메뉴 건너뛰기




Volumn 37, Issue 8, 2015, Pages 867-876

Mitochondrial quality control pathways as determinants of metabolic health

Author keywords

Fission; Fusion; Mitochondrial dynamics; Mitochondrial quality control; Mitohormesis; Mitophagy; ROS

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR; ADENOSINE TRIPHOSPHATASE; ANTIOXIDANT; CCAAT ENHANCER BINDING PROTEIN BETA; CHAPERONE; CYTOCHROME C; DYNAMIN RELATED PROTEIN 1; GROWTH ARREST AND DNA DAMAGE INDUCIBLE PROTEIN 153; MEMBRANE PROTEIN; MITOCHONDRIAL PROTEIN; ORNITHINE CARBAMOYLTRANSFERASE; PARKIN; PROTEASOME; PROTEIN; PROTEINASE; REACTIVE OXYGEN METABOLITE; UBIQUITIN; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG;

EID: 84937514988     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201500013     Document Type: Article
Times cited : (105)

References (120)
  • 1
    • 34250811284 scopus 로고    scopus 로고
    • Mitochondrial-nuclear communications
    • Ryan MT, Hoogenraad NJ. 2007. Mitochondrial-nuclear communications. Annu Rev Biochem 76: 701-22.
    • (2007) Annu Rev Biochem , vol.76 , pp. 701-722
    • Ryan, M.T.1    Hoogenraad, N.J.2
  • 2
    • 0033525788 scopus 로고    scopus 로고
    • Mitochondrial evolution
    • Gray MW, Burger G, Lang BF. 1999. Mitochondrial evolution. Science 283: 1476-81.
    • (1999) Science , vol.283 , pp. 1476-1481
    • Gray, M.W.1    Burger, G.2    Lang, B.F.3
  • 3
    • 84896716062 scopus 로고    scopus 로고
    • The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease
    • Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, et al. 2014. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 19: 357-72.
    • (2014) Cell Metab , vol.19 , pp. 357-372
    • Harbauer, A.B.1    Zahedi, R.P.2    Sickmann, A.3    Pfanner, N.4
  • 4
    • 84897390686 scopus 로고    scopus 로고
    • Mitochondrial protein quality control in health and disease
    • Baker MJ, Palmer CS, Stojanovski D. 2014. Mitochondrial protein quality control in health and disease. Br J Pharmacol 171: 1870-89.
    • (2014) Br J Pharmacol , vol.171 , pp. 1870-1889
    • Baker, M.J.1    Palmer, C.S.2    Stojanovski, D.3
  • 5
    • 84880673845 scopus 로고    scopus 로고
    • Pharmacological approaches to restore mitochondrial function
    • Andreux PA, Houtkooper RH, Auwerx J. 2013. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12: 465-83.
    • (2013) Nat Rev Drug Discov , vol.12 , pp. 465-483
    • Andreux, P.A.1    Houtkooper, R.H.2    Auwerx, J.3
  • 6
    • 84865544952 scopus 로고    scopus 로고
    • Mitochondrial fission, fusion, and stress
    • Youle RJ, van der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science 337: 1062-5.
    • (2012) Science , vol.337 , pp. 1062-1065
    • Youle, R.J.1    van der Bliek, A.M.2
  • 7
    • 84858376953 scopus 로고    scopus 로고
    • Mitochondria: in sickness and in health
    • Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 148: 1145-59.
    • (2012) Cell , vol.148 , pp. 1145-1159
    • Nunnari, J.1    Suomalainen, A.2
  • 8
    • 84874591240 scopus 로고    scopus 로고
    • The role of mitochondria in aging
    • Bratic A, Larsson N. 2013. The role of mitochondria in aging. J Clin Invest 123: 951-7.
    • (2013) J Clin Invest , vol.123 , pp. 951-957
    • Bratic, A.1    Larsson, N.2
  • 9
    • 84900295547 scopus 로고    scopus 로고
    • Mitohormesis
    • Yun J, Finkel T. 2014. Mitohormesis. Cell Metab 19: 757-66.
    • (2014) Cell Metab , vol.19 , pp. 757-766
    • Yun, J.1    Finkel, T.2
  • 10
    • 84905820762 scopus 로고    scopus 로고
    • Mitochondrial proteostasis in the control of aging and longevity
    • Jensen MB, Jasper H. 2014. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20: 214-25.
    • (2014) Cell Metab , vol.20 , pp. 214-225
    • Jensen, M.B.1    Jasper, H.2
  • 11
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand MD. 2010. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466-72.
    • (2010) Exp Gerontol , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 12
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena LA, Chandel NS. 2012. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48: 158-67.
