-
1
-
-
0037102256
-
Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres
-
Lin, J. et al. Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
-
2
-
-
33750427891
-
PGC1α expression is controlled in skeletal muscles by pparβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes
-
Schuler, M. et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407-414 (2006).
-
(2006)
Cell Metab
, vol.4
, pp. 407-414
-
-
Schuler, M.1
-
3
-
-
79952148111
-
Exercise and PGC-1α-independent synchronization of type i muscle metabolism and vasculature by ERRgamma
-
Narkar, V.A. et al. Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab. 13, 283-293 (2011).
-
(2011)
Cell Metab
, vol.13
, pp. 283-293
-
-
Narkar, V.A.1
-
4
-
-
78649508058
-
Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity
-
Zechner, C. et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 633-642 (2010).
-
(2010)
Cell Metab
, vol.12
, pp. 633-642
-
-
Zechner, C.1
-
5
-
-
81055125669
-
Ncor1 is a conserved physiological modulator of muscle mass and oxidative function
-
Yamamoto, H. et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827-839 (2011).
-
(2011)
Cell
, vol.147
, pp. 827-839
-
-
Yamamoto, H.1
-
6
-
-
35648937073
-
Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals
-
Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014-30021 (2007).
-
(2007)
J. Biol. Chem
, vol.282
, pp. 30014-30021
-
-
Handschin, C.1
-
7
-
-
21144446106
-
PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone, T.C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).
-
(2005)
PLoS Biol
, vol.3
-
-
Leone, T.C.1
-
8
-
-
77955152755
-
Nuclear receptors linking circadian rhythms and cardiometabolic control
-
Duez, H. & Staels, B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler. Thromb. Vasc. Biol. 30, 1529-1534 (2010).
-
(2010)
Arterioscler. Thromb. Vasc. Biol
, vol.30
, pp. 1529-1534
-
-
Duez, H.1
Staels, B.2
-
9
-
-
48549102407
-
Regulation of bile acid synthesis by the nuclear receptor Rev-erbα
-
Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135, 689-698 (2008).
-
(2008)
Gastroenterology
, vol.135
, pp. 689-698
-
-
Duez, H.1
-
10
-
-
37249086610
-
Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways
-
Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786-1789 (2007).
-
(2007)
Science
, vol.318
, pp. 1786-1789
-
-
Yin, L.1
-
11
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123-127 (2012).
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
12
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt, L.A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68 (2012).
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
-
13
-
-
84859329911
-
Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657-667 (2012).
-
(2012)
Genes Dev
, vol.26
, pp. 657-667
-
-
Bugge, A.1
-
14
-
-
0141621135
-
The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation
-
Fontaine, C. et al. The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation. J. Biol. Chem. 278, 37672-37680 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 37672-37680
-
-
Fontaine, C.1
-
15
-
-
41149132147
-
Bifunctional role of Rev-erbα in adipocyte differentiation
-
Wang, J. & Lazar, M.A. Bifunctional role of Rev-erbα in adipocyte differentiation. Mol. Cell Biol. 28, 2213-2220 (2008).
-
(2008)
Mol. Cell Biol
, vol.28
, pp. 2213-2220
-
-
Wang, J.1
Lazar, M.A.2
-
16
-
-
48249114100
-
The nuclear receptor Rev-erbα is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages
-
Fontaine, C. et al. The nuclear receptor Rev-erbα is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol. Endocrinol. 22, 1797-1811 (2008).
-
(2008)
Mol. Endocrinol
, vol.22
, pp. 1797-1811
-
-
Fontaine, C.1
-
17
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011).
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
18
-
-
70349142240
-
Negative feedback maintenance of heme homeostasis by its receptor Rev-erbα
-
Wu, N., Yin, L., Hanniman, E.A., Joshi, S. & Lazar, M.A. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα. Genes Dev. 23, 2201-2209 (2009).
-
(2009)
Genes Dev
, vol.23
, pp. 2201-2209
-
-
Wu, N.1
Yin, L.2
Hanniman, E.A.3
Joshi, S.4
Lazar, M.A.5
-
19
-
-
76049093949
-
PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis
-
Estall, J.L. et al. PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis. Proc. Natl. Acad. Sci. USA 106, 22510-22515 (2009).
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 22510-22515
-
-
Estall, J.L.1
-
20
-
-
77249156847
-
Interdependence of ampk and sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219 (2010).
-
(2010)
Cell Metab
, vol.11
, pp. 213-219
-
-
Cantó, C.1
-
21
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803 (2008).
-
(2008)
J. Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
22
-
-
79959349283
-
Genome-wide remodeling of the epigenetic landscape during myogenic differentiation
-
Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. 108, E149-E158 (2011).
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
-
-
Asp, P.1
-
23
-
-
34547731363
-
Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle-insight from analysis of a transgenic mouse model
-
Fujii, N. et al. Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle-insight from analysis of a transgenic mouse model. Diabetes Res. Clin. Pract. 77 (suppl. 1), S92-S98 (2007).
-
(2007)
Diabetes Res. Clin. Pract
, vol.77
, Issue.SUPPL. 1
-
-
Fujii, N.1
-
24
-
-
33751013309
-
Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3
-
Koh, H.J. et al. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol. Cell Biol. 26, 8217-8227 (2006).
-
(2006)
Mol. Cell Biol
, vol.26
, pp. 8217-8227
-
-
Koh, H.J.1
-
25
-
-
77953169730
-
Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice
-
Thomson, D.M. et al. Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice. J. Appl. Physiol. 108, 1775-1785 (2010).
-
(2010)
J. Appl. Physiol
, vol.108
, pp. 1775-1785
-
-
Thomson, D.M.1
-
26
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M.M. & Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023 (2011).
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
27
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz, J.D. & White, E. Autophagy and metabolism. Science 330, 1344-1348 (2010).
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
28
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280-293 (2010).
-
(2010)
Mol. Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
29
-
-
0034329418
-
LC3, a mammalian homologue of yeast apg8p, is localized in autophagosome membranes after processing
-
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728 (2000).
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
-
30
-
-
80051729441
-
Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy
-
Joo, J.H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy. Mol. Cell 43, 572-585 (2011).
-
(2011)
Mol. Cell
, vol.43
, pp. 572-585
-
-
Joo, J.H.1
-
31
-
-
51649124519
-
Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
-
Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502 (2008).
-
(2008)
Blood
, vol.112
, pp. 1493-1502
-
-
Kundu, M.1
-
32
-
-
79251587803
-
Phosphorylation of ulk1 (hatg1) by amp-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
33
-
-
41549138483
-
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
-
Lee, I.H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3374-3379
-
-
Lee, I.H.1
-
34
-
-
84869036539
-
Circadian topology of metabolism
-
Bass, J. Circadian topology of metabolism. Nature 491, 348-356 (2012).
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
35
-
-
34548853967
-
Identification of the circadian transcriptome in adult mouse skeletal muscle
-
McCarthy, J.J. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31, 86-95 (2007).
-
(2007)
Physiol. Genomics
, vol.31
, pp. 86-95
-
-
McCarthy, J.J.1
-
36
-
-
33847632469
-
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
-
Miller, B.H. et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. USA 104, 3342-3347 (2007).
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 3342-3347
-
-
Miller, B.H.1
-
37
-
-
78650501389
-
CLOck and bmal1 regulate myod and are necessary for maintenance of skeletal muscle phenotype and function
-
Andrews, J.L. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. USA 107, 19090-19095 (2010).
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 19090-19095
-
-
Andrews, J.L.1
-
38
-
-
48549102407
-
Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha
-
Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 135, 689-698 (2008).
-
(2008)
Gastroenterology
, vol.135
, pp. 689-698
-
-
Duez, H.1
-
39
-
-
8844256589
-
Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells
-
Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705 (2004).
-
(2004)
Cell
, vol.119
, pp. 693-705
-
-
Nagoshi, E.1
-
40
-
-
0036906591
-
Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription
-
Raspé, E. et al. Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43, 2172-2179 (2002).
-
(2002)
J. Lipid Res
, vol.43
, pp. 2172-2179
-
-
Raspé, E.1
-
41
-
-
38649143118
-
Deficency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism
-
Aragonés, J. et al. Deficency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170-180 (2008).
-
(2008)
Nat. Genet
, vol.40
, pp. 170-180
-
-
Aragonés, J.1
-
42
-
-
0023277545
-
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction
-
Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159 (1987).
-
(1987)
Anal. Biochem
, vol.162
, pp. 156-159
-
-
Chomczynski, P.1
Sacchi, N.2
-
43
-
-
84873056206
-
Steep increase in myonuclear domain size during infancy
-
Delhaas, T. et al. Steep increase in myonuclear domain size during infancy. Anat. Rec. 296, 192-197 (2013).
-
(2013)
Anat. Rec
, vol.296
, pp. 192-197
-
-
Delhaas, T.1
-
44
-
-
78650823745
-
A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle
-
Kaminskyy, V. et al. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy 7, 83-90 (2011).
-
(2011)
Autophagy
, vol.7
, pp. 83-90
-
-
Kaminskyy, V.1
-
45
-
-
70349575435
-
Combining chromatin immunoprecipitation and oligonucleotide tiling arrays (ChIP-Chip) for functional genomic studies
-
Eeckhoute, J., Lupien, M. & Brown, M. Combining chromatin immunoprecipitation and oligonucleotide tiling arrays (ChIP-Chip) for functional genomic studies. Methods Mol. Biol. 556, 155-164 (2009).
-
(2009)
Methods Mol. Biol
, vol.556
, pp. 155-164
-
-
Eeckhoute, J.1
Lupien, M.2
Brown, M.3
|