.S.4
Linehan, W.M.5
Klausner, R.D.6
-
64
-
-
2342597973
-
Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth
-
Kondo K., Kim W.Y., Lechpammer M., Kaelin W.G. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003, 1:E83.
-
(2003)
PLoS Biol.
, vol.1
, pp. E83
-
-
Kondo, K.1
Kim, W.Y.2
Lechpammer, M.3
Kaelin, W.G.4
-
65
-
-
84862777063
-
Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression
-
S1-2
-
Schodel J., Bardella C., Sciesielski L.K., Brown J.M., Pugh C.W., Buckle V., et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 2012, 44:420-425. S1-2.
-
(2012)
Nat. Genet.
, vol.44
, pp. 420-425
-
-
Schodel, J.1
Bardella, C.2
Sciesielski, L.K.3
Brown, J.M.4
Pugh, C.W.5
Buckle, V.6
-
66
-
-
84870925392
-
HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5
-
Elorza A., Soro-Arnaiz I., Melendez-Rodriguez F., Rodriguez-Vaello V., Marsboom G., de Carcer G., et al. HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol. Cell 2012, 48:681-691.
-
(2012)
Mol. Cell
, vol.48
, pp. 681-691
-
-
Elorza, A.1
Soro-Arnaiz, I.2
Melendez-Rodriguez, F.3
Rodriguez-Vaello, V.4
Marsboom, G.5
de Carcer, G.6
-
67
-
-
0242581718
-
Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells
-
Gunaratnam L., Morley M., Franovic A., de Paulsen N., Mekhail K., Parolin D.A., et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J. Biol. Chem. 2003, 278:44966-44974.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 44966-44974
-
-
Gunaratnam, L.1
Morley, M.2
Franovic, A.3
de Paulsen, N.4
Mekhail, K.5
Parolin, D.A.6
-
68
-
-
84861913952
-
Lipid droplets and cellular lipid metabolism
-
Walther T.C., Farese R.V. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81:687-714.
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 687-714
-
-
Walther, T.C.1
Farese, R.V.2
-
69
-
-
84875326507
-
Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
-
Wilfling F., Wang H., Haas J.T., Krahmer N., Gould T.J., Uchida A., et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 2013, 24:384-399.
-
(2013)
Dev. Cell
, vol.24
, pp. 384-399
-
-
Wilfling, F.1
Wang, H.2
Haas, J.T.3
Krahmer, N.4
Gould, T.J.5
Uchida, A.6
-
70
-
-
84918821005
-
Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma
-
Haddad A.Q., Kapur P., Singla N., Raman J.D., Then M.T., Nuhn P., et al. Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Cancer 2014, 121(1):43-50.
-
(2014)
Cancer
, vol.121
, Issue.1
, pp. 43-50
-
-
Haddad, A.Q.1
Kapur, P.2
Singla, N.3
Raman, J.D.4
Then, M.T.5
Nuhn, P.6
-
71
-
-
84920112762
-
The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator
-
Faubert B., Vincent E.E., Poffenberger M.C., Jones R.G. The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett. 2015, 356:165-170.
-
(2015)
Cancer Lett.
, vol.356
, pp. 165-170
-
-
Faubert, B.1
Vincent, E.E.2
Poffenberger, M.C.3
Jones, R.G.4
-
72
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie D.G., Ross F.A., Hawley S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
73
-
-
84866425291
-
Translational control in cancer etiology
-
Ruggero D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol. 2013, 5(2):5.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, Issue.2
, pp. 5
-
-
Ruggero, D.1
-
74
-
-
1642328617
-
Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398
-
Browne G.J., Finn S.G., Proud C.G. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 2004, 279:12220-12231.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 12220-12231
-
-
Browne, G.J.1
Finn, S.G.2
Proud, C.G.3
-
75
-
-
0037143449
-
Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis
-
Horman S., Browne G., Krause U., Patel J., Vertommen D., Bertrand L., et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr. Biol. 2002, 12:1419-1423.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1419-1423
-
-
Horman, S.1
Browne, G.2
Krause, U.3
Patel, J.4
Vertommen, D.5
Bertrand, L.6
-
76
-
-
84878271546
-
The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation
-
Leprivier G., Remke M., Rotblat B., Dubuc A., Mateo A.R., Kool M., et al. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 2013, 153:1064-1079.
-
(2013)
Cell
, vol.153
, pp. 1064-1079
-
-
Leprivier, G.1
Remke, M.2
Rotblat, B.3
Dubuc, A.4
Mateo, A.R.5
Kool, M.6
-
77
-
-
85027952132
-
Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch
-
Tennakoon J.B., Shi Y., Han J.J., Tsouko E., White M.A., Burns A.R., et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene 2014, 33:5251-5261.
-
(2014)
Oncogene
, vol.33
, pp. 5251-5261
-
-
Tennakoon, J.B.1
Shi, Y.2
Han, J.J.3
Tsouko, E.4
White, M.A.5
Burns, A.R.6
-
78
-
-
84902201289
-
The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation
-
Yan M., Gingras M.C., Dunlop E.A., Nouet Y., Dupuy F., Jalali Z., et al. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J. Clin. Investig. 2014, 124:2640-2650.
-
(2014)
J. Clin. Investig.
, vol.124
, pp. 2640-2650
-
-
Yan, M.1
Gingras, M.C.2
Dunlop, E.A.3
Nouet, Y.4
Dupuy, F.5
Jalali, Z.6
-
79
-
-
84857789085
-
The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity
-
Masson N., Singleton R.S., Sekirnik R., Trudgian D.C., Ambrose L.J., Miranda M.X., et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012, 13:251-257.
-
(2012)
EMBO Rep.
, vol.13
, pp. 251-257
-
-
Masson, N.1
Singleton, R.S.2
Sekirnik, R.3
Trudgian, D.C.4
Ambrose, L.J.5
Miranda, M.X.6
-
80
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
Faubert B., Boily G., Izreig S., Griss T., Samborska B., Dong Z., et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17:113-124.
-
(2013)
Cell Metab.
, vol.17
, pp. 113-124
-
-
Faubert, B.1
Boily, G.2
Izreig, S.3
Griss, T.4
Samborska, B.5
Dong, Z.6
-
81
-
-
84875235453
-
Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity
-
Atkins C., Liu Q., Minthorn E., Zhang S.Y., Figueroa D.J., Moss K., et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013, 73:1993-2002.
-
(2013)
Cancer Res.
, vol.73
, pp. 1993-2002
-
-
Atkins, C.1
Liu, Q.2
Minthorn, E.3
Zhang, S.Y.4
Figueroa, D.J.5
Moss, K.6
-
82
-
-
84871878351
-
PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis
-
Gao Y., Sartori D.J., Li C., Yu Q.C., Kushner J.A., Simon M.C., et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol. Cell. Biol. 2012, 32:5129-5139.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 5129-5139
-
-
Gao, Y.1
Sartori, D.J.2
Li, C.3
Yu, Q.C.4
Kushner, J.A.5
Simon, M.C.6
|