    • (2012) Mol Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 13
    • 84856729192 scopus 로고    scopus 로고
    • Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
    • Murphy MP. 2012. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16: 476-95.
    • (2012) Antioxid Redox Signal , vol.16 , pp. 476-495
    • Murphy, M.P.1
  • 14
    • 79959350253 scopus 로고    scopus 로고
    • Extending life span by increasing oxidative stress
    • Ristow M, Schmeisser S. 2011. Extending life span by increasing oxidative stress. Free Radic Biol Med 51: 327-36.
    • (2011) Free Radic Biol Med , vol.51 , pp. 327-336
    • Ristow, M.1    Schmeisser, S.2
  • 15
    • 34748850786 scopus 로고    scopus 로고
    • Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
    • Schulz TJ, Zarse K, Voigt A, Urban N, et al. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6: 280-93.
    • (2007) Cell Metab , vol.6 , pp. 280-293
    • Schulz, T.J.1    Zarse, K.2    Voigt, A.3    Urban, N.4
  • 16
    • 84880517634 scopus 로고    scopus 로고
    • The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, et al. 2013. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154: 430-41.
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1    Houtkooper, R.H.2    Moullan, N.3    Katsyuba, E.4
  • 17
    • 78651276219 scopus 로고    scopus 로고
    • Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans
    • Mouchiroud L, Molin L, Kasturi P, Triba MN, et al. 2011. Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 10: 39-54.
    • (2011) Aging Cell , vol.10 , pp. 39-54
    • Mouchiroud, L.1    Molin, L.2    Kasturi, P.3    Triba, M.N.4
  • 19
  • 20
    • 84871793725 scopus 로고    scopus 로고
    • Chaperone-protease networks in mitochondrial protein homeostasis
    • Voos W. 2013. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta 1833: 388-99.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 388-399
    • Voos, W.1
  • 21
    • 79955664111 scopus 로고    scopus 로고
    • Mitochondrial protein quality control during biogenesis and aging
    • Baker BM, Haynes CM. 2011. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 36: 254-61.
    • (2011) Trends Biochem Sci , vol.36 , pp. 254-261
    • Baker, B.M.1    Haynes, C.M.2
  • 22
    • 34250369119 scopus 로고    scopus 로고
    • Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases
    • Koppen M, Langer T. 2007. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42: 221-42.
    • (2007) Crit Rev Biochem Mol Biol , vol.42 , pp. 221-242
    • Koppen, M.1    Langer, T.2
  • 23
    • 0037009521 scopus 로고    scopus 로고
    • A mitochondrial specific stress response in mammalian cells
    • Zhao Q, Wang J, Levichkin I, V, Stasinopoulos S, et al. 2002. A mitochondrial specific stress response in mammalian cells. EMBO J 21: 4411-9.
    • (2002) EMBO J , vol.21 , pp. 4411-4419
    • Zhao, Q.1    Wang, J.2    Levichkin, I.V.3    Stasinopoulos, S.4
  • 24
    • 34848861368 scopus 로고    scopus 로고
    • ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans
    • Haynes CM, Petrova K, Benedetti C, Yang Y, et al. 2007. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13: 467-80.
    • (2007) Dev Cell , vol.13 , pp. 467-480
    • Haynes, C.M.1    Petrova, K.2    Benedetti, C.3    Yang, Y.4
  • 25
    • 26844484821 scopus 로고    scopus 로고
    • The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria
    • Nolden M, Ehses S, Koppen M, Bernacchia A, et al. 2005. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123: 277-89.
    • (2005) Cell , vol.123 , pp. 277-289
    • Nolden, M.1    Ehses, S.2    Koppen, M.3    Bernacchia, A.4
  • 26
    • 33746299692 scopus 로고    scopus 로고
    • Regulation of mitochondrial morphology through proteolytic cleavage of OP 1
    • Ishihara N, Fujita Y, Oka T, Mihara K. 2006. Regulation of mitochondrial morphology through proteolytic cleavage of OP 1. EMBO J 25: 2966-77.
    • (2006) EMBO J , vol.25 , pp. 2966-2977
    • Ishihara, N.1    Fujita, Y.2    Oka, T.3    Mihara, K.4
  • 27
    • 0033825336 scopus 로고    scopus 로고
    • Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response
    • Gray CW, Ward R, V, Karran E, Turconi S, et al. 2000. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 267: 5699-710.
    • (2000) Eur J Biochem , vol.267 , pp. 5699-5710
    • Gray, C.W.1    Ward, V.R.2    Karran, E.3    Turconi, S.4
  • 28
    • 37849048003 scopus 로고    scopus 로고
    • Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements
    • Aldridge JE, Horibe T, Hoogenraad NJ. 2007. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2: e74.
