-
1
-
-
34250811284
-
Mitochondrial-nuclear communications
-
Ryan MT, Hoogenraad NJ. 2007. Mitochondrial-nuclear communications. Annu Rev Biochem 76: 701-22.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 701-722
-
-
Ryan, M.T.1
Hoogenraad, N.J.2
-
3
-
-
84896716062
-
The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease
-
Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, et al. 2014. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 19: 357-72.
-
(2014)
Cell Metab
, vol.19
, pp. 357-372
-
-
Harbauer, A.B.1
Zahedi, R.P.2
Sickmann, A.3
Pfanner, N.4
-
4
-
-
84897390686
-
Mitochondrial protein quality control in health and disease
-
Baker MJ, Palmer CS, Stojanovski D. 2014. Mitochondrial protein quality control in health and disease. Br J Pharmacol 171: 1870-89.
-
(2014)
Br J Pharmacol
, vol.171
, pp. 1870-1889
-
-
Baker, M.J.1
Palmer, C.S.2
Stojanovski, D.3
-
6
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle RJ, van der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science 337: 1062-5.
-
(2012)
Science
, vol.337
, pp. 1062-1065
-
-
Youle, R.J.1
van der Bliek, A.M.2
-
7
-
-
84858376953
-
Mitochondria: in sickness and in health
-
Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 148: 1145-59.
-
(2012)
Cell
, vol.148
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
8
-
-
84874591240
-
The role of mitochondria in aging
-
Bratic A, Larsson N. 2013. The role of mitochondria in aging. J Clin Invest 123: 951-7.
-
(2013)
J Clin Invest
, vol.123
, pp. 951-957
-
-
Bratic, A.1
Larsson, N.2
-
9
-
-
84900295547
-
Mitohormesis
-
Yun J, Finkel T. 2014. Mitohormesis. Cell Metab 19: 757-66.
-
(2014)
Cell Metab
, vol.19
, pp. 757-766
-
-
Yun, J.1
Finkel, T.2
-
10
-
-
84905820762
-
Mitochondrial proteostasis in the control of aging and longevity
-
Jensen MB, Jasper H. 2014. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20: 214-25.
-
(2014)
Cell Metab
, vol.20
, pp. 214-225
-
-
Jensen, M.B.1
Jasper, H.2
-
11
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
Brand MD. 2010. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466-72.
-
(2010)
Exp Gerontol
, vol.45
, pp. 466-472
-
-
Brand, M.D.1
-
12
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena LA, Chandel NS. 2012. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48: 158-67.
-
(2012)
Mol Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
13
-
-
84856729192
-
Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
-
Murphy MP. 2012. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16: 476-95.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 476-495
-
-
Murphy, M.P.1
-
14
-
-
79959350253
-
Extending life span by increasing oxidative stress
-
Ristow M, Schmeisser S. 2011. Extending life span by increasing oxidative stress. Free Radic Biol Med 51: 327-36.
-
(2011)
Free Radic Biol Med
, vol.51
, pp. 327-336
-
-
Ristow, M.1
Schmeisser, S.2
-
15
-
-
34748850786
-
Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
-
Schulz TJ, Zarse K, Voigt A, Urban N, et al. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6: 280-93.
-
(2007)
Cell Metab
, vol.6
, pp. 280-293
-
-
Schulz, T.J.1
Zarse, K.2
Voigt, A.3
Urban, N.4
-
16
-
-
84880517634
-
The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
-
Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, et al. 2013. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154: 430-41.
-
(2013)
Cell
, vol.154
, pp. 430-441
-
-
Mouchiroud, L.1
Houtkooper, R.H.2
Moullan, N.3
Katsyuba, E.4
-
17
-
-
78651276219
-
Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans
-
Mouchiroud L, Molin L, Kasturi P, Triba MN, et al. 2011. Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 10: 39-54.
