메뉴 건너뛰기




Volumn 36, Issue 10, 2015, Pages 637-650

Immune Surveillance of the CNS following Infection and Injury

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION RECEPTOR;

EID: 84942524261     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.08.002     Document Type: Review
Times cited : (149)

References (103)
  • 1
    • 84936871460 scopus 로고    scopus 로고
    • Structural and functional features of central nervous system lymphatic vessels
    • Louveau A., et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523:337-341.
    • (2015) Nature , vol.523 , pp. 337-341
    • Louveau, A.1
  • 2
    • 84942469639 scopus 로고    scopus 로고
    • A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
    • Aspelund A., et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015, 212:991-999.
    • (2015) J. Exp. Med. , vol.212 , pp. 991-999
    • Aspelund, A.1
  • 3
    • 33845727067 scopus 로고    scopus 로고
    • What is the blood-brain barrier (not)?
    • Bechmann I., et al. What is the blood-brain barrier (not)?. Trends Immunol. 2007, 28:5-11.
    • (2007) Trends Immunol. , vol.28 , pp. 5-11
    • Bechmann, I.1
  • 4
    • 84866364390 scopus 로고    scopus 로고
    • The anatomical and cellular basis of immune surveillance in the central nervous system
    • Ransohoff R.M., Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 2012, 12:623-635.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 623-635
    • Ransohoff, R.M.1    Engelhardt, B.2
  • 5
    • 0023949553 scopus 로고
    • Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo
    • Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239:290-292.
    • (1988) Science , vol.239 , pp. 290-292
    • Hickey, W.F.1    Kimura, H.2
  • 6
    • 84878478721 scopus 로고    scopus 로고
    • In vivo dynamics of innate immune sentinels in the CNS
    • Nayak D., et al. In vivo dynamics of innate immune sentinels in the CNS. Intravital 2012, 1:95-106.
    • (2012) Intravital , vol.1 , pp. 95-106
    • Nayak, D.1
  • 7
    • 79955605102 scopus 로고    scopus 로고
    • Physiology of microglia
    • Kettenmann H., et al. Physiology of microglia. Physiol. Rev. 2011, 91:461-553.
    • (2011) Physiol. Rev. , vol.91 , pp. 461-553
    • Kettenmann, H.1
  • 8
    • 33745847180 scopus 로고    scopus 로고
    • TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity
    • Creagh E.M., O'Neill L.A. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006, 27:352-357.
    • (2006) Trends Immunol. , vol.27 , pp. 352-357
    • Creagh, E.M.1    O'Neill, L.A.2
  • 9
    • 84904762931 scopus 로고    scopus 로고
    • Pattern recognition receptors and central nervous system repair
    • Kigerl K.A., et al. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 2014, 258:5-16.
    • (2014) Exp. Neurol. , vol.258 , pp. 5-16
    • Kigerl, K.A.1
  • 10
    • 80052143412 scopus 로고    scopus 로고
    • RIG-I-like receptors: cytoplasmic sensors for non-self RNA
    • Kato H., et al. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol. Rev. 2011, 243:91-98.
    • (2011) Immunol. Rev. , vol.243 , pp. 91-98
    • Kato, H.1
  • 11
    • 23744454577 scopus 로고    scopus 로고
    • TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway
    • Moynagh P.N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway. Trends Immunol. 2005, 26:469-476.
    • (2005) Trends Immunol. , vol.26 , pp. 469-476
    • Moynagh, P.N.1
  • 12
    • 34347348269 scopus 로고    scopus 로고
    • Type I interferon response in the central nervous system
    • Paul S., et al. Type I interferon response in the central nervous system. Biochimie 2007, 89:770-778.
    • (2007) Biochimie , vol.89 , pp. 770-778
    • Paul, S.1
  • 13
    • 84895443386 scopus 로고    scopus 로고
    • Long-distance interferon signaling within the brain blocks virus spread
    • van den Pol A.N., et al. Long-distance interferon signaling within the brain blocks virus spread. J. Virol. 2014, 88:3695-3704.
    • (2014) J. Virol. , vol.88 , pp. 3695-3704
    • van den Pol, A.N.1
  • 14
    • 84878502792 scopus 로고    scopus 로고
    • Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system
    • Nayak D., et al. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog. 2013, 9:e1003395.