    • (2007) PLoS ONE , vol.2
    • Aldridge, J.E.1    Horibe, T.2    Hoogenraad, N.J.3
  • 29
    • 34548313688 scopus 로고    scopus 로고
    • OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
    • Song Z, Chen H, Fiket M, Alexander C, et al. 2007. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178: 749-55.
    • (2007) J Cell Biol , vol.178 , pp. 749-755
    • Song, Z.1    Chen, H.2    Fiket, M.3    Alexander, C.4
  • 30
    • 0038722727 scopus 로고    scopus 로고
    • Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis
    • Yang QH, Church-Hajduk R, Ren J, Newton ML, et al. 2003. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17: 1487-96.
    • (2003) Genes Dev , vol.17 , pp. 1487-1496
    • Yang, Q.H.1    Church-Hajduk, R.2    Ren, J.3    Newton, M.L.4
  • 31
    • 84905696703 scopus 로고    scopus 로고
    • Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy
    • Cilenti L, Ambivero CT, Ward N, Alnemri ES, et al. 2014. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Biochim Biophys Acta 1843: 1295-307.
    • (2014) Biochim Biophys Acta , vol.1843 , pp. 1295-1307
    • Cilenti, L.1    Ambivero, C.T.2    Ward, N.3    Alnemri, E.S.4
  • 32
    • 77950616071 scopus 로고    scopus 로고
    • Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1
    • Kieper N, Holmström KM, Ciceri D, Fiesel FC, et al. 2010. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Exp Cell Res 316: 1213-24.
    • (2010) Exp Cell Res , vol.316 , pp. 1213-1224
    • Kieper, N.1    Holmström, K.M.2    Ciceri, D.3    Fiesel, F.C.4
  • 33
    • 84898603457 scopus 로고    scopus 로고
    • Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics
    • Baker MJ, Lampe PA, Stojanovski D, Korwitz A, et al. 2014. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J 33: 578-93.
    • (2014) EMBO J , vol.33 , pp. 578-593
    • Baker, M.J.1    Lampe, P.A.2    Stojanovski, D.3    Korwitz, A.4
  • 34
    • 33745685054 scopus 로고    scopus 로고
    • Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling
    • Cipolat S, Rudka T, Hartmann D, Costa V, et al. 2006. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126: 163-75.
    • (2006) Cell , vol.126 , pp. 163-175
    • Cipolat, S.1    Rudka, T.2    Hartmann, D.3    Costa, V.4
  • 35
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin SM, Lazarou M, Wang C, Kane LA, et al. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191: 933-42.
    • (2010) J Cell Biol , vol.191 , pp. 933-942
    • Jin, S.M.1    Lazarou, M.2    Wang, C.3    Kane, L.A.4
  • 36
    • 79151480727 scopus 로고    scopus 로고
    • Ubiquitin-proteasome system and mitochondria-reciprocity
    • Livnat-Levanon N, Glickman MH. 2011. Ubiquitin-proteasome system and mitochondria-reciprocity. Biochim Biophys Acta 1809: 80-7.
    • (2011) Biochim Biophys Acta , vol.1809 , pp. 80-87
    • Livnat-Levanon, N.1    Glickman, M.H.2
  • 37
    • 33745816760 scopus 로고    scopus 로고
    • Protein degradation by the ubiquitin-proteasome pathway in normal and disease states
    • Lecker SH, Goldberg AL, Mitch WE. 2006. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17: 1807-19.
    • (2006) J Am Soc Nephrol , vol.17 , pp. 1807-1819
    • Lecker, S.H.1    Goldberg, A.L.2    Mitch, W.E.3
  • 38
    • 34247528121 scopus 로고    scopus 로고
    • A proteomics approach to identify the ubiquitinated proteins in mouse heart
    • Jeon HB, Choi ES, Yoon JH, Hwang JH, et al. 2007. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun 357: 731-6.
    • (2007) Biochem Biophys Res Commun , vol.357 , pp. 731-736
    • Jeon, H.B.1    Choi, E.S.2    Yoon, J.H.3    Hwang, J.H.4
  • 39
    • 84879001260 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins
    • Bragoszewski P, Gornicka A, Sztolsztener ME, Chacinska A. 2013. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol Cell Biol 33: 2136-48.
    • (2013) Mol Cell Biol , vol.33 , pp. 2136-2148
    • Bragoszewski, P.1    Gornicka, A.2    Sztolsztener, M.E.3    Chacinska, A.4
  • 41
    • 56749176947 scopus 로고    scopus 로고
    • One step at a time: endoplasmic reticulum-associated degradation
    • Vembar SS, Brodsky JL. 2008. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9: 944-57.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 944-957
    • Vembar, S.S.1    Brodsky, J.L.2
  • 42
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A, Cleland MM, Xu S, Narendra DP, et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367-80.
    • (2010) J Cell Biol , vol.191 , pp. 1367-1380
    • Tanaka, A.1    Cleland, M.M.2    Xu, S.3    Narendra, D.P.4
  • 43
    • 84865395988 scopus 로고    scopus 로고
    • Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
    • Leboucher GP, Tsai YC, Yang M, Shaw KC, et al. 2012. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47: 547-57.
    • (2012) Mol Cell , vol.47 , pp. 547-557
    • Leboucher, G.P.1    Tsai, Y.C.2    Yang, M.3    Shaw, K.C.4
  • 44
    • 38349023008 scopus 로고    scopus 로고
    • Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
    • Neuspiel M, Schauss AC, Braschi E, Zunino R, et al. 2008. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18: 102-8.
    • (2008) Curr Biol , vol.18 , pp. 102-108
    • Neuspiel, M.1    Schauss, A.C.2    Braschi, E.3    Zunino, R.4
  • 45
    • 44949231368 scopus 로고    scopus 로고
    • Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling
    • Li W, Bengtson MH, Ulbrich A, Matsuda A, et al. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 3: e1487.
    • (2008) PLoS ONE , vol.3
    • Li, W.1    Bengtson, M.H.2    Ulbrich, A.3    Matsuda, A.4
  • 46
    • 84901837721 scopus 로고    scopus 로고
    • The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins
    • Okreglak V, Walter P. 2014. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc Natl Acad Sci USA 111: 8019-24.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 8019-8024
    • Okreglak, V.1    Walter, P.2
  • 47
    • 84904540152 scopus 로고    scopus 로고
    • Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins
    • Chen Y-C, Umanah GKE, Dephoure N, Andrabi SA, et al. 2014. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J 33: 1548-64.
    • (2014) EMBO J , vol.33 , pp. 1548-1564
    • Chen, Y.-C.1    Umanah, G.K.E.2    Dephoure, N.3    Andrabi, S.A.4
  • 48
    • 84896499806 scopus 로고    scopus 로고
    • The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease
    • Jovaisaite V, Mouchiroud L, Auwerx J. 2014. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217: 137-43.
    • (2014) J Exp Biol , vol.217 , pp. 137-143
    • Jovaisaite, V.1    Mouchiroud, L.2    Auwerx, J.3
  • 49
    • 82255173966 scopus 로고    scopus 로고
    • The unfolded protein response: from stress pathway to homeostatic regulation
    • Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334: 1081-6.
    • (2011) Science , vol.334 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 50
    • 0029825891 scopus 로고    scopus 로고
    • Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome
    • Martinus RD, Garth GP, Webster TL, Cartwright P, et al. 1996. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240: 98-103.
    • (1996) Eur J Biochem , vol.240 , pp. 98-103
    • Martinus, R.D.1    Garth, G.P.2    Webster, T.L.3    Cartwright, P.4
  • 51
    • 4944234936 scopus 로고    scopus 로고
    • Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones
    • Yoneda T, Benedetti C, Urano F, Clark SG, et al. 2004. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117: 4055-66.
    • (2004) J Cell Sci , vol.117 , pp. 4055-4066
    • Yoneda, T.1    Benedetti, C.2    Urano, F.3    Clark, S.G.4
  • 52
    • 33748901113 scopus 로고    scopus 로고
    • Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response
    • Benedetti C, Haynes CM, Yang Y, Harding HP, et al. 2006. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174: 229-39.
    • (2006) Genetics , vol.174 , pp. 229-239
    • Benedetti, C.1    Haynes, C.M.2    Yang, Y.3    Harding, H.P.4
  • 53
    • 76849100919 scopus 로고    scopus 로고
    • The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans
    • Haynes CM, Yang Y, Blais SP, Neubert TA, et al. 2010. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37: 529-40.
    • (2010) Mol Cell , vol.37 , pp. 529-540
    • Haynes, C.M.1    Yang, Y.2    Blais, S.P.3    Neubert, T.A.4
  • 54
    • 84864744900 scopus 로고    scopus 로고
    • Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
    • Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, et al. 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337: 587-90.
    • (2012) Science , vol.337 , pp. 587-590
    • Nargund, A.M.1    Pellegrino, M.W.2    Fiorese, C.J.3    Baker, B.M.4
  • 55
    • 84864065342 scopus 로고    scopus 로고
    • Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2
    • Baker BM, Nargund AM, Sun T, Haynes CM. 2012. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet 8: e1002760.
    • (2012) PLoS Genet , vol.8 , pp. e1002760
    • Baker, B.M.1    Nargund, A.M.2    Sun, T.3    Haynes, C.M.4
  • 56
    • 84889652177 scopus 로고    scopus 로고
    • Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation
    • Rainbolt TK, Atanassova N, Genereux JC, Wiseman RL. 2013. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab 18: 908-19.
    • (2013) Cell Metab , vol.18 , pp. 908-919
    • Rainbolt, T.K.1    Atanassova, N.2    Genereux, J.C.3    Wiseman, R.L.4
  • 57
    • 84864985287 scopus 로고    scopus 로고
    • Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation
    • Rath E, Berger E, Messlik A, Nunes T, et al. 2012. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61: 1269-78.
    • (2012) Gut , vol.61 , pp. 1269-1278
    • Rath, E.1    Berger, E.2    Messlik, A.3    Nunes, T.4
  • 58
    • 37849038317 scopus 로고    scopus 로고
    • The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response
    • Horibe T, Hoogenraad NJ. 2007. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE 2: e835.
    • (2007) PLoS ONE , vol.2
    • Horibe, T.1    Hoogenraad, N.J.2
  • 60
    • 0037147103 scopus 로고    scopus 로고
    • Rates of behavior and aging specified by mitochondrial function during development
    • Dillin A, Hsu A-L, Arantes-Oliveira N, Lehrer-Graiwer J, et al. 2002. Rates of behavior and aging specified by mitochondrial function during development. Science 298: 2398-401.
    • (2002) Science , vol.298 , pp. 2398-2401
    • Dillin, A.1    Hsu, A.-L.2    Arantes-Oliveira, N.3    Lehrer-Graiwer, J.4
  • 61
    • 78650944949 scopus 로고    scopus 로고
    • The cell-non-autonomous nature of electron transport chain-mediated longevity
    • Durieux J, Wolff S, Dillin A. 2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144: 79-91.
    • (2011) Cell , vol.144 , pp. 79-91
    • Durieux, J.1    Wolff, S.2    Dillin, A.3
  • 62
    • 84886786722 scopus 로고    scopus 로고
    • Muscle mitohormesis promotes longevity via systemic repression of insulin signaling
    • Owusu-Ansah E, Song W, Perrimon N. 2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155: 699-712.
    • (2013) Cell , vol.155 , pp. 699-712
    • Owusu-Ansah, E.1    Song, W.2    Perrimon, N.3
  • 63
    • 84878138385 scopus 로고    scopus 로고
    • Mitonuclear protein imbalance as a conserved longevity mechanism
    • Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, et al. 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497: 451-7.
    • (2013) Nature , vol.497 , pp. 451-457
    • Houtkooper, R.H.1    Mouchiroud, L.2    Ryu, D.3    Moullan, N.4
  • 64
    • 84876962833 scopus 로고    scopus 로고
    • Humanin: a harbinger of mitochondrial-derived peptides?
    • Lee C, Yen K, Cohen P. 2013. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab 24: 222-8.
    • (2013) Trends Endocrinol Metab , vol.24 , pp. 222-228
    • Lee, C.1    Yen, K.2    Cohen, P.3
  • 65
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim KH, Jeong YT, Oh H, Kim SH, et al. 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19: 83-92.
    • (2013) Nat Med , vol.19 , pp. 83-92
    • Kim, K.H.1    Jeong, Y.T.2    Oh, H.3    Kim, S.H.4
  • 66
    • 84871820635 scopus 로고    scopus 로고
    • Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation
    • Escobar-Henriques M, Anton F. 2013. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochim Biophys Acta 1833: 162-75.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 162-175
    • Escobar-Henriques, M.1    Anton, F.2
  • 67
    • 77951737783 scopus 로고    scopus 로고
    • Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
    • Chen H, Vermulst M, Wang YE, Chomyn A, et al. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141: 280-9.
    • (2010) Cell , vol.141 , pp. 280-289
    • Chen, H.1    Vermulst, M.2    Wang, Y.E.3    Chomyn, A.4
  • 68
    • 67049089786 scopus 로고    scopus 로고
    • SLP-2 is required for stress-induced mitochondrial hyperfusion
    • Tondera D, Grandemange S, Jourdain A, Karbowski M, et al. 2009. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589-600.
    • (2009) EMBO J , vol.28 , pp. 1589-1600
    • Tondera, D.1    Grandemange, S.2    Jourdain, A.3    Karbowski, M.4
  • 69
    • 84871802627 scopus 로고    scopus 로고
    • Recent advances into the understanding of mitochondrial fission
    • Elgass K, Pakay J, Ryan MT, Palmer CS. 2013. Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833: 150-61.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 150-161
    • Elgass, K.1    Pakay, J.2    Ryan, M.T.3    Palmer, C.S.4
  • 70
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M, Shirihai OS. 2013. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17: 491-506.