-
(2011)
Aging Cell
, vol.10
, pp. 39-54
-
-
Mouchiroud, L.1
Molin, L.2
Kasturi, P.3
Triba, M.N.4
-
20
-
-
84871793725
-
Chaperone-protease networks in mitochondrial protein homeostasis
-
Voos W. 2013. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta 1833: 388-99.
-
(2013)
Biochim Biophys Acta
, vol.1833
, pp. 388-399
-
-
Voos, W.1
-
21
-
-
79955664111
-
Mitochondrial protein quality control during biogenesis and aging
-
Baker BM, Haynes CM. 2011. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 36: 254-61.
-
(2011)
Trends Biochem Sci
, vol.36
, pp. 254-261
-
-
Baker, B.M.1
Haynes, C.M.2
-
22
-
-
34250369119
-
Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases
-
Koppen M, Langer T. 2007. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42: 221-42.
-
(2007)
Crit Rev Biochem Mol Biol
, vol.42
, pp. 221-242
-
-
Koppen, M.1
Langer, T.2
-
23
-
-
0037009521
-
A mitochondrial specific stress response in mammalian cells
-
Zhao Q, Wang J, Levichkin I, V, Stasinopoulos S, et al. 2002. A mitochondrial specific stress response in mammalian cells. EMBO J 21: 4411-9.
-
(2002)
EMBO J
, vol.21
, pp. 4411-4419
-
-
Zhao, Q.1
Wang, J.2
Levichkin, I.V.3
Stasinopoulos, S.4
-
24
-
-
34848861368
-
ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans
-
Haynes CM, Petrova K, Benedetti C, Yang Y, et al. 2007. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13: 467-80.
-
(2007)
Dev Cell
, vol.13
, pp. 467-480
-
-
Haynes, C.M.1
Petrova, K.2
Benedetti, C.3
Yang, Y.4
-
25
-
-
26844484821
-
The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria
-
Nolden M, Ehses S, Koppen M, Bernacchia A, et al. 2005. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123: 277-89.
-
(2005)
Cell
, vol.123
, pp. 277-289
-
-
Nolden, M.1
Ehses, S.2
Koppen, M.3
Bernacchia, A.4
-
26
-
-
33746299692
-
Regulation of mitochondrial morphology through proteolytic cleavage of OP 1
-
Ishihara N, Fujita Y, Oka T, Mihara K. 2006. Regulation of mitochondrial morphology through proteolytic cleavage of OP 1. EMBO J 25: 2966-77.
-
(2006)
EMBO J
, vol.25
, pp. 2966-2977
-
-
Ishihara, N.1
Fujita, Y.2
Oka, T.3
Mihara, K.4
-
27
-
-
0033825336
-
Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response
-
Gray CW, Ward R, V, Karran E, Turconi S, et al. 2000. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 267: 5699-710.
-
(2000)
Eur J Biochem
, vol.267
, pp. 5699-5710
-
-
Gray, C.W.1
Ward, V.R.2
Karran, E.3
Turconi, S.4
-
28
-
-
37849048003
-
Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements
-
Aldridge JE, Horibe T, Hoogenraad NJ. 2007. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2: e74.
-
(2007)
PLoS ONE
, vol.2
-
-
Aldridge, J.E.1
Horibe, T.2
Hoogenraad, N.J.3
-
29
-
-
34548313688
-
OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
-
Song Z, Chen H, Fiket M, Alexander C, et al. 2007. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178: 749-55.
-
(2007)
J Cell Biol
, vol.178
, pp. 749-755
-
-
Song, Z.1
Chen, H.2
Fiket, M.3
Alexander, C.4
-
30
-
-
0038722727
-
Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis
-
Yang QH, Church-Hajduk R, Ren J, Newton ML, et al. 2003. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17: 1487-96.