    • (2013) PLoS Pathog. , vol.9
    • Nayak, D.1
  • 15
    • 77956019250 scopus 로고    scopus 로고
    • Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus
    • Zhou S., et al. Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J. Virol. 2010, 84:9452-9462.
    • (2010) J. Virol. , vol.84 , pp. 9452-9462
    • Zhou, S.1
  • 16
    • 29144501207 scopus 로고    scopus 로고
    • The interferon response circuit: induction and suppression by pathogenic viruses
    • Haller O., et al. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006, 344:119-130.
    • (2006) Virology , vol.344 , pp. 119-130
    • Haller, O.1
  • 17
    • 33845951211 scopus 로고    scopus 로고
    • DAMPs, PAMPs and alarmins: all we need to know about danger
    • Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007, 81:1-5.
    • (2007) J. Leukoc. Biol. , vol.81 , pp. 1-5
    • Bianchi, M.E.1
  • 18
    • 84936891896 scopus 로고    scopus 로고
    • Inflammasomes: mechanism of action, role in disease, and therapeutics
    • Guo H., et al. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015, 21:677-687.
    • (2015) Nat. Med. , vol.21 , pp. 677-687
    • Guo, H.1
  • 19
    • 84873705381 scopus 로고    scopus 로고
    • Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection
    • Jamilloux Y., et al. Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection. Glia 2013, 61:539-549.
    • (2013) Glia , vol.61 , pp. 539-549
    • Jamilloux, Y.1
  • 20
    • 84899474093 scopus 로고    scopus 로고
    • Critical role for the AIM2 inflammasome during acute CNS bacterial infection
    • Hanamsagar R., et al. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J. Neurochem. 2014, 129:704-711.
    • (2014) J. Neurochem. , vol.129 , pp. 704-711
    • Hanamsagar, R.1
  • 21
    • 84926319950 scopus 로고    scopus 로고
    • Inflammation and neuroprotection in traumatic brain injury
    • Corps K.N., et al. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015, 72:355-362.
    • (2015) JAMA Neurol. , vol.72 , pp. 355-362
    • Corps, K.N.1
  • 22
    • 84555178222 scopus 로고    scopus 로고
    • Trauma alarmins as activators of damage-induced inflammation
    • Manson J., et al. Trauma alarmins as activators of damage-induced inflammation. Br. J. Surg. 2012, 99(Suppl. 1):12-20.
    • (2012) Br. J. Surg. , vol.99 , pp. 12-20
    • Manson, J.1
  • 23
    • 84875489498 scopus 로고    scopus 로고
    • Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice
    • Ahmad A., et al. Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS ONE 2013, 8:e57208.
    • (2013) PLoS ONE , vol.8
    • Ahmad, A.1
  • 24
    • 84872528255 scopus 로고    scopus 로고
    • Animal models of traumatic brain injury
    • Xiong Y., et al. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 2013, 14:128-142.
    • (2013) Nat. Rev. Neurosci. , vol.14 , pp. 128-142
    • Xiong, Y.1
  • 25
    • 84928265677 scopus 로고    scopus 로고
    • Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway
    • Rosenberger K., et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol. Neurodegener. 2015, 10:5.
    • (2015) Mol. Neurodegener. , vol.10 , pp. 5
    • Rosenberger, K.1
  • 26
    • 79952192382 scopus 로고    scopus 로고
    • Immune cell regulation by autocrine purinergic signalling
    • Junger W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 2011, 11:201-212.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 201-212
    • Junger, W.G.1
  • 27
    • 84871048026 scopus 로고    scopus 로고
    • Purinergic signaling during inflammation
    • Eltzschig H.K., et al. Purinergic signaling during inflammation. N. Engl. J. Med. 2012, 367:2322-2333.
    • (2012) N. Engl. J. Med. , vol.367 , pp. 2322-2333
    • Eltzschig, H.K.1
  • 28
    • 22244464662 scopus 로고    scopus 로고
    • ATP mediates rapid microglial response to local brain injury in vivo
    • Davalos D., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005, 8:752-758.
    • (2005) Nat. Neurosci. , vol.8 , pp. 752-758
    • Davalos, D.1
  • 29
    • 19744380563 scopus 로고    scopus 로고
    • Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
    • Nimmerjahn A., et al. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
    • (2005) Science , vol.308 , pp. 1314-1318
    • Nimmerjahn, A.1
  • 30
    • 33749525328 scopus 로고    scopus 로고
    • Innate response to focal necrotic injury inside the blood-brain barrier
    • Kim J.V., Dustin M.L. Innate response to focal necrotic injury inside the blood-brain barrier. J. Immunol. 2006, 177:5269-5277.
    • (2006) J. Immunol. , vol.177 , pp. 5269-5277
    • Kim, J.V.1    Dustin, M.L.2
  • 31
    • 84892369064 scopus 로고    scopus 로고
    • Transcranial amelioration of inflammation and cell death after brain injury
    • Roth T.L., et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 2014, 505:223-228.
    • (2014) Nature , vol.505 , pp. 223-228
    • Roth, T.L.1
  • 32
    • 34248576759 scopus 로고    scopus 로고
    • Physiology and pathophysiology of purinergic neurotransmission
    • Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007, 87:659-797.
    • (2007) Physiol. Rev. , vol.87 , pp. 659-797
    • Burnstock, G.1
  • 33
    • 56149096976 scopus 로고    scopus 로고
    • Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain
    • Ulmann L., et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J. Neurosci. 2008, 28:11263-11268.
    • (2008) J. Neurosci. , vol.28 , pp. 11263-11268
    • Ulmann, L.1
  • 34
    • 84857530330 scopus 로고    scopus 로고
    • P2X4 receptors influence inflammasome activation after spinal cord injury
    • de Rivero Vaccari J.P., et al. P2X4 receptors influence inflammasome activation after spinal cord injury. J. Neurosci. 2012, 32:3058-3066.
    • (2012) J. Neurosci. , vol.32 , pp. 3058-3066
    • de Rivero Vaccari, J.P.1
  • 35
    • 4043079197 scopus 로고    scopus 로고
    • P2X7 receptor inhibition improves recovery after spinal cord injury
    • Wang X., et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 2004, 10:821-827.
    • (2004) Nat. Med. , vol.10 , pp. 821-827
    • Wang, X.1
  • 36
    • 84864015442 scopus 로고    scopus 로고
    • Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice
    • Kimbler D.E., et al. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS ONE 2012, 7:e41229.
    • (2012) PLoS ONE , vol.7
    • Kimbler, D.E.1
  • 37
    • 59349115909 scopus 로고    scopus 로고
    • Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury
    • Ankeny D.P., Popovich P.G. Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2009, 158:1112-1121.
    • (2009) Neuroscience , vol.158 , pp. 1112-1121
    • Ankeny, D.P.1    Popovich, P.G.2
  • 38
    • 84875553508 scopus 로고    scopus 로고
    • Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus
    • Shechter R., et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 2013, 38:555-569.
    • (2013) Immunity , vol.38 , pp. 555-569
    • Shechter, R.1
  • 39
    • 84894646177 scopus 로고    scopus 로고
    • The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus
    • Schwartz M., Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014, 33:7-22.
    • (2014) EMBO J. , vol.33 , pp. 7-22
    • Schwartz, M.1    Baruch, K.2
  • 40
    • 58849165766 scopus 로고    scopus 로고
    • West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection
    • Brien J.D., et al. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 2008, 181:8568-8575.
    • (2008) J. Immunol. , vol.181 , pp. 8568-8575
    • Brien, J.D.1
  • 41
    • 3242677841 scopus 로고    scopus 로고
    • + T cells in control of West Nile virus infection
    • + T cells in control of West Nile virus infection. J. Virol. 2004, 78:8312-8321.
    • (2004) J. Virol. , vol.78 , pp. 8312-8321
    • Shrestha, B.1    Diamond, M.S.2
  • 42
    • 49649103837 scopus 로고    scopus 로고
    • CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis
    • McCandless E.E., et al. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:11270-11275.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 11270-11275
    • McCandless, E.E.1
  • 43
    • 79951694551 scopus 로고    scopus 로고
    • CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity
    • Cruz-Orengo L., et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 2011, 208:327-339.
    • (2011) J. Exp. Med. , vol.208 , pp. 327-339
    • Cruz-Orengo, L.1
  • 44
    • 79955727320 scopus 로고    scopus 로고
    • Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection
    • Kang S.S., et al. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J. Exp. Med. 2011, 208:747-759.