    • (2013) Cell Metab , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 71
    • 84899955772 scopus 로고    scopus 로고
    • Mitochondrial response to nutrient availability and its role in metabolic disease
    • Gao AW, Cantó C, Houtkooper RH. 2014. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med 6: 580-9.
    • (2014) EMBO Mol Med , vol.6 , pp. 580-589
    • Gao, A.W.1    Cantó, C.2    Houtkooper, R.H.3
  • 72
    • 84924310257 scopus 로고    scopus 로고
    • Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock
    • Muoio DM. 2014. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 159: 1253-62.
    • (2014) Cell , vol.159 , pp. 1253-1262
    • Muoio, D.M.1
  • 73
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
    • Chen H, Detmer SA, Ewald AJ, Griffin EE, et al. 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200.
    • (2003) J Cell Biol , vol.160 , pp. 189-200
    • Chen, H.1    Detmer, S.A.2    Ewald, A.J.3    Griffin, E.E.4
  • 74
    • 22544451586 scopus 로고    scopus 로고
    • Disruption of fusion results in mitochondrial heterogeneity and dysfunction
    • Chen H, Chomyn A, Chan DC. 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280: 26185-92.
    • (2005) J Biol Chem , vol.280 , pp. 26185-26192
    • Chen, H.1    Chomyn, A.2    Chan, D.C.3
  • 75
    • 0037424239 scopus 로고    scopus 로고
    • Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis
    • Olichon A, Baricault L, Gas N, Guillou E, et al. 2003. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278: 7743-6.
    • (2003) J Biol Chem , vol.278 , pp. 7743-7746
    • Olichon, A.1    Baricault, L.2    Gas, N.3    Guillou, E.4
  • 76
    • 33745699393 scopus 로고    scopus 로고
    • OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
    • Frezza C, Cipolat S, Martins de Brito O, Micaroni M, et al. 2006. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177-89.
    • (2006) Cell , vol.126 , pp. 177-189
    • Frezza, C.1    Cipolat, S.2    Martins de Brito, O.3    Micaroni, M.4
  • 77
    • 84860505850 scopus 로고    scopus 로고
    • Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice
    • Quirós PM, Ramsay AJ, Sala D, Fernández-Vizarra E, et al. 2012. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 31: 2117-33.
    • (2012) EMBO J , vol.31 , pp. 2117-2133
    • Quirós, P.M.1    Ramsay, A.J.2    Sala, D.3    Fernández-Vizarra, E.4
  • 78
    • 84896264348 scopus 로고    scopus 로고
    • The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
    • Anand R, Wai T, Baker MJ, Kladt N, et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204: 919-29.
    • (2014) J Cell Biol , vol.204 , pp. 919-929
    • Anand, R.1    Wai, T.2    Baker, M.J.3    Kladt, N.4
  • 79
    • 84898612040 scopus 로고    scopus 로고
    • Dynamic survey of mitochondria by ubiquitin
    • Escobar-Henriques M, Langer T. 2014. Dynamic survey of mitochondria by ubiquitin. EMBO Rep 15: 231-43.
    • (2014) EMBO Rep , vol.15 , pp. 231-243
    • Escobar-Henriques, M.1    Langer, T.2
  • 80
    • 48249124967 scopus 로고    scopus 로고
    • Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane
    • Nakamura N, Hirose S. 2008. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 19: 1903-11.
    • (2008) Mol Biol Cell , vol.19 , pp. 1903-1911
    • Nakamura, N.1    Hirose, S.2
  • 81
    • 84898025574 scopus 로고    scopus 로고
    • A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase U SP30
    • Yue W, Chen Z, Liu H, Yan C, et al. 2014. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase U SP30. Cell Res 24: 482-96.
    • (2014) Cell Res , vol.24 , pp. 482-496
    • Yue, W.1    Chen, Z.2    Liu, H.3    Yan, C.4
  • 82
    • 84873433599 scopus 로고    scopus 로고
    • Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways
    • Anton F, Dittmar G, Langer T, Escobar-Henriques M. 2013. Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell 49: 487-98.
    • (2013) Mol Cell , vol.49 , pp. 487-498
    • Anton, F.1    Dittmar, G.2    Langer, T.3    Escobar-Henriques, M.4
  • 83
    • 0035166814 scopus 로고    scopus 로고
    • Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
    • Smirnova E, Griparic L, Shurland DL, van der Bliek AM. 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245-56.
    • (2001) Mol Biol Cell , vol.12 , pp. 2245-2256
    • Smirnova, E.1    Griparic, L.2    Shurland, D.L.3    van der Bliek, A.M.4
  • 84
    • 84875273810 scopus 로고    scopus 로고
    • New insights into the function and regulation of mitochondrial fission
    • Otera H, Ishihara N, Mihara K. 2013. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833: 1256-68.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 1256-1268
    • Otera, H.1    Ishihara, N.2    Mihara, K.3
  • 85
    • 0141592470 scopus 로고    scopus 로고
    • hFis1, a novel component of the mammalian mitochondrial fission machinery
    • James DI, Parone PA, Mattenberger Y, Martinou J. 2003. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278: 36373-9.
