메뉴 건너뛰기




Volumn 64, Issue , 2015, Pages 120-136

Review of assistive strategies in powered lower-limb orthoses and exoskeletons

Author keywords

Assistive strategies; Exoskeletons; Lower limb; Orthoses; Powered

Indexed keywords

AGRICULTURAL ROBOTS; COGNITIVE SYSTEMS; MACHINE DESIGN; ORTHOTICS; SOCIAL ROBOTS; WALKING AIDS;

EID: 84926163555     PISSN: 09218890     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.robot.2014.09.032     Document Type: Article
Times cited : (595)

References (101)
  • 3
    • 40949091084 scopus 로고    scopus 로고
    • Lower extremity exoskeletons and active orthoses: Challenges and state-of-The-Art
    • A.M. Dollar, and H. Herr Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art IEEE Trans. Robot. 24 2008 144 158
    • (2008) IEEE Trans. Robot. , vol.24 , pp. 144-158
    • Dollar, A.M.1    Herr, H.2
  • 4
    • 0034352187 scopus 로고    scopus 로고
    • Treadmill training of paraplegic patients using a robotic orthosis
    • G. Colombo, M. Joerg, R. Schreier, and V. Dietz Treadmill training of paraplegic patients using a robotic orthosis J. Rehabil. Res. Dev. 37 2000 693 700
    • (2000) J. Rehabil. Res. Dev. , vol.37 , pp. 693-700
    • Colombo, G.1    Joerg, M.2    Schreier, R.3    Dietz, V.4
  • 6
    • 84894066934 scopus 로고    scopus 로고
    • Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance
    • D. Sanz-Merodio, M. Cestari, J.C. Arevalo, X. Carrillo, and E. Garcia Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance Adv. Robot. 28 2014 329 338
    • (2014) Adv. Robot. , vol.28 , pp. 329-338
    • Sanz-Merodio, D.1    Cestari, M.2    Arevalo, J.C.3    Carrillo, X.4    Garcia, E.5
  • 7
    • 84871909019 scopus 로고    scopus 로고
    • The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
    • A. Esquenazi, M. Talaty, A. Packel, and M. Saulino The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury Am. J. Phys. Med. Rehabil. 91 2012 911 921
    • (2012) Am. J. Phys. Med. Rehabil. , vol.91 , pp. 911-921
    • Esquenazi, A.1    Talaty, M.2    Packel, A.3    Saulino, M.4
  • 10
    • 27144550464 scopus 로고    scopus 로고
    • The rise of the body bots [robotic exoskeletons]
    • E. Guizzo, and H. Goldstein The rise of the body bots [robotic exoskeletons] IEEE Spectrum 42 2005 50 56
    • (2005) IEEE Spectrum , vol.42 , pp. 50-56
    • Guizzo, E.1    Goldstein, H.2
  • 11
    • 36048986416 scopus 로고    scopus 로고
    • A quasi-passive leg exoskeleton for load-carrying augmentation
    • C.J. Walsh, K. Endo, and H. Herr A quasi-passive leg exoskeleton for load-carrying augmentation Int. J. Humanoid Rob. 4 2007 487 506
    • (2007) Int. J. Humanoid Rob. , vol.4 , pp. 487-506
    • Walsh, C.J.1    Endo, K.2    Herr, H.3
  • 12
    • 84860712335 scopus 로고    scopus 로고
    • HAL: Hybrid assistive limb based on cybernics
    • Springer
    • Y. Sankai HAL: hybrid assistive limb based on cybernics Robotics Research 2011 Springer 25 34
    • (2011) Robotics Research , pp. 25-34
    • Sankai, Y.1
  • 13
    • 84926476279 scopus 로고    scopus 로고
    • E. Commission
    • E. Commission, Population structure and ageing, 2012. http://epp.eurostat.ec.europa.eu/statistics-explained/index.php/Population
    • (2012) Population Structure and Ageing
  • 14
    • 77954925389 scopus 로고    scopus 로고
    • A. on Ageing
    • A. on Ageing, Aging statistics, 2012. http://www.aoa.gov/AoARoot/Aging-Statistics/Profile/2011/3.aspx.
    • (2012) Aging Statistics
  • 15
    • 68149149693 scopus 로고    scopus 로고
    • Exoskeletons and orthoses: Classification, design challenges and future directions
    • H. Herr Exoskeletons and orthoses: classification, design challenges and future directions J. Neuroeng. Rehabil. 6 2009 21
    • (2009) J. Neuroeng. Rehabil. , vol.6 , pp. 21
    • Herr, H.1
  • 17
    • 68249158648 scopus 로고    scopus 로고
    • Review of control strategies for robotic movement training after neurologic injury
    • L. Marchal-Crespo, and D.J. Reinkensmeyer Review of control strategies for robotic movement training after neurologic injury J. Neuroeng. Rehabil. 6 2009 20
    • (2009) J. Neuroeng. Rehabil. , vol.6 , pp. 20
    • Marchal-Crespo, L.1    Reinkensmeyer, D.J.2
  • 20
    • 67049097175 scopus 로고    scopus 로고
    • Engineering design review of stance-control knee-ankle-foot orthoses
    • T. Yakimovich, E.D. Lemaire, and J. Kofman Engineering design review of stance-control knee-ankle-foot orthoses J. Rehabil. Res. Dev. 46 2009 257
    • (2009) J. Rehabil. Res. Dev. , vol.46 , pp. 257
    • Yakimovich, T.1    Lemaire, E.D.2    Kofman, J.3
  • 21
    • 78650432140 scopus 로고    scopus 로고