    • (2011) J. Exp. Med. , vol.208 , pp. 747-759
    • Kang, S.S.1
  • 45
    • 60149107060 scopus 로고    scopus 로고
    • + T cells in the brain and visualization of a kinesis-associated system of reticular fibers
    • + T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 2009, 30:300-311.
    • (2009) Immunity , vol.30 , pp. 300-311
    • Wilson, E.H.1
  • 46
    • 0035062597 scopus 로고    scopus 로고
    • Noncytolytic control of viral infections by the innate and adaptive immune response
    • Guidotti L.G., Chisari F.V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 2001, 19:65-91.
    • (2001) Annu. Rev. Immunol. , vol.19 , pp. 65-91
    • Guidotti, L.G.1    Chisari, F.V.2
  • 47
    • 0029914331 scopus 로고    scopus 로고
    • Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo
    • Kagi D., et al. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 1996, 14:207-232.
    • (1996) Annu. Rev. Immunol. , vol.14 , pp. 207-232
    • Kagi, D.1
  • 48
    • 84857826936 scopus 로고    scopus 로고
    • CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis
    • Phares T.W., et al. CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J. Virol. 2012, 86:2416-2427.
    • (2012) J. Virol. , vol.86 , pp. 2416-2427
    • Phares, T.W.1
  • 49
    • 84884821531 scopus 로고    scopus 로고
    • IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis
    • Phares T.W., et al. IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis. J. Neuroimmunol. 2013, 263:43-54.
    • (2013) J. Neuroimmunol. , vol.263 , pp. 43-54
    • Phares, T.W.1
  • 50
    • 84874075232 scopus 로고    scopus 로고
    • Intrathecal humoral immunity to encephalitic RNA viruses
    • Phares T.W., et al. Intrathecal humoral immunity to encephalitic RNA viruses. Viruses 2013, 5:732-752.
    • (2013) Viruses , vol.5 , pp. 732-752
    • Phares, T.W.1
  • 51
    • 34347348127 scopus 로고    scopus 로고
    • Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification
    • Lauterbach H., et al. Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification. Virol. J. 2007, 4:53.
    • (2007) Virol. J. , vol.4 , pp. 53
    • Lauterbach, H.1
  • 52
    • 84866144157 scopus 로고    scopus 로고
    • + T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons
    • + T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J. Virol. 2012, 86:8937-8948.
    • (2012) J. Virol. , vol.86 , pp. 8937-8948
    • Shrestha, B.1
  • 53
    • 84922515122 scopus 로고    scopus 로고
    • Viral diseases of the central nervous system
    • Swanson P.A., McGavern D.B. Viral diseases of the central nervous system. Curr. Opin. Virol. 2015, 11:44-54.
    • (2015) Curr. Opin. Virol. , vol.11 , pp. 44-54
    • Swanson, P.A.1    McGavern, D.B.2
  • 54
    • 58149352396 scopus 로고    scopus 로고
    • Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis
    • Kim J.V., et al. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009, 457:191-195.
    • (2009) Nature , vol.457 , pp. 191-195
    • Kim, J.V.1
  • 55
    • 84885463512 scopus 로고    scopus 로고
    • + T cell-mediated dendrite and synapse loss
    • + T cell-mediated dendrite and synapse loss. J. Exp. Med. 2013, 210:2087-2103.
    • (2013) J. Exp. Med. , vol.210 , pp. 2087-2103
    • Kreutzfeldt, M.1
  • 56
    • 84964697336 scopus 로고    scopus 로고
    • Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells
    • Herz J., et al. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J. Exp. Med. 2015, 212:1153-1169.
    • (2015) J. Exp. Med. , vol.212 , pp. 1153-1169
    • Herz, J.1
  • 57
    • 84896904596 scopus 로고    scopus 로고
    • Microglia development and function
    • Nayak D., et al. Microglia development and function. Annu. Rev. Immunol. 2014, 32:367-402.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 367-402
    • Nayak, D.1
  • 58
    • 84899636196 scopus 로고    scopus 로고
    • Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death
    • Greenhalgh A.D., David S. Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J. Neurosci. 2014, 34:6316-6322.
    • (2014) J. Neurosci. , vol.34 , pp. 6316-6322
    • Greenhalgh, A.D.1    David, S.2
  • 59
    • 84924115599 scopus 로고    scopus 로고
    • Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons
    • Rajbhandari L., et al. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 2014, 62:1982-1991.
    • (2014) Glia , vol.62 , pp. 1982-1991
    • Rajbhandari, L.1
  • 60
    • 31544466262 scopus 로고    scopus 로고
    • Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis
    • Boven L.A., et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 2006, 129:517-526.
    • (2006) Brain , vol.129 , pp. 517-526
    • Boven, L.A.1
  • 61
    • 84922768570 scopus 로고    scopus 로고
    • Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris
    • Wang X., et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2015, 63:635-651.
    • (2015) Glia , vol.63 , pp. 635-651
    • Wang, X.1
  • 62
    • 84908028367 scopus 로고    scopus 로고
    • TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord
    • Kroner A., et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 2014, 83:1098-1116.
    • (2014) Neuron , vol.83 , pp. 1098-1116
    • Kroner, A.1
  • 63
    • 84928266217 scopus 로고    scopus 로고
    • Inefficient clearance of myelin debris by microglia impairs remyelinating processes
    • Lampron A., et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 2015, 212:481-495.
    • (2015) J. Exp. Med. , vol.212 , pp. 481-495
    • Lampron, A.1
  • 64
    • 84906316516 scopus 로고    scopus 로고
    • Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned
    • Gudi V., et al. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front. Cell. Neurosci. 2014, 8:73.
    • (2014) Front. Cell. Neurosci. , vol.8 , pp. 73
    • Gudi, V.1
  • 65
    • 0032440093 scopus 로고    scopus 로고
    • Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice
    • Hiremath M.M., et al. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 1998, 92:38-49.
    • (1998) J. Neuroimmunol. , vol.92 , pp. 38-49
    • Hiremath, M.M.1
  • 66
    • 0035086799 scopus 로고    scopus 로고
    • Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family
    • Daws M.R., et al. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol. 2001, 31:783-791.
    • (2001) Eur. J. Immunol. , vol.31 , pp. 783-791
    • Daws, M.R.1
  • 67
    • 0038784517 scopus 로고    scopus 로고
    • Pattern recognition by TREM-2: binding of anionic ligands
    • Daws M.R., et al. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 2003, 171:594-599.
    • (2003) J. Immunol. , vol.171 , pp. 594-599
    • Daws, M.R.1
  • 68
    • 84923346682 scopus 로고    scopus 로고
    • Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke
    • Kawabori M., et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 2015, 35:3384-3396.
    • (2015) J. Neurosci. , vol.35 , pp. 3384-3396
    • Kawabori, M.1
  • 69
    • 84929012585 scopus 로고    scopus 로고
    • TREM2 sustains microglial expansion during aging and response to demyelination
    • Poliani P.L., et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 2015, 125:2161-2170.
    • (2015) J. Clin. Invest. , vol.125 , pp. 2161-2170
    • Poliani, P.L.1
  • 70
    • 84925464993 scopus 로고    scopus 로고
    • TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
    • Wang Y., et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 2015, 160:1061-1071.
    • (2015) Cell , vol.160 , pp. 1061-1071
    • Wang, Y.1
  • 71
    • 46249101518 scopus 로고    scopus 로고
    • How regulatory T cells work
    • Vignali D.A., et al. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8:523-532.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 523-532
    • Vignali, D.A.1
  • 72
    • 70449377991 scopus 로고    scopus 로고
    • Tregs control the development of symptomatic West Nile virus infection in humans and mice
    • Lanteri M.C., et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J. Clin. Invest. 2009, 119:3266-3277.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3266-3277
    • Lanteri, M.C.1
  • 73
    • 79952294178 scopus 로고    scopus 로고
    • + T cells and reduces chronic retroviral set points
    • + T cells and reduces chronic retroviral set points. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2420-2425.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2420-2425
    • Dietze, K.K.1
  • 74
    • 84860327199 scopus 로고    scopus 로고
    • Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection
    • Cervantes-Barragan L., et al. Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection. J. Immunol. 2012, 188:3678-3685.
    • (2012) J. Immunol. , vol.188 , pp. 3678-3685
    • Cervantes-Barragan, L.1
  • 75
    • 77952746516 scopus 로고    scopus 로고
    • Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus
    • Trandem K., et al. Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. J. Immunol. 2010, 184:4391-4400.