    • (2003) J Biol Chem , vol.278 , pp. 36373-36379
    • James, D.I.1    Parone, P.A.2    Mattenberger, Y.3    Martinou, J.4
  • 86
    • 78650167618 scopus 로고    scopus 로고
    • Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
    • Otera H, Wang C, Cleland MM, Setoguchi K, et al. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191: 1141-58.
    • (2010) J Cell Biol , vol.191 , pp. 1141-1158
    • Otera, H.1    Wang, C.2    Cleland, M.M.3    Setoguchi, K.4
  • 87
    • 79957988402 scopus 로고    scopus 로고
    • MiD49 and MiD51, new components of the mitochondrial fission machinery
    • Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, et al. 2011. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12: 565-73.
    • (2011) EMBO Rep , vol.12 , pp. 565-573
    • Palmer, C.S.1    Osellame, L.D.2    Laine, D.3    Koutsopoulos, O.S.4
  • 88
    • 84874639591 scopus 로고    scopus 로고
    • Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
    • Losón OC, Song Z, Chen H, Chan DC. 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24: 659-67.
    • (2013) Mol Biol Cell , vol.24 , pp. 659-667
    • Losón, O.C.1    Song, Z.2    Chen, H.3    Chan, D.C.4
  • 89
    • 84889242417 scopus 로고    scopus 로고
    • Mitochondrial dynamics-mitochondrial fission and fusion in human diseases
    • Archer SL. 2013. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369: 2236-51.
    • (2013) N Engl J Med , vol.369 , pp. 2236-2251
    • Archer, S.L.1
  • 90
    • 2442589922 scopus 로고    scopus 로고
    • Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
    • Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-51.
    • (2004) Nat Genet , vol.36 , pp. 449-451
    • Züchner, S.1    Mersiyanova, I.V.2    Muglia, M.3    Bissar-Tadmouri, N.4
  • 91
    • 0033772264 scopus 로고    scopus 로고
    • OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
    • Alexander C, Votruba M, Pesch UE, Thiselton DL, et al. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211-5.
    • (2000) Nat Genet , vol.26 , pp. 211-215
    • Alexander, C.1    Votruba, M.2    Pesch, U.E.3    Thiselton, D.L.4
  • 92
    • 20244381365 scopus 로고    scopus 로고
    • Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
    • Delettre C, Lenaers G, Griffoin JM, Gigarel N, et al. 2000. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207-10.
    • (2000) Nat Genet , vol.26 , pp. 207-210
    • Delettre, C.1    Lenaers, G.2    Griffoin, J.M.3    Gigarel, N.4
  • 94
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G, Elorza A, Molina AJA, Mohamed H, et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27: 433-46.
    • (2008) EMBO J , vol.27 , pp. 433-446
    • Twig, G.1    Elorza, A.2    Molina, A.J.A.3    Mohamed, H.4
  • 95
    • 84879853173 scopus 로고    scopus 로고
    • Principles of the mitochondrial fusion and fission cycle in neurons
    • Cagalinec M, Safiulina D, Liiv M, Liiv J, et al. 2013. Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126: 2187-97.
    • (2013) J Cell Sci , vol.126 , pp. 2187-2197
    • Cagalinec, M.1    Safiulina, D.2    Liiv, M.3    Liiv, J.4
  • 96
    • 84898648553 scopus 로고    scopus 로고
    • Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure
    • Wikstrom JD, Mahdaviani K, Liesa M, Sereda SB, et al. 2014. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J 33: 418-36.
    • (2014) EMBO J , vol.33 , pp. 418-436
    • Wikstrom, J.D.1    Mahdaviani, K.2    Liesa, M.3    Sereda, S.B.4
  • 99
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • Ashrafi G, Schwarz TL. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20: 31-42.
    • (2013) Cell Death Differ , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 100
    • 39049149816 scopus 로고    scopus 로고
    • The role of mitochondria in apoptosis
    • Jeong S-Y, Seol D-W. 2008. The role of mitochondria in apoptosis. BMB Rep 41: 11-22.
    • (2008) BMB Rep , vol.41 , pp. 11-22
    • Jeong, S.-Y.1    Seol, D.-W.2
  • 101
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D, Tanaka A, Suen D-F, Youle RJ. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803.
    • (2008) J Cell Biol , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.-F.3    Youle, R.J.4
  • 102
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • 8:
    • Narendra DP, Jin SM, Tanaka A, Suen D-F, et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298.
