메뉴 건너뛰기




Volumn 19, Issue 8, 2013, Pages 1039-1046

Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS RECEPTOR; NUCLEAR RECEPTOR NR1D1; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PROTEIN KINASE LKB1; RECEPTOR PROTEIN; REV ERB ALPHA; SIRTUIN 1; UNCLASSIFIED DRUG;

EID: 84882255392     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/nm.3213     Document Type: Article
Times cited : (357)

References (45)
  • 1
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres
    • Lin, J. et al. Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1
  • 2
    • 33750427891 scopus 로고    scopus 로고
    • PGC1α expression is controlled in skeletal muscles by pparβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes
    • Schuler, M. et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407-414 (2006).
    • (2006) Cell Metab , vol.4 , pp. 407-414
    • Schuler, M.1
  • 3
    • 79952148111 scopus 로고    scopus 로고
    • Exercise and PGC-1α-independent synchronization of type i muscle metabolism and vasculature by ERRgamma
    • Narkar, V.A. et al. Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab. 13, 283-293 (2011).
    • (2011) Cell Metab , vol.13 , pp. 283-293
    • Narkar, V.A.1
  • 4
    • 78649508058 scopus 로고    scopus 로고
    • Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity
    • Zechner, C. et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 633-642 (2010).
    • (2010) Cell Metab , vol.12 , pp. 633-642
    • Zechner, C.1
  • 5
    • 81055125669 scopus 로고    scopus 로고
    • Ncor1 is a conserved physiological modulator of muscle mass and oxidative function
    • Yamamoto, H. et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827-839 (2011).
    • (2011) Cell , vol.147 , pp. 827-839
    • Yamamoto, H.1
  • 6
    • 35648937073 scopus 로고    scopus 로고
    • Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals
    • Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014-30021 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 30014-30021
    • Handschin, C.1
  • 7
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
    • Leone, T.C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).
    • (2005) PLoS Biol , vol.3
    • Leone, T.C.1
  • 8
    • 77955152755 scopus 로고    scopus 로고
    • Nuclear receptors linking circadian rhythms and cardiometabolic control
    • Duez, H. & Staels, B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler. Thromb. Vasc. Biol. 30, 1529-1534 (2010).
    • (2010) Arterioscler. Thromb. Vasc. Biol , vol.30 , pp. 1529-1534
    • Duez, H.1    Staels, B.2
  • 9
    • 48549102407 scopus 로고    scopus 로고
    • Regulation of bile acid synthesis by the nuclear receptor Rev-erbα
    • Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135, 689-698 (2008).
    • (2008) Gastroenterology , vol.135 , pp. 689-698
    • Duez, H.1
  • 10
    • 37249086610 scopus 로고    scopus 로고
    • Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways
    • Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786-1789 (2007).
    • (2007) Science , vol.318 , pp. 1786-1789
    • Yin, L.1
  • 11
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
    • Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123-127 (2012).
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1
  • 12
    • 84860291442 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
    • Solt, L.A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68 (2012).
    • (2012) Nature , vol.485 , pp. 62-68
    • Solt, L.A.1
  • 13
    • 84859329911 scopus 로고    scopus 로고
    • Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
    • Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657-667 (2012).
    • (2012) Genes Dev , vol.26 , pp. 657-667
    • Bugge, A.1
  • 14
    • 0141621135 scopus 로고    scopus 로고
    • The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation
    • Fontaine, C. et al. The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation. J. Biol. Chem. 278, 37672-37680 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 37672-37680
    • Fontaine, C.1
  • 15
    • 41149132147 scopus 로고    scopus 로고
    • Bifunctional role of Rev-erbα in adipocyte differentiation
    • Wang, J. & Lazar, M.A. Bifunctional role of Rev-erbα in adipocyte differentiation. Mol. Cell Biol. 28, 2213-2220 (2008).
    • (2008) Mol. Cell Biol , vol.28 , pp. 2213-2220
    • Wang, J.1    Lazar, M.A.2
  • 16
    • 48249114100 scopus 로고    scopus 로고
    • The nuclear receptor Rev-erbα is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages
    • Fontaine, C. et al. The nuclear receptor Rev-erbα is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol. Endocrinol. 22, 1797-1811 (2008).
    • (2008) Mol. Endocrinol , vol.22 , pp. 1797-1811
    • Fontaine, C.1
  • 17
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011).
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 18
    • 70349142240 scopus 로고    scopus 로고
    • Negative feedback maintenance of heme homeostasis by its receptor Rev-erbα
    • Wu, N., Yin, L., Hanniman, E.A., Joshi, S. & Lazar, M.A. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα. Genes Dev. 23, 2201-2209 (2009).
    • (2009) Genes Dev , vol.23 , pp. 2201-2209
    • Wu, N.1    Yin, L.2    Hanniman, E.A.3    Joshi, S.4    Lazar, M.A.5
  • 19
    • 76049093949 scopus 로고    scopus 로고
    • PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis
    • Estall, J.L. et al. PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis. Proc. Natl. Acad. Sci. USA 106, 22510-22515 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 22510-22515
    • Estall, J.L.1
  • 20
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of ampk and sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219 (2010).
    • (2010) Cell Metab , vol.11 , pp. 213-219
    • Cantó, C.1
  • 21
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803 (2008).
    • (2008) J. Cell Biol , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 22
    • 79959349283 scopus 로고    scopus 로고
    • Genome-wide remodeling of the epigenetic landscape during myogenic differentiation
    • Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. 108, E149-E158 (2011).
    • (2011) Proc. Natl. Acad. Sci. , vol.108