    • Foot orthoses and gait: A systematic review and meta-analysis of literature pertaining to potential mechanisms
    • K. Mills, P. Blanch, A.R. Chapman, T.G. McPoil, and B. Vicenzino Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms Br. J. Sports Med. 44 2010 1035 1046
    • (2010) Br. J. Sports Med. , vol.44 , pp. 1035-1046
    • Mills, K.1    Blanch, P.2    Chapman, A.R.3    McPoil, T.G.4    Vicenzino, B.5
  • 22
    • 84859737017 scopus 로고    scopus 로고
    • Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons
    • R. Jimenez-Fabian, and O. Verlinden Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons Med. Eng. Phys. 34 2012 397 408
    • (2012) Med. Eng. Phys. , vol.34 , pp. 397-408
    • Jimenez-Fabian, R.1    Verlinden, O.2
  • 23
    • 77952281097 scopus 로고    scopus 로고
    • Rehabilitation exoskeletal robotics
    • J.L. Pons Rehabilitation exoskeletal robotics IEEE Eng. Med. Biol. Mag. 29 3 2010 57 63
    • (2010) IEEE Eng. Med. Biol. Mag. , vol.29 , Issue.3 , pp. 57-63
    • Pons, J.L.1
  • 26
    • 33845728506 scopus 로고    scopus 로고
    • That which does not stabilize, will only make us stronger
    • H. Kazerooni, A. Chu, and R. Steger That which does not stabilize, will only make us stronger Int. J. Robot. Res. 26 2007 75 89
    • (2007) Int. J. Robot. Res. , vol.26 , pp. 75-89
    • Kazerooni, H.1    Chu, A.2    Steger, R.3
  • 27
    • 33645822543 scopus 로고    scopus 로고
    • Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)
    • A.B. Zoss, H. Kazerooni, and A. Chu Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) IEEE/ASME Trans. Mechatronics 11 2006 128 138
    • (2006) IEEE/ASME Trans. Mechatronics , vol.11 , pp. 128-138
    • Zoss, A.B.1    Kazerooni, H.2    Chu, A.3
  • 31
    • 34548439885 scopus 로고    scopus 로고
    • Intention-based walking support for paraplegia patients with robot suit HAL
    • K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, and Y. Sankai Intention-based walking support for paraplegia patients with robot suit HAL Adv. Robot. 21 2007 1441 1469
    • (2007) Adv. Robot. , vol.21 , pp. 1441-1469
    • Suzuki, K.1    Mito, G.2    Kawamoto, H.3    Hasegawa, Y.4    Sankai, Y.5
  • 41
    • 83455220178 scopus 로고    scopus 로고
    • Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals
    • R.J. Farris, H.A. Quintero, and M. Goldfarb Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals IEEE Trans. Neural Syst. Rehabil. Eng. 19 2011 652 659
    • (2011) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.19 , pp. 652-659
    • Farris, R.J.1    Quintero, H.A.2    Goldfarb, M.3
  • 44
    • 77957297904 scopus 로고    scopus 로고
    • Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL
    • A. Tsukahara, R. Kawanishi, Y. Hasegawa, and Y. Sankai Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL Adv. Robot. 24 2010 1615 1638
    • (2010) Adv. Robot. , vol.24 , pp. 1615-1638
    • Tsukahara, A.1    Kawanishi, R.2    Hasegawa, Y.3    Sankai, Y.4
  • 45
    • 33947122562 scopus 로고    scopus 로고
    • Development of a standing style transfer system "able" for disabled lower limbs
    • Y. Mori, J. Okada, and K. Takayama Development of a standing style transfer system "able" for disabled lower limbs IEEE/ASME Trans. Mechatronics 11 2006 372 380
    • (2006) IEEE/ASME Trans. Mechatronics , vol.11 , pp. 372-380
    • Mori, Y.1    Okada, J.2    Takayama, K.3
  • 47
    • 84870850972 scopus 로고    scopus 로고
    • Transparent force control for body extender
    • IEEE
    • G.P.R. Papini, and C.A. Avizzano Transparent force control for body extender RO-MAN, 2012 IEEE 2012 IEEE 138 143
    • (2012) RO-MAN, 2012 IEEE , pp. 138-143
    • Papini, G.P.R.1    Avizzano, C.A.2
  • 48
    • 0036764442 scopus 로고    scopus 로고
    • Development of power assisting suit for assisting nurse labor
    • K. Yamamoto, K. Hyodo, M. Ishii, and T. Matsuo Development of power assisting suit for assisting nurse labor JSME Int. J. Ser. C 45 2002 703 711
    • (2002) JSME Int. J. Ser. C , vol.45 , pp. 703-711
    • Yamamoto, K.1    Hyodo, K.2    Ishii, M.3    Matsuo, T.4
  • 55
    • 33646131859 scopus 로고    scopus 로고
    • Dynamic hebbian learning in adaptive frequency oscillators
    • L. Righetti, J. Buchli, and A.J. Ijspeert Dynamic hebbian learning in adaptive frequency oscillators Physica D 216 2006 269 281
    • (2006) Physica D , vol.216 , pp. 269-281
    • Righetti, L.1    Buchli, J.2    Ijspeert, A.J.3
  • 61
    • 79952751401 scopus 로고    scopus 로고
    • Synchronization based control for walking assist suit-evaluation on synchronization and assist effect
    • X. Zhang, and M. