-
1
-
-
84936871460
-
Structural and functional features of central nervous system lymphatic vessels
-
Louveau A., et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523:337-341.
-
(2015)
Nature
, vol.523
, pp. 337-341
-
-
Louveau, A.1
-
2
-
-
84942469639
-
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
-
Aspelund A., et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015, 212:991-999.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 991-999
-
-
Aspelund, A.1
-
3
-
-
33845727067
-
What is the blood-brain barrier (not)?
-
Bechmann I., et al. What is the blood-brain barrier (not)?. Trends Immunol. 2007, 28:5-11.
-
(2007)
Trends Immunol.
, vol.28
, pp. 5-11
-
-
Bechmann, I.1
-
4
-
-
84866364390
-
The anatomical and cellular basis of immune surveillance in the central nervous system
-
Ransohoff R.M., Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 2012, 12:623-635.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 623-635
-
-
Ransohoff, R.M.1
Engelhardt, B.2
-
5
-
-
0023949553
-
Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo
-
Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239:290-292.
-
(1988)
Science
, vol.239
, pp. 290-292
-
-
Hickey, W.F.1
Kimura, H.2
-
6
-
-
84878478721
-
In vivo dynamics of innate immune sentinels in the CNS
-
Nayak D., et al. In vivo dynamics of innate immune sentinels in the CNS. Intravital 2012, 1:95-106.
-
(2012)
Intravital
, vol.1
, pp. 95-106
-
-
Nayak, D.1
-
7
-
-
79955605102
-
Physiology of microglia
-
Kettenmann H., et al. Physiology of microglia. Physiol. Rev. 2011, 91:461-553.
-
(2011)
Physiol. Rev.
, vol.91
, pp. 461-553
-
-
Kettenmann, H.1
-
8
-
-
33745847180
-
TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity
-
Creagh E.M., O'Neill L.A. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006, 27:352-357.
-
(2006)
Trends Immunol.
, vol.27
, pp. 352-357
-
-
Creagh, E.M.1
O'Neill, L.A.2
-
9
-
-
84904762931
-
Pattern recognition receptors and central nervous system repair
-
Kigerl K.A., et al. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 2014, 258:5-16.
-
(2014)
Exp. Neurol.
, vol.258
, pp. 5-16
-
-
Kigerl, K.A.1
-
10
-
-
80052143412
-
RIG-I-like receptors: cytoplasmic sensors for non-self RNA
-
Kato H., et al. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol. Rev. 2011, 243:91-98.
-
(2011)
Immunol. Rev.
, vol.243
, pp. 91-98
-
-
Kato, H.1
-
11
-
-
23744454577
-
TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway
-
Moynagh P.N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway. Trends Immunol. 2005, 26:469-476.
-
(2005)
Trends Immunol.
, vol.26
, pp. 469-476
-
-
Moynagh, P.N.1
-
12
-
-
34347348269
-
Type I interferon response in the central nervous system
-
Paul S., et al. Type I interferon response in the central nervous system. Biochimie 2007, 89:770-778.
-
(2007)
Biochimie
, vol.89
, pp. 770-778
-
-
Paul, S.1
-
13
-
-
84895443386
-
Long-distance interferon signaling within the brain blocks virus spread
-
van den Pol A.N., et al. Long-distance interferon signaling within the brain blocks virus spread. J. Virol. 2014, 88:3695-3704.
-
(2014)
J. Virol.
, vol.88
, pp. 3695-3704
-
-
van den Pol, A.N.1
-
14
-
-
84878502792
-
Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system
-
Nayak D., et al. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog. 2013, 9:e1003395.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Nayak, D.1
-
15
-
-
77956019250
-
Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus
-
Zhou S., et al. Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J. Virol. 2010, 84:9452-9462.
-
(2010)
J. Virol.
, vol.84
, pp. 9452-9462
-
-
Zhou, S.1
-
16
-
-
29144501207
-
The interferon response circuit: induction and suppression by pathogenic viruses
-
Haller O., et al. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006, 344:119-130.
-
(2006)
Virology
, vol.344
, pp. 119-130
-
-
Haller, O.1
-
17
-
-
33845951211
-
DAMPs, PAMPs and alarmins: all we need to know about danger
-
Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007, 81:1-5.
-
(2007)
J. Leukoc. Biol.
, vol.81
, pp. 1-5
-
-
Bianchi, M.E.1
-
18
-
-
84936891896
-
Inflammasomes: mechanism of action, role in disease, and therapeutics
-
Guo H., et al. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015, 21:677-687.