    • (2010) PLoS Biol
    • Narendra, D.P.1    Jin, S.M.2    Tanaka, A.3    Suen, D.-F.4
  • 103
    • 84898023373 scopus 로고    scopus 로고
    • PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
    • Morais VA, Haddad D, Craessaerts K, De Bock P-J, et al. 2014. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344: 203-7.
    • (2014) Science , vol.344 , pp. 203-207
    • Morais, V.A.1    Haddad, D.2    Craessaerts, K.3    De Bock, P.-J.4
  • 104
    • 84861983560 scopus 로고    scopus 로고
    • Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency
    • Vos M, Esposito G, Edirisinghe JN, Vilain S, et al. 2012. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336: 1306-10.
    • (2012) Science , vol.336 , pp. 1306-1310
    • Vos, M.1    Esposito, G.2    Edirisinghe, J.N.3    Vilain, S.4
  • 105
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M, Jin SM, Kane LA, Youle RJ. 2012. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22: 320-33.
    • (2012) Dev Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 106
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080.
    • (2012) Open Biol , vol.2 , pp. 120080
    • Kondapalli, C.1    Kazlauskaite, A.2    Zhang, N.3    Woodroof, H.I.4
  • 107
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, et al. 2012. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2: 1002.
    • (2012) Sci Rep , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1    Imai, Y.2    Yoshida, S.3    Ishihama, Y.4
  • 108
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, et al. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460: 127-39.
    • (2014) Biochem J , vol.460 , pp. 127-139
    • Kazlauskaite, A.1    Kondapalli, C.2    Gourlay, R.3    Campbell, D.G.4
  • 109
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity
    • Kane LA, Lazarou M, Fogel AI, Li Y, et al. 2014. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143-53.
    • (2014) J Cell Biol , vol.205 , pp. 143-153
    • Kane, L.A.1    Lazarou, M.2    Fogel, A.I.3    Li, Y.4
  • 110
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano F, Okatsu K, Kosako H, Tamura Y, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162-6.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1    Okatsu, K.2    Kosako, H.3    Tamura, Y.4
  • 111
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, et al. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372-6.
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1    Raman, M.2    Guarani-Pereira, V.3    Sowa, M.E.4
  • 112
    • 79551663809 scopus 로고    scopus 로고
    • The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover
    • Xu S, Peng G, Wang Y, Fang S, et al. 2011. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol Biol Cell 22: 291-300.
    • (2011) Mol Biol Cell , vol.22 , pp. 291-300
    • Xu, S.1    Peng, G.2    Wang, Y.3    Fang, S.4
  • 113
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan NC, Salazar AM, Pham AH, Sweredoski MJ, et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20: 1726-37.
    • (2011) Hum Mol Genet , vol.20 , pp. 1726-1737
    • Chan, N.C.1    Salazar, A.M.2    Pham, A.H.3    Sweredoski, M.J.4
  • 114
    • 77952326081 scopus 로고    scopus 로고
    • Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
    • Lee J-Y, Nagano Y, Taylor JP, Lim KL, et al. 2010. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189: 671-9.
    • (2010) J Cell Biol , vol.189 , pp. 671-679
    • Lee, J.-Y.1    Nagano, Y.2    Taylor, J.P.3    Lim, K.L.4
  • 115
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQS TM1
    • Geisler S, Holmström KM, Skujat D, Fiesel FC, et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQS TM1. Nat Cell Biol 12: 119-31.
    • (2010) Nat Cell Biol , vol.12 , pp. 119-131
    • Geisler, S.1    Holmström, K.M.2    Skujat, D.3    Fiesel, F.C.4
  • 116
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    • Bingol B, Tea JS, Phu L, Reichelt M, et al. 2014. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510: 370-5.
    • (2014) Nature , vol.510 , pp. 370-375
    • Bingol, B.1    Tea, J.S.2    Phu, L.3    Reichelt, M.4
  • 117
    • 84923167247 scopus 로고    scopus 로고
    • USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • Cunningham CN, Baughman JM, Phu L, Tea JS, et al. 2015. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17: 160-9.
    • (2015) Nat Cell Biol , vol.17 , pp. 160-169
    • Cunningham, C.N.1    Baughman, J.M.2    Phu, L.3    Tea, J.S.4
  • 118
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell AM, Youle RJ. 2015. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85: 257-73.
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 120
    • 84908085343 scopus 로고    scopus 로고
    • A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
    • Sugiura A, McLelland G-L, Fon EA, McBride HM. 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33: 2142-56.
    • (2014) EMBO J , vol.33 , pp. 2142-2156
    • Sugiura, A.1    McLelland, G.-L.2    Fon, E.A.3    McBride, H.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.