    • (2010) J. Immunol. , vol.184 , pp. 4391-4400
    • Trandem, K.1
  • 76
    • 49049111874 scopus 로고    scopus 로고
    • A novel virus carrier state to evaluate immunotherapeutic regimens: regulatory T cells modulate the pathogenicity of antiviral memory cells
    • Truong P., McGavern D.B. A novel virus carrier state to evaluate immunotherapeutic regimens: regulatory T cells modulate the pathogenicity of antiviral memory cells. J. Immunol. 2008, 181:1161-1169.
    • (2008) J. Immunol. , vol.181 , pp. 1161-1169
    • Truong, P.1    McGavern, D.B.2
  • 77
    • 3242677686 scopus 로고    scopus 로고
    • PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells
    • Latchman Y.E., et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:10691-10696.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 10691-10696
    • Latchman, Y.E.1
  • 78
    • 84886876625 scopus 로고    scopus 로고
    • The role of interleukin-6 in the expression of PD-1 and PDL-1 on central nervous system cells following infection with Theiler's murine encephalomyelitis virus
    • Jin Y.H., et al. The role of interleukin-6 in the expression of PD-1 and PDL-1 on central nervous system cells following infection with Theiler's murine encephalomyelitis virus. J. Virol. 2013, 87:11538-11551.
    • (2013) J. Virol. , vol.87 , pp. 11538-11551
    • Jin, Y.H.1
  • 79
    • 84906322876 scopus 로고    scopus 로고
    • + T lymphocytes through PD-L1
    • + T lymphocytes through PD-L1. Glia 2014, 62:1582-1594.
    • (2014) Glia , vol.62 , pp. 1582-1594
    • Schachtele, S.J.1
  • 80
    • 66949159493 scopus 로고    scopus 로고
    • Target-dependent B7-H1 regulation contributes to clearance of central nervous system infection and dampens morbidity
    • Phares T.W., et al. Target-dependent B7-H1 regulation contributes to clearance of central nervous system infection and dampens morbidity. J. Immunol. 2009, 182:5430-5438.
    • (2009) J. Immunol. , vol.182 , pp. 5430-5438
    • Phares, T.W.1
  • 81
    • 78149484173 scopus 로고    scopus 로고
    • Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis
    • Phares T.W., et al. Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis. J. Immunol. 2010, 185:5607-5618.
    • (2010) J. Immunol. , vol.185 , pp. 5607-5618
    • Phares, T.W.1
  • 82
    • 68049143269 scopus 로고    scopus 로고
    • Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice
    • Shechter R., et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 2009, 6:e1000113.
    • (2009) PLoS Med. , vol.6
    • Shechter, R.1
  • 83
    • 79960423088 scopus 로고    scopus 로고
    • Virally expressed interleukin-10 ameliorates acute encephalomyelitis and chronic demyelination in coronavirus-infected mice
    • Trandem K., et al. Virally expressed interleukin-10 ameliorates acute encephalomyelitis and chronic demyelination in coronavirus-infected mice. J. Virol. 2011, 85:6822-6831.
    • (2011) J. Virol. , vol.85 , pp. 6822-6831
    • Trandem, K.1
  • 84
    • 84909609626 scopus 로고    scopus 로고
    • Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis
    • Kulcsar K.A., et al. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16053-16058.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16053-16058
    • Kulcsar, K.A.1
  • 85
    • 84941192905 scopus 로고    scopus 로고
    • Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination
    • Published online June 30, 2015
    • Puntambekar S.S., et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia 2015, Published online June 30, 2015. 10.1002/glia.22880.
    • (2015) Glia
    • Puntambekar, S.S.1
  • 86
    • 51049101334 scopus 로고    scopus 로고
    • Adenosine receptors: therapeutic aspects for inflammatory and immune diseases
    • Hasko G., et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 2008, 7:759-770.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 759-770
    • Hasko, G.1
  • 87
    • 0036973951 scopus 로고    scopus 로고
    • Adenosine receptors in the nervous system: pathophysiological implications
    • Ribeiro J.A., et al. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 2002, 68:377-392.
    • (2002) Prog. Neurobiol. , vol.68 , pp. 377-392
    • Ribeiro, J.A.1
  • 88
    • 79953849292 scopus 로고    scopus 로고
    • Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects
    • Paterniti I., et al. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J. Neuroinflamm. 2011, 8:31.