-
(2015)
Nat. Med.
, vol.21
, pp. 677-687
-
-
Guo, H.1
-
19
-
-
84873705381
-
Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection
-
Jamilloux Y., et al. Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection. Glia 2013, 61:539-549.
-
(2013)
Glia
, vol.61
, pp. 539-549
-
-
Jamilloux, Y.1
-
20
-
-
84899474093
-
Critical role for the AIM2 inflammasome during acute CNS bacterial infection
-
Hanamsagar R., et al. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J. Neurochem. 2014, 129:704-711.
-
(2014)
J. Neurochem.
, vol.129
, pp. 704-711
-
-
Hanamsagar, R.1
-
21
-
-
84926319950
-
Inflammation and neuroprotection in traumatic brain injury
-
Corps K.N., et al. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015, 72:355-362.
-
(2015)
JAMA Neurol.
, vol.72
, pp. 355-362
-
-
Corps, K.N.1
-
22
-
-
84555178222
-
Trauma alarmins as activators of damage-induced inflammation
-
Manson J., et al. Trauma alarmins as activators of damage-induced inflammation. Br. J. Surg. 2012, 99(Suppl. 1):12-20.
-
(2012)
Br. J. Surg.
, vol.99
, pp. 12-20
-
-
Manson, J.1
-
23
-
-
84875489498
-
Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice
-
Ahmad A., et al. Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS ONE 2013, 8:e57208.
-
(2013)
PLoS ONE
, vol.8
-
-
Ahmad, A.1
-
24
-
-
84872528255
-
Animal models of traumatic brain injury
-
Xiong Y., et al. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 2013, 14:128-142.
-
(2013)
Nat. Rev. Neurosci.
, vol.14
, pp. 128-142
-
-
Xiong, Y.1
-
25
-
-
84928265677
-
Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway
-
Rosenberger K., et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol. Neurodegener. 2015, 10:5.
-
(2015)
Mol. Neurodegener.
, vol.10
, pp. 5
-
-
Rosenberger, K.1
-
26
-
-
79952192382
-
Immune cell regulation by autocrine purinergic signalling
-
Junger W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 2011, 11:201-212.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 201-212
-
-
Junger, W.G.1
-
27
-
-
84871048026
-
Purinergic signaling during inflammation
-
Eltzschig H.K., et al. Purinergic signaling during inflammation. N. Engl. J. Med. 2012, 367:2322-2333.
-
(2012)
N. Engl. J. Med.
, vol.367
, pp. 2322-2333
-
-
Eltzschig, H.K.1
-
28
-
-
22244464662
-
ATP mediates rapid microglial response to local brain injury in vivo
-
Davalos D., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005, 8:752-758.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 752-758
-
-
Davalos, D.1
-
29
-
-
19744380563
-
Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
-
Nimmerjahn A., et al. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
-
(2005)
Science
, vol.308
, pp. 1314-1318
-
-
Nimmerjahn, A.1
-
30
-
-
33749525328
-
Innate response to focal necrotic injury inside the blood-brain barrier
-
Kim J.V., Dustin M.L. Innate response to focal necrotic injury inside the blood-brain barrier. J. Immunol. 2006, 177:5269-5277.
-
(2006)
J. Immunol.
, vol.177
, pp. 5269-5277
-
-
Kim, J.V.1
Dustin, M.L.2
-
31
-
-
84892369064
-
Transcranial amelioration of inflammation and cell death after brain injury
-
Roth T.L., et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 2014, 505:223-228.
-
(2014)
Nature
, vol.505
, pp. 223-228
-
-
Roth, T.L.1
-
32
-
-
34248576759
-
Physiology and pathophysiology of purinergic neurotransmission
-
Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007, 87:659-797.
-
(2007)
Physiol. Rev.
, vol.87
, pp. 659-797
-
-
Burnstock, G.1
-
33
-
-
56149096976
-
Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain
-
Ulmann L., et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J. Neurosci. 2008, 28:11263-11268.
-
(2008)
J. Neurosci.
, vol.28
, pp. 11263-11268
-
-
Ulmann, L.1
-
34
-
-
84857530330
-
P2X4 receptors influence inflammasome activation after spinal cord injury
-
de Rivero Vaccari J.P., et al. P2X4 receptors influence inflammasome activation after spinal cord injury. J. Neurosci. 2012, 32:3058-3066.
-
(2012)
J. Neurosci.
, vol.32
, pp. 3058-3066
-
-
de Rivero Vaccari, J.P.1
-
35
-
-
4043079197
-
P2X7 receptor inhibition improves recovery after spinal cord injury
-
Wang X., et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 2004, 10:821-827.
-
(2004)
Nat. Med.
, vol.10
, pp. 821-827
-
-
Wang, X.1
-
36
-
-
84864015442
-
Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice
-
Kimbler D.E., et al. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS ONE 2012, 7:e41229.
-
(2012)
PLoS ONE
, vol.7
-
-
Kimbler, D.E.1
-
37
-
-
59349115909
-
Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury
-
Ankeny D.P., Popovich P.G. Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2009, 158:1112-1121.
-
(2009)
Neuroscience
, vol.158
, pp. 1112-1121
-
-
Ankeny, D.P.1
Popovich, P.G.2
-
38
-
-
84875553508
-
Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus
-
Shechter R., et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 2013, 38:555-569.
-
(2013)
Immunity
, vol.38
, pp. 555-569
-
-
Shechter, R.1
-
39
-
-
84894646177
-
The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus
-
Schwartz M., Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014, 33:7-22.
-
(2014)
EMBO J.
, vol.33
, pp. 7-22
-
-
Schwartz, M.1
Baruch, K.2
-
40
-
-
58849165766
-
West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection
-
Brien J.D., et al. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 2008, 181:8568-8575.
-
(2008)
J. Immunol.
, vol.181
, pp. 8568-8575
-
-
Brien, J.D.1
-
41
-
-
3242677841
-
+ T cells in control of West Nile virus infection
-
+ T cells in control of West Nile virus infection. J. Virol. 2004, 78:8312-8321.
-
(2004)
J. Virol.
, vol.78
, pp. 8312-8321
-
-
Shrestha, B.1
Diamond, M.S.2
-
42
-
-
49649103837
-
CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis
-
McCandless E.E., et al. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:11270-11275.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 11270-11275
-
-
McCandless, E.E.1
-
43
-
-
79951694551
-
CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity
-
Cruz-Orengo L., et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 2011, 208:327-339.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 327-339
-
-
Cruz-Orengo, L.1
-
44
-
-
79955727320
-
Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection
-
Kang S.S., et al. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J. Exp. Med. 2011, 208:747-759.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 747-759
-
-
Kang, S.S.1
-
45
-
-
60149107060
-
+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers
-
+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 2009, 30:300-311.
-
(2009)
Immunity
, vol.30
, pp. 300-311
-
-
Wilson, E.H.1
-
46
-
-
0035062597
-
Noncytolytic control of viral infections by the innate and adaptive immune response
-
Guidotti L.G., Chisari F.V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 2001, 19:65-91.
-
(2001)
Annu. Rev. Immunol.
, vol.19
, pp. 65-91
-
-
Guidotti, L.G.1
Chisari, F.V.2
-
47
-
-
0029914331
-
Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo
-
Kagi D., et al. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 1996, 14:207-232.
-
(1996)
Annu. Rev. Immunol.
, vol.14
, pp. 207-232
-
-
Kagi, D.1
-
48
-
-
84857826936
-
CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis
-
Phares T.W., et al. CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J. Virol. 2012, 86:2416-2427.
-
(2012)
J. Virol.
, vol.86
, pp. 2416-2427
-
-
Phares, T.W.1
-
49
-
-
84884821531
-
IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis
-
Phares T.W., et al. IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis. J. Neuroimmunol. 2013, 263:43-54.
-
(2013)
J. Neuroimmunol.
, vol.263
, pp. 43-54
-
-
Phares, T.W.1
-
50
-
-
84874075232
-
Intrathecal humoral immunity to encephalitic RNA viruses
-
Phares T.W., et al. Intrathecal humoral immunity to encephalitic RNA viruses. Viruses 2013, 5:732-752.
-
(2013)
Viruses
, vol.5
, pp. 732-752
-
-
Phares, T.W.1
-
51
-
-
34347348127
-
Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification
-
Lauterbach H., et al. Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification. Virol. J. 2007, 4:53.
-
(2007)
Virol. J.
, vol.4
, pp. 53
-
-
Lauterbach, H.1
-
52
-
-
84866144157
-
+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons
-
+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J. Virol. 2012, 86:8937-8948.