    • Asp, P.1
  • 23
    • 34547731363 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle-insight from analysis of a transgenic mouse model
    • Fujii, N. et al. Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle-insight from analysis of a transgenic mouse model. Diabetes Res. Clin. Pract. 77 (suppl. 1), S92-S98 (2007).
    • (2007) Diabetes Res. Clin. Pract , vol.77 , Issue.SUPPL. 1
    • Fujii, N.1
  • 24
    • 33751013309 scopus 로고    scopus 로고
    • Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3
    • Koh, H.J. et al. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol. Cell Biol. 26, 8217-8227 (2006).
    • (2006) Mol. Cell Biol , vol.26 , pp. 8217-8227
    • Koh, H.J.1
  • 25
    • 77953169730 scopus 로고    scopus 로고
    • Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice
    • Thomson, D.M. et al. Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice. J. Appl. Physiol. 108, 1775-1785 (2010).
    • (2010) J. Appl. Physiol , vol.108 , pp. 1775-1785
    • Thomson, D.M.1
  • 26
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova, M.M. & Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023 (2011).
    • (2011) Nat. Cell Biol , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 27
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz, J.D. & White, E. Autophagy and metabolism. Science 330, 1344-1348 (2010).
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 28
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280-293 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 29
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast apg8p, is localized in autophagosome membranes after processing
    • Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728 (2000).
    • (2000) EMBO J , vol.19 , pp. 5720-5728
    • Kabeya, Y.1
  • 30
    • 80051729441 scopus 로고    scopus 로고
    • Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy
    • Joo, J.H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy. Mol. Cell 43, 572-585 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 572-585
    • Joo, J.H.1
  • 31
    • 51649124519 scopus 로고    scopus 로고
    • Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
    • Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502 (2008).
    • (2008) Blood , vol.112 , pp. 1493-1502
    • Kundu, M.1
  • 32
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ulk1 (hatg1) by amp-activated protein kinase connects energy sensing to mitophagy
    • Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 33
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • Lee, I.H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1
  • 34
    • 84869036539 scopus 로고    scopus 로고
    • Circadian topology of metabolism
    • Bass, J. Circadian topology of metabolism. Nature 491, 348-356 (2012).
    • (2012) Nature , vol.491 , pp. 348-356
    • Bass, J.1
  • 35
    • 34548853967 scopus 로고    scopus 로고
    • Identification of the circadian transcriptome in adult mouse skeletal muscle
    • McCarthy, J.J. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31, 86-95 (2007).
    • (2007) Physiol. Genomics , vol.31 , pp. 86-95
    • McCarthy, J.J.1
  • 36
    • 33847632469 scopus 로고    scopus 로고
    • Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
    • Miller, B.H. et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. USA 104, 3342-3347 (2007).
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 3342-3347
    • Miller, B.H.1
  • 37
    • 78650501389 scopus 로고    scopus 로고
    • CLOck and bmal1 regulate myod and are necessary for maintenance of skeletal muscle phenotype and function
    • Andrews, J.L. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. USA 107, 19090-19095 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 19090-19095
    • Andrews, J.L.1
  • 38
    • 48549102407 scopus 로고    scopus 로고
    • Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha
    • Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 135, 689-698 (2008).
    • (2008) Gastroenterology , vol.135 , pp. 689-698
    • Duez, H.1
  • 39
    • 8844256589 scopus 로고    scopus 로고
    • Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells
    • Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705 (2004).
    • (2004) Cell , vol.119 , pp. 693-705
    • Nagoshi, E.1
  • 40
    • 0036906591 scopus 로고    scopus 로고
    • Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription
    • Raspé, E. et al. Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43, 2172-2179 (2002).
    • (2002) J. Lipid Res , vol.43 , pp. 2172-2179
    • Raspé, E.1
  • 41
    • 38649143118 scopus 로고    scopus 로고
    • Deficency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism
    • Aragonés, J. et al. Deficency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170-180 (2008).
    • (2008) Nat. Genet , vol.40 , pp. 170-180
    • Aragonés, J.1
  • 42
    • 0023277545 scopus 로고
    • Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction
    • Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159 (1987).
    • (1987) Anal. Biochem , vol.162 , pp. 156-159
    • Chomczynski, P.1    Sacchi, N.2
  • 43
    • 84873056206 scopus 로고    scopus 로고
    • Steep increase in myonuclear domain size during infancy
    • Delhaas, T. et al. Steep increase in myonuclear domain size during infancy. Anat. Rec. 296, 192-197 (2013).
    • (2013) Anat. Rec , vol.296 , pp. 192-197
    • Delhaas, T.1
  • 44
    • 78650823745 scopus 로고    scopus 로고
    • A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle
    • Kaminskyy, V. et al. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy 7, 83-90 (2011).
    • (2011) Autophagy , vol.7 , pp. 83-90
    • Kaminskyy, V.1
  • 45
    • 70349575435 scopus 로고    scopus 로고
    • Combining chromatin immunoprecipitation and oligonucleotide tiling arrays (ChIP-Chip) for functional genomic studies
    • Eeckhoute, J., Lupien, M. & Brown, M. Combining chromatin immunoprecipitation and oligonucleotide tiling arrays (ChIP-Chip) for functional genomic studies. Methods Mol. Biol. 556, 155-164 (2009).
    • (2009) Methods Mol. Biol , vol.556 , pp. 155-164
    • Eeckhoute, J.1    Lupien, M.2    Brown, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.