    • (2011) J. Neuroinflamm. , vol.8 , pp. 31
    • Paterniti, I.1
  • 89
    • 77951571892 scopus 로고    scopus 로고
    • Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury
    • Dai S.S., et al. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J. Neurosci. 2010, 30:5802-5810.
    • (2010) J. Neurosci. , vol.30 , pp. 5802-5810
    • Dai, S.S.1
  • 90
    • 84919457872 scopus 로고    scopus 로고
    • Molecular mechanisms that influence the macrophage m1-m2 polarization balance
    • Wang N., et al. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014, 5:614.
    • (2014) Front. Immunol. , vol.5 , pp. 614
    • Wang, N.1
  • 91
    • 84920717602 scopus 로고    scopus 로고
    • Microglial and macrophage polarization - new prospects for brain repair
    • Hu X., et al. Microglial and macrophage polarization - new prospects for brain repair. Nat. Rev. Neurol. 2015, 11:56-64.
    • (2015) Nat. Rev. Neurol. , vol.11 , pp. 56-64
    • Hu, X.1
  • 92
    • 84887057618 scopus 로고    scopus 로고
    • IFN-gamma-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair
    • Kunis G., et al. IFN-gamma-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain 2013, 136:3427-3440.
    • (2013) Brain , vol.136 , pp. 3427-3440
    • Kunis, G.1
  • 93
    • 84904994770 scopus 로고    scopus 로고
    • CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles
    • Raposo C., et al. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J. Neurosci. 2014, 34:10141-10155.
    • (2014) J. Neurosci. , vol.34 , pp. 10141-10155
    • Raposo, C.1
  • 94
    • 84922148661 scopus 로고    scopus 로고
    • + T cells protect injured CNS neurons via IL-4
    • + T cells protect injured CNS neurons via IL-4. J. Clin. Invest. 2015, 125:699-714.
    • (2015) J. Clin. Invest. , vol.125 , pp. 699-714
    • Walsh, J.T.1
  • 95
    • 84933512276 scopus 로고    scopus 로고
    • T cell mediated pathogenesis in EAE: molecular mechanisms
    • Kurschus F.C. T cell mediated pathogenesis in EAE: molecular mechanisms. Biomed. J. 2015, 38:183-193.
    • (2015) Biomed. J. , vol.38 , pp. 183-193
    • Kurschus, F.C.1
  • 96
    • 0034664053 scopus 로고    scopus 로고
    • CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination
    • Wu G.F., et al. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 2000, 165:2278-2286.
    • (2000) J. Immunol. , vol.165 , pp. 2278-2286
    • Wu, G.F.1
  • 97
    • 54249124952 scopus 로고    scopus 로고
    • Remyelination in the CNS: from biology to therapy
    • Franklin R.J. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 2008, 9:839-855.
    • (2008) Nat. Rev. Neurosci. , vol.9 , pp. 839-855
    • Franklin, R.J.1
  • 98
    • 80053564110 scopus 로고    scopus 로고
    • CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination
    • Carbajal K.S., et al. CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia 2011, 59:1813-1821.
    • (2011) Glia , vol.59 , pp. 1813-1821
    • Carbajal, K.S.1
  • 99
    • 77954644935 scopus 로고    scopus 로고
    • Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis
    • Carbajal K.S., et al. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11068-11073.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11068-11073
    • Carbajal, K.S.1
  • 100
    • 0742288565 scopus 로고    scopus 로고
    • Regeneration beyond the glial scar
    • Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5:146-156.
    • (2004) Nat. Rev. Neurosci. , vol.5 , pp. 146-156
    • Silver, J.1    Miller, J.H.2
  • 102
    • 84902345621 scopus 로고    scopus 로고
    • Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice
    • Cekanaviciute E., et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 2014, 62:1227-1240.
    • (2014) Glia , vol.62 , pp. 1227-1240
    • Cekanaviciute, E.1
  • 103
    • 79960099283 scopus 로고    scopus 로고
    • A pericyte origin of spinal cord scar tissue
    • Göritz C., et al. A pericyte origin of spinal cord scar tissue. Science 2011, 333:238-242.
    • (2011) Science , vol.333 , pp. 238-242
    • Göritz, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.