-
(2012)
J. Virol.
, vol.86
, pp. 8937-8948
-
-
Shrestha, B.1
-
53
-
-
84922515122
-
Viral diseases of the central nervous system
-
Swanson P.A., McGavern D.B. Viral diseases of the central nervous system. Curr. Opin. Virol. 2015, 11:44-54.
-
(2015)
Curr. Opin. Virol.
, vol.11
, pp. 44-54
-
-
Swanson, P.A.1
McGavern, D.B.2
-
54
-
-
58149352396
-
Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis
-
Kim J.V., et al. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009, 457:191-195.
-
(2009)
Nature
, vol.457
, pp. 191-195
-
-
Kim, J.V.1
-
55
-
-
84885463512
-
+ T cell-mediated dendrite and synapse loss
-
+ T cell-mediated dendrite and synapse loss. J. Exp. Med. 2013, 210:2087-2103.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2087-2103
-
-
Kreutzfeldt, M.1
-
56
-
-
84964697336
-
Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells
-
Herz J., et al. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J. Exp. Med. 2015, 212:1153-1169.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 1153-1169
-
-
Herz, J.1
-
57
-
-
84896904596
-
Microglia development and function
-
Nayak D., et al. Microglia development and function. Annu. Rev. Immunol. 2014, 32:367-402.
-
(2014)
Annu. Rev. Immunol.
, vol.32
, pp. 367-402
-
-
Nayak, D.1
-
58
-
-
84899636196
-
Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death
-
Greenhalgh A.D., David S. Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J. Neurosci. 2014, 34:6316-6322.
-
(2014)
J. Neurosci.
, vol.34
, pp. 6316-6322
-
-
Greenhalgh, A.D.1
David, S.2
-
59
-
-
84924115599
-
Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons
-
Rajbhandari L., et al. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 2014, 62:1982-1991.
-
(2014)
Glia
, vol.62
, pp. 1982-1991
-
-
Rajbhandari, L.1
-
60
-
-
31544466262
-
Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis
-
Boven L.A., et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 2006, 129:517-526.
-
(2006)
Brain
, vol.129
, pp. 517-526
-
-
Boven, L.A.1
-
61
-
-
84922768570
-
Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris
-
Wang X., et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2015, 63:635-651.
-
(2015)
Glia
, vol.63
, pp. 635-651
-
-
Wang, X.1
-
62
-
-
84908028367
-
TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord
-
Kroner A., et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 2014, 83:1098-1116.
-
(2014)
Neuron
, vol.83
, pp. 1098-1116
-
-
Kroner, A.1
-
63
-
-
84928266217
-
Inefficient clearance of myelin debris by microglia impairs remyelinating processes
-
Lampron A., et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 2015, 212:481-495.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 481-495
-
-
Lampron, A.1
-
64
-
-
84906316516
-
Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned
-
Gudi V., et al. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front. Cell. Neurosci. 2014, 8:73.
-
(2014)
Front. Cell. Neurosci.
, vol.8
, pp. 73
-
-
Gudi, V.1
-
65
-
-
0032440093
-
Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice
-
Hiremath M.M., et al. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 1998, 92:38-49.
-
(1998)
J. Neuroimmunol.
, vol.92
, pp. 38-49
-
-
Hiremath, M.M.1
-
66
-
-
0035086799
-
Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family
-
Daws M.R., et al. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol. 2001, 31:783-791.
-
(2001)
Eur. J. Immunol.
, vol.31
, pp. 783-791
-
-
Daws, M.R.1
-
67
-
-
0038784517
-
Pattern recognition by TREM-2: binding of anionic ligands
-
Daws M.R., et al. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 2003, 171:594-599.
-
(2003)
J. Immunol.
, vol.171
, pp. 594-599
-
-
Daws, M.R.1
-
68
-
-
84923346682
-
Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke
-
Kawabori M., et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 2015, 35:3384-3396.
-
(2015)
J. Neurosci.
, vol.35
, pp. 3384-3396
-
-
Kawabori, M.1
-
69
-
-
84929012585
-
TREM2 sustains microglial expansion during aging and response to demyelination
-
Poliani P.L., et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 2015, 125:2161-2170.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 2161-2170
-
-
Poliani, P.L.1
-
70
-
-
84925464993
-
TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model
-
Wang Y., et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 2015, 160:1061-1071.