-
(2003)
Genes Dev
, vol.17
, pp. 1487-1496
-
-
Yang, Q.H.1
Church-Hajduk, R.2
Ren, J.3
Newton, M.L.4
-
31
-
-
84905696703
-
Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy
-
Cilenti L, Ambivero CT, Ward N, Alnemri ES, et al. 2014. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Biochim Biophys Acta 1843: 1295-307.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 1295-1307
-
-
Cilenti, L.1
Ambivero, C.T.2
Ward, N.3
Alnemri, E.S.4
-
32
-
-
77950616071
-
Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1
-
Kieper N, Holmström KM, Ciceri D, Fiesel FC, et al. 2010. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Exp Cell Res 316: 1213-24.
-
(2010)
Exp Cell Res
, vol.316
, pp. 1213-1224
-
-
Kieper, N.1
Holmström, K.M.2
Ciceri, D.3
Fiesel, F.C.4
-
33
-
-
84898603457
-
Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics
-
Baker MJ, Lampe PA, Stojanovski D, Korwitz A, et al. 2014. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J 33: 578-93.
-
(2014)
EMBO J
, vol.33
, pp. 578-593
-
-
Baker, M.J.1
Lampe, P.A.2
Stojanovski, D.3
Korwitz, A.4
-
34
-
-
33745685054
-
Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling
-
Cipolat S, Rudka T, Hartmann D, Costa V, et al. 2006. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126: 163-75.
-
(2006)
Cell
, vol.126
, pp. 163-175
-
-
Cipolat, S.1
Rudka, T.2
Hartmann, D.3
Costa, V.4
-
35
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin SM, Lazarou M, Wang C, Kane LA, et al. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191: 933-42.
-
(2010)
J Cell Biol
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
-
36
-
-
79151480727
-
Ubiquitin-proteasome system and mitochondria-reciprocity
-
Livnat-Levanon N, Glickman MH. 2011. Ubiquitin-proteasome system and mitochondria-reciprocity. Biochim Biophys Acta 1809: 80-7.
-
(2011)
Biochim Biophys Acta
, vol.1809
, pp. 80-87
-
-
Livnat-Levanon, N.1
Glickman, M.H.2
-
37
-
-
33745816760
-
Protein degradation by the ubiquitin-proteasome pathway in normal and disease states
-
Lecker SH, Goldberg AL, Mitch WE. 2006. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17: 1807-19.
-
(2006)
J Am Soc Nephrol
, vol.17
, pp. 1807-1819
-
-
Lecker, S.H.1
Goldberg, A.L.2
Mitch, W.E.3
-
38
-
-
34247528121
-
A proteomics approach to identify the ubiquitinated proteins in mouse heart
-
Jeon HB, Choi ES, Yoon JH, Hwang JH, et al. 2007. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun 357: 731-6.
-
(2007)
Biochem Biophys Res Commun
, vol.357
, pp. 731-736
-
-
Jeon, H.B.1
Choi, E.S.2
Yoon, J.H.3
Hwang, J.H.4
-
39
-
-
84879001260
-
The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins
-
Bragoszewski P, Gornicka A, Sztolsztener ME, Chacinska A. 2013. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol Cell Biol 33: 2136-48.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2136-2148
-
-
Bragoszewski, P.1
Gornicka, A.2
Sztolsztener, M.E.3
Chacinska, A.4
-
41
-
-
56749176947
-
One step at a time: endoplasmic reticulum-associated degradation
-
Vembar SS, Brodsky JL. 2008. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9: 944-57.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 944-957
-
-
Vembar, S.S.1
Brodsky, J.L.2
-
42
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A, Cleland MM, Xu S, Narendra DP, et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367-80.
-
(2010)
J Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
-
43
-
-
84865395988
-
Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
-
Leboucher GP, Tsai YC, Yang M, Shaw KC, et al. 2012. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47: 547-57.
-
(2012)
Mol Cell
, vol.47
, pp. 547-557
-
-
Leboucher, G.P.1
Tsai, Y.C.2
Yang, M.3
Shaw, K.C.4
-
44
-
-
38349023008
-
Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
-
Neuspiel M, Schauss AC, Braschi E, Zunino R, et al. 2008. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18: 102-8.
-
(2008)
Curr Biol
, vol.18
, pp. 102-108
-
-
Neuspiel, M.1
Schauss, A.C.2
Braschi, E.3
Zunino, R.4
-
45
-
-
44949231368
-
Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling
-
Li W, Bengtson MH, Ulbrich A, Matsuda A, et al. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 3: e1487.
-
(2008)
PLoS ONE
, vol.3
-
-
Li, W.1
Bengtson, M.H.2
Ulbrich, A.3
Matsuda, A.4
-
46
-
-
84901837721
-
The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins
-
Okreglak V, Walter P. 2014. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc Natl Acad Sci USA 111: 8019-24.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 8019-8024
-
-
Okreglak, V.1
Walter, P.2
-
47
-
-
84904540152
-
Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins
-
Chen Y-C, Umanah GKE, Dephoure N, Andrabi SA, et al. 2014. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J 33: 1548-64.
-
(2014)
EMBO J
, vol.33
, pp. 1548-1564
-
-
Chen, Y.-C.1
Umanah, G.K.E.2
Dephoure, N.3
Andrabi, S.A.4
-
48
-
-
84896499806
-
The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease
-
Jovaisaite V, Mouchiroud L, Auwerx J. 2014. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217: 137-43.
-
(2014)
J Exp Biol
, vol.217
, pp. 137-143
-
-
Jovaisaite, V.1
Mouchiroud, L.2
Auwerx, J.3
-
49
-
-
82255173966
-
The unfolded protein response: from stress pathway to homeostatic regulation
-
Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334: 1081-6.
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
50
-
-
0029825891
-
Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome
-
Martinus RD, Garth GP, Webster TL, Cartwright P, et al. 1996. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240: 98-103.
-
(1996)
Eur J Biochem
, vol.240
, pp. 98-103
-
-
Martinus, R.D.1
Garth, G.P.2
Webster, T.L.3
Cartwright, P.4
-
51
-
-
4944234936
-
Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones
-
Yoneda T, Benedetti C, Urano F, Clark SG, et al. 2004. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117: 4055-66.
-
(2004)
J Cell Sci
, vol.117
, pp. 4055-4066
-
-
Yoneda, T.1
Benedetti, C.2
Urano, F.3
Clark, S.G.4
-
52
-
-
33748901113
-
Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response
-
Benedetti C, Haynes CM, Yang Y, Harding HP, et al. 2006. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174: 229-39.
-
(2006)
Genetics
, vol.174
, pp. 229-239
-
-
Benedetti, C.1
Haynes, C.M.2
Yang, Y.3
Harding, H.P.4
-
53
-
-
76849100919
-
The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans
-
Haynes CM, Yang Y, Blais SP, Neubert TA, et al. 2010. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37: 529-40.
-
(2010)
Mol Cell
, vol.37
, pp. 529-540
-
-
Haynes, C.M.1
Yang, Y.2
Blais, S.P.3
Neubert, T.A.4
-
54
-
-
84864744900
-
Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
-
Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, et al. 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337: 587-90.
-
(2012)
Science
, vol.337
, pp. 587-590
-
-
Nargund, A.M.1
Pellegrino, M.W.2
Fiorese, C.J.3
Baker, B.M.4
-
55
-
-
84864065342
-
Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2
-
Baker BM, Nargund AM, Sun T, Haynes CM. 2012. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet 8: e1002760.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002760
-
-
Baker, B.M.1
Nargund, A.M.2
Sun, T.3
Haynes, C.M.4
-
56
-
-
84889652177
-
Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation
-
Rainbolt TK, Atanassova N, Genereux JC, Wiseman RL. 2013. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab 18: 908-19.
-
(2013)
Cell Metab
, vol.18
, pp. 908-919
-
-
Rainbolt, T.K.1
Atanassova, N.2
Genereux, J.C.3
Wiseman, R.L.4
-
57
-
-
84864985287
-
Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation
-
Rath E, Berger E, Messlik A, Nunes T, et al. 2012. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61: 1269-78.