-
(2015)
Cell
, vol.160
, pp. 1061-1071
-
-
Wang, Y.1
-
71
-
-
46249101518
-
How regulatory T cells work
-
Vignali D.A., et al. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8:523-532.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 523-532
-
-
Vignali, D.A.1
-
72
-
-
70449377991
-
Tregs control the development of symptomatic West Nile virus infection in humans and mice
-
Lanteri M.C., et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J. Clin. Invest. 2009, 119:3266-3277.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3266-3277
-
-
Lanteri, M.C.1
-
73
-
-
79952294178
-
+ T cells and reduces chronic retroviral set points
-
+ T cells and reduces chronic retroviral set points. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2420-2425.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2420-2425
-
-
Dietze, K.K.1
-
74
-
-
84860327199
-
Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection
-
Cervantes-Barragan L., et al. Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection. J. Immunol. 2012, 188:3678-3685.
-
(2012)
J. Immunol.
, vol.188
, pp. 3678-3685
-
-
Cervantes-Barragan, L.1
-
75
-
-
77952746516
-
Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus
-
Trandem K., et al. Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. J. Immunol. 2010, 184:4391-4400.
-
(2010)
J. Immunol.
, vol.184
, pp. 4391-4400
-
-
Trandem, K.1
-
76
-
-
49049111874
-
A novel virus carrier state to evaluate immunotherapeutic regimens: regulatory T cells modulate the pathogenicity of antiviral memory cells
-
Truong P., McGavern D.B. A novel virus carrier state to evaluate immunotherapeutic regimens: regulatory T cells modulate the pathogenicity of antiviral memory cells. J. Immunol. 2008, 181:1161-1169.
-
(2008)
J. Immunol.
, vol.181
, pp. 1161-1169
-
-
Truong, P.1
McGavern, D.B.2
-
77
-
-
3242677686
-
PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells
-
Latchman Y.E., et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:10691-10696.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 10691-10696
-
-
Latchman, Y.E.1
-
78
-
-
84886876625
-
The role of interleukin-6 in the expression of PD-1 and PDL-1 on central nervous system cells following infection with Theiler's murine encephalomyelitis virus
-
Jin Y.H., et al. The role of interleukin-6 in the expression of PD-1 and PDL-1 on central nervous system cells following infection with Theiler's murine encephalomyelitis virus. J. Virol. 2013, 87:11538-11551.
-
(2013)
J. Virol.
, vol.87
, pp. 11538-11551
-
-
Jin, Y.H.1
-
79
-
-
84906322876
-
+ T lymphocytes through PD-L1
-
+ T lymphocytes through PD-L1. Glia 2014, 62:1582-1594.
-
(2014)
Glia
, vol.62
, pp. 1582-1594
-
-
Schachtele, S.J.1
-
80
-
-
66949159493
-
Target-dependent B7-H1 regulation contributes to clearance of central nervous system infection and dampens morbidity
-
Phares T.W., et al. Target-dependent B7-H1 regulation contributes to clearance of central nervous system infection and dampens morbidity. J. Immunol. 2009, 182:5430-5438.
-
(2009)
J. Immunol.
, vol.182
, pp. 5430-5438
-
-
Phares, T.W.1
-
81
-
-
78149484173
-
Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis
-
Phares T.W., et al. Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis. J. Immunol. 2010, 185:5607-5618.
-
(2010)
J. Immunol.
, vol.185
, pp. 5607-5618
-
-
Phares, T.W.1
-
82
-
-
68049143269
-
Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice
-
Shechter R., et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 2009, 6:e1000113.
-
(2009)
PLoS Med.
, vol.6
-
-
Shechter, R.1
-
83
-
-
79960423088
-
Virally expressed interleukin-10 ameliorates acute encephalomyelitis and chronic demyelination in coronavirus-infected mice
-
Trandem K., et al. Virally expressed interleukin-10 ameliorates acute encephalomyelitis and chronic demyelination in coronavirus-infected mice. J. Virol. 2011, 85:6822-6831.
-
(2011)
J. Virol.
, vol.85
, pp. 6822-6831
-
-
Trandem, K.1
-
84
-
-
84909609626
-
Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis
-
Kulcsar K.A., et al. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16053-16058.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16053-16058
-
-
Kulcsar, K.A.1
-
85
-
-
84941192905
-
Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination
-
Published online June 30, 2015
-
Puntambekar S.S., et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia 2015, Published online June 30, 2015. 10.1002/glia.22880.
-
(2015)
Glia
-
-
Puntambekar, S.S.1
-
86
-
-
51049101334
-
Adenosine receptors: therapeutic aspects for inflammatory and immune diseases
-
Hasko G., et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 2008, 7:759-770.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 759-770
-
-
Hasko, G.1
-
87
-
-
0036973951
-
Adenosine receptors in the nervous system: pathophysiological implications
-
Ribeiro J.A., et al. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 2002, 68:377-392.
-
(2002)
Prog. Neurobiol.
, vol.68
, pp. 377-392
-
-
Ribeiro, J.A.1
-
88
-
-
79953849292
-
Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects
-
Paterniti I., et al. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J. Neuroinflamm. 2011, 8:31.
-
(2011)
J. Neuroinflamm.
, vol.8
, pp. 31
-
-
Paterniti, I.1
-
89
-
-
77951571892
-
Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury
-
Dai S.S., et al. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J. Neurosci. 2010, 30:5802-5810.
-
(2010)
J. Neurosci.
, vol.30
, pp. 5802-5810
-
-
Dai, S.S.1
-
90
-
-
84919457872
-
Molecular mechanisms that influence the macrophage m1-m2 polarization balance
-
Wang N., et al. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014, 5:614.
-
(2014)
Front. Immunol.
, vol.5
, pp. 614
-
-
Wang, N.1
-
91
-
-
84920717602
-
Microglial and macrophage polarization - new prospects for brain repair
-
Hu X., et al. Microglial and macrophage polarization - new prospects for brain repair. Nat. Rev. Neurol. 2015, 11:56-64.
-
(2015)
Nat. Rev. Neurol.
, vol.11
, pp. 56-64
-
-
Hu, X.1
-
92
-
-
84887057618
-
IFN-gamma-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair
-
Kunis G., et al. IFN-gamma-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain 2013, 136:3427-3440.
-
(2013)
Brain
, vol.136
, pp. 3427-3440
-
-
Kunis, G.1
-
93
-
-
84904994770
-
CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles
-
Raposo C., et al. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J. Neurosci. 2014, 34:10141-10155.
-
(2014)
J. Neurosci.
, vol.34
, pp. 10141-10155
-
-
Raposo, C.1
-
94
-
-
84922148661
-
+ T cells protect injured CNS neurons via IL-4
-
+ T cells protect injured CNS neurons via IL-4. J. Clin. Invest. 2015, 125:699-714.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 699-714
-
-
Walsh, J.T.1
-
95
-
-
84933512276
-
T cell mediated pathogenesis in EAE: molecular mechanisms
-
Kurschus F.C. T cell mediated pathogenesis in EAE: molecular mechanisms. Biomed. J. 2015, 38:183-193.
-
(2015)
Biomed. J.
, vol.38
, pp. 183-193
-
-
Kurschus, F.C.1
-
96
-
-
0034664053
-
CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination
-
Wu G.F., et al. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 2000, 165:2278-2286.
-
(2000)
J. Immunol.
, vol.165
, pp. 2278-2286
-
-
Wu, G.F.1
-
97
-
-
54249124952
-
Remyelination in the CNS: from biology to therapy
-
Franklin R.J. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 2008, 9:839-855.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, pp. 839-855
-
-
Franklin, R.J.1
-
98
-
-
80053564110
-
CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination
-
Carbajal K.S., et al. CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia 2011, 59:1813-1821.
-
(2011)
Glia
, vol.59
, pp. 1813-1821
-
-
Carbajal, K.S.1
-
99
-
-
77954644935
-
Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis
-
Carbajal K.S., et al. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11068-11073.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11068-11073
-
-
Carbajal, K.S.1
-
100
-
-
0742288565
-
Regeneration beyond the glial scar
-
Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5:146-156.
-
(2004)
Nat. Rev. Neurosci.
, vol.5
, pp. 146-156
-
-
Silver, J.1
Miller, J.H.2
-
102
-
-
84902345621
-
Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice
-
Cekanaviciute E., et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 2014, 62:1227-1240.
-
(2014)
Glia
, vol.62
, pp. 1227-1240
-
-
Cekanaviciute, E.1
-
103
-
-
79960099283
-
A pericyte origin of spinal cord scar tissue
-
Göritz C., et al. A pericyte origin of spinal cord scar tissue. Science 2011, 333:238-242.
-
(2011)
Science
, vol.333
, pp. 238-242
-
-
Göritz, C.1
|