-
(2012)
Gut
, vol.61
, pp. 1269-1278
-
-
Rath, E.1
Berger, E.2
Messlik, A.3
Nunes, T.4
-
58
-
-
37849038317
-
The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response
-
Horibe T, Hoogenraad NJ. 2007. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE 2: e835.
-
(2007)
PLoS ONE
, vol.2
-
-
Horibe, T.1
Hoogenraad, N.J.2
-
59
-
-
84859568041
-
The metabolic footprint of aging in mice
-
Houtkooper RH, Argmann C, Houten SM, Cantó C, et al. 2011. The metabolic footprint of aging in mice. Sci Rep 1: 134.
-
(2011)
Sci Rep
, vol.1
, pp. 134
-
-
Houtkooper, R.H.1
Argmann, C.2
Houten, S.M.3
Cantó, C.4
-
60
-
-
0037147103
-
Rates of behavior and aging specified by mitochondrial function during development
-
Dillin A, Hsu A-L, Arantes-Oliveira N, Lehrer-Graiwer J, et al. 2002. Rates of behavior and aging specified by mitochondrial function during development. Science 298: 2398-401.
-
(2002)
Science
, vol.298
, pp. 2398-2401
-
-
Dillin, A.1
Hsu, A.-L.2
Arantes-Oliveira, N.3
Lehrer-Graiwer, J.4
-
61
-
-
78650944949
-
The cell-non-autonomous nature of electron transport chain-mediated longevity
-
Durieux J, Wolff S, Dillin A. 2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144: 79-91.
-
(2011)
Cell
, vol.144
, pp. 79-91
-
-
Durieux, J.1
Wolff, S.2
Dillin, A.3
-
62
-
-
84886786722
-
Muscle mitohormesis promotes longevity via systemic repression of insulin signaling
-
Owusu-Ansah E, Song W, Perrimon N. 2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155: 699-712.
-
(2013)
Cell
, vol.155
, pp. 699-712
-
-
Owusu-Ansah, E.1
Song, W.2
Perrimon, N.3
-
63
-
-
84878138385
-
Mitonuclear protein imbalance as a conserved longevity mechanism
-
Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, et al. 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497: 451-7.
-
(2013)
Nature
, vol.497
, pp. 451-457
-
-
Houtkooper, R.H.1
Mouchiroud, L.2
Ryu, D.3
Moullan, N.4
-
64
-
-
84876962833
-
Humanin: a harbinger of mitochondrial-derived peptides?
-
Lee C, Yen K, Cohen P. 2013. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab 24: 222-8.
-
(2013)
Trends Endocrinol Metab
, vol.24
, pp. 222-228
-
-
Lee, C.1
Yen, K.2
Cohen, P.3
-
65
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
Kim KH, Jeong YT, Oh H, Kim SH, et al. 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19: 83-92.
-
(2013)
Nat Med
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
Jeong, Y.T.2
Oh, H.3
Kim, S.H.4
-
66
-
-
84871820635
-
Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation
-
Escobar-Henriques M, Anton F. 2013. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochim Biophys Acta 1833: 162-75.
-
(2013)
Biochim Biophys Acta
, vol.1833
, pp. 162-175
-
-
Escobar-Henriques, M.1
Anton, F.2
-
67
-
-
77951737783
-
Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
-
Chen H, Vermulst M, Wang YE, Chomyn A, et al. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141: 280-9.
-
(2010)
Cell
, vol.141
, pp. 280-289
-
-
Chen, H.1
Vermulst, M.2
Wang, Y.E.3
Chomyn, A.4
-
68
-
-
67049089786
-
SLP-2 is required for stress-induced mitochondrial hyperfusion
-
Tondera D, Grandemange S, Jourdain A, Karbowski M, et al. 2009. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589-600.
-
(2009)
EMBO J
, vol.28
, pp. 1589-1600
-
-
Tondera, D.1
Grandemange, S.2
Jourdain, A.3
Karbowski, M.4
-
70
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M, Shirihai OS. 2013. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17: 491-506.
-
(2013)
Cell Metab
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
71
-
-
84899955772
-
Mitochondrial response to nutrient availability and its role in metabolic disease
-
Gao AW, Cantó C, Houtkooper RH. 2014. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med 6: 580-9.
-
(2014)
EMBO Mol Med
, vol.6
, pp. 580-589
-
-
Gao, A.W.1
Cantó, C.2
Houtkooper, R.H.3
-
72
-
-
84924310257
-
Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock
-
Muoio DM. 2014. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 159: 1253-62.
-
(2014)
Cell
, vol.159
, pp. 1253-1262
-
-
Muoio, D.M.1
-
73
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H, Detmer SA, Ewald AJ, Griffin EE, et al. 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200.
-
(2003)
J Cell Biol
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
-
74
-
-
22544451586
-
Disruption of fusion results in mitochondrial heterogeneity and dysfunction
-
Chen H, Chomyn A, Chan DC. 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280: 26185-92.
-
(2005)
J Biol Chem
, vol.280
, pp. 26185-26192
-
-
Chen, H.1
Chomyn, A.2
Chan, D.C.3
-
75
-
-
0037424239
-
Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis
-
Olichon A, Baricault L, Gas N, Guillou E, et al. 2003. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278: 7743-6.
-
(2003)
J Biol Chem
, vol.278
, pp. 7743-7746
-
-
Olichon, A.1
Baricault, L.2
Gas, N.3
Guillou, E.4
-
76
-
-
33745699393
-
OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
-
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, et al. 2006. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177-89.
-
(2006)
Cell
, vol.126
, pp. 177-189
-
-
Frezza, C.1
Cipolat, S.2
Martins de Brito, O.3
Micaroni, M.4
-
77
-
-
84860505850
-
Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice
-
Quirós PM, Ramsay AJ, Sala D, Fernández-Vizarra E, et al. 2012. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 31: 2117-33.
-
(2012)
EMBO J
, vol.31
, pp. 2117-2133
-
-
Quirós, P.M.1
Ramsay, A.J.2
Sala, D.3
Fernández-Vizarra, E.4
-
78
-
-
84896264348
-
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
-
Anand R, Wai T, Baker MJ, Kladt N, et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204: 919-29.
-
(2014)
J Cell Biol
, vol.204
, pp. 919-929
-
-
Anand, R.1
Wai, T.2
Baker, M.J.3
Kladt, N.4
-
79
-
-
84898612040
-
Dynamic survey of mitochondria by ubiquitin
-
Escobar-Henriques M, Langer T. 2014. Dynamic survey of mitochondria by ubiquitin. EMBO Rep 15: 231-43.
-
(2014)
EMBO Rep
, vol.15
, pp. 231-243
-
-
Escobar-Henriques, M.1
Langer, T.2
-
80
-
-
48249124967
-
Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane
-
Nakamura N, Hirose S. 2008. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 19: 1903-11.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 1903-1911
-
-
Nakamura, N.1
Hirose, S.2
-
81
-
-
84898025574
-
A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase U SP30
-
Yue W, Chen Z, Liu H, Yan C, et al. 2014. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase U SP30. Cell Res 24: 482-96.
-
(2014)
Cell Res
, vol.24
, pp. 482-496
-
-
Yue, W.1
Chen, Z.2
Liu, H.3
Yan, C.4
-
82
-
-
84873433599
-
Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways
-
Anton F, Dittmar G, Langer T, Escobar-Henriques M. 2013. Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell 49: 487-98.
-
(2013)
Mol Cell
, vol.49
, pp. 487-498
-
-
Anton, F.1
Dittmar, G.2
Langer, T.3
Escobar-Henriques, M.4
-
83
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova E, Griparic L, Shurland DL, van der Bliek AM. 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245-56.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
Griparic, L.2
Shurland, D.L.3
van der Bliek, A.M.4
-
84
-
-
84875273810
-
New insights into the function and regulation of mitochondrial fission
-
Otera H, Ishihara N, Mihara K. 2013. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833: 1256-68.
-
(2013)
Biochim Biophys Acta
, vol.1833
, pp. 1256-1268
-
-
Otera, H.1
Ishihara, N.2
Mihara, K.3
-
85
-
-
0141592470
-
hFis1, a novel component of the mammalian mitochondrial fission machinery
-
James DI, Parone PA, Mattenberger Y, Martinou J. 2003. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278: 36373-9.
-
(2003)
J Biol Chem
, vol.278
, pp. 36373-36379
-
-
James, D.I.1
Parone, P.A.2
Mattenberger, Y.3
Martinou, J.4
-
86
-
-
78650167618
-
Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
-
Otera H, Wang C, Cleland MM, Setoguchi K, et al. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191: 1141-58.
-
(2010)
J Cell Biol
, vol.191
, pp. 1141-1158
-
-
Otera, H.1
Wang, C.2
Cleland, M.M.3
Setoguchi, K.4
-
87
-
-
79957988402
-
MiD49 and MiD51, new components of the mitochondrial fission machinery
-
Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, et al. 2011. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12: 565-73.
-
(2011)
EMBO Rep
, vol.12
, pp. 565-573
-
-
Palmer, C.S.1
Osellame, L.D.2
Laine, D.3
Koutsopoulos, O.S.4
-
88
-
-
84874639591
-
Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
-
Losón OC, Song Z, Chen H, Chan DC. 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24: 659-67.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 659-667
-
-
Losón, O.C.1
Song, Z.2
Chen, H.3
Chan, D.C.4
-
89
-
-
84889242417
-
Mitochondrial dynamics-mitochondrial fission and fusion in human diseases
-
Archer SL. 2013. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369: 2236-51.
-
(2013)
N Engl J Med
, vol.369
, pp. 2236-2251
-
-
Archer, S.L.1
-
90
-
-
2442589922
-
Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
-
Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-51.
-
(2004)
Nat Genet
, vol.36
, pp. 449-451
-
-
Züchner, S.1
Mersiyanova, I.V.2
Muglia, M.3
Bissar-Tadmouri, N.4
-
91
-
-
0033772264
-
OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
-
Alexander C, Votruba M, Pesch UE, Thiselton DL, et al. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211-5.
-
(2000)
Nat Genet
, vol.26
, pp. 211-215
-
-
Alexander, C.1
Votruba, M.2
Pesch, U.E.3
Thiselton, D.L.4
-
92
-
-
20244381365
-
Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
-
Delettre C, Lenaers G, Griffoin JM, Gigarel N, et al. 2000. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207-10.
-
(2000)
Nat Genet
, vol.26
, pp. 207-210
-
-
Delettre, C.1
Lenaers, G.2
Griffoin, J.M.3
Gigarel, N.4
-
93
-
-
34247525092
-
A lethal defect of mitochondrial and peroxisomal fission
-
Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, et al. 2007. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356: 1736-41.
-
(2007)
N Engl J Med
, vol.356
, pp. 1736-1741
-
-
Waterham, H.R.1
Koster, J.2
van Roermund, C.W.T.3
Mooyer, P.A.W.4
-
94
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G, Elorza A, Molina AJA, Mohamed H, et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27: 433-46.
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.A.3
Mohamed, H.4
-
95
-
-
84879853173
-
Principles of the mitochondrial fusion and fission cycle in neurons
-
Cagalinec M, Safiulina D, Liiv M, Liiv J, et al. 2013. Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126: 2187-97.
-
(2013)
J Cell Sci
, vol.126
, pp. 2187-2197
-
-
Cagalinec, M.1
Safiulina, D.2
Liiv, M.3
Liiv, J.4
-
96
-
-
84898648553
-
Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure
-
Wikstrom JD, Mahdaviani K, Liesa M, Sereda SB, et al. 2014. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J 33: 418-36.
-
(2014)
EMBO J
, vol.33
, pp. 418-436
-
-
Wikstrom, J.D.1
Mahdaviani, K.2
Liesa, M.3
Sereda, S.B.4
-
99
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
Ashrafi G, Schwarz TL. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20: 31-42.
-
(2013)
Cell Death Differ
, vol.20
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
100
-
-
39049149816
-
The role of mitochondria in apoptosis
-
Jeong S-Y, Seol D-W. 2008. The role of mitochondria in apoptosis. BMB Rep 41: 11-22.
-
(2008)
BMB Rep
, vol.41
, pp. 11-22
-
-
Jeong, S.-Y.1
Seol, D.-W.2
-
101
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D, Tanaka A, Suen D-F, Youle RJ. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.-F.3
Youle, R.J.4
-
102
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
8:
-
Narendra DP, Jin SM, Tanaka A, Suen D-F, et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298.
-
(2010)
PLoS Biol
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.-F.4
-
103
-
-
84898023373
-
PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
-
Morais VA, Haddad D, Craessaerts K, De Bock P-J, et al. 2014. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344: 203-7.
-
(2014)
Science
, vol.344
, pp. 203-207
-
-
Morais, V.A.1
Haddad, D.2
Craessaerts, K.3
De Bock, P.-J.4
-
104
-
-
84861983560
-
Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency
-
Vos M, Esposito G, Edirisinghe JN, Vilain S, et al. 2012. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336: 1306-10.
-
(2012)
Science
, vol.336
, pp. 1306-1310
-
-
Vos, M.1
Esposito, G.2
Edirisinghe, J.N.3
Vilain, S.4
-
105
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou M, Jin SM, Kane LA, Youle RJ. 2012. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22: 320-33.
-
(2012)
Dev Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
106
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080.
-
(2012)
Open Biol
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
-
107
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, et al. 2012. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2: 1002.
-
(2012)
Sci Rep
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
-
108
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, et al. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460: 127-39.
-
(2014)
Biochem J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
-
109
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity
-
Kane LA, Lazarou M, Fogel AI, Li Y, et al. 2014. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143-53.
-
(2014)
J Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
-
110
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, Tamura Y, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162-6.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
-
111
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, et al. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372-6.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
-
112
-
-
79551663809
-
The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover
-
Xu S, Peng G, Wang Y, Fang S, et al. 2011. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol Biol Cell 22: 291-300.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 291-300
-
-
Xu, S.1
Peng, G.2
Wang, Y.3
Fang, S.4
-
113
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20: 1726-37.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
-
114
-
-
77952326081
-
Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
-
Lee J-Y, Nagano Y, Taylor JP, Lim KL, et al. 2010. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189: 671-9.
-
(2010)
J Cell Biol
, vol.189
, pp. 671-679
-
-
Lee, J.-Y.1
Nagano, Y.2
Taylor, J.P.3
Lim, K.L.4
-
115
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQS TM1
-
Geisler S, Holmström KM, Skujat D, Fiesel FC, et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQS TM1. Nat Cell Biol 12: 119-31.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmström, K.M.2
Skujat, D.3
Fiesel, F.C.4
-
116
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
Bingol B, Tea JS, Phu L, Reichelt M, et al. 2014. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510: 370-5.
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
-
117
-
-
84923167247
-
USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
-
Cunningham CN, Baughman JM, Phu L, Tea JS, et al. 2015. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17: 160-9.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 160-169
-
-
Cunningham, C.N.1
Baughman, J.M.2
Phu, L.3
Tea, J.S.4
-
118
-
-
84921369563
-
The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell AM, Youle RJ. 2015. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85: 257-73.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
120
-
-
84908085343
-
A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
-
Sugiura A, McLelland G-L, Fon EA, McBride HM. 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33: 2142-56.
-
(2014)
EMBO J
, vol.33
, pp. 2142-2156
-
-
Sugiura, A.1
McLelland, G.-L.2
Fon, E.A.3
McBride, H.M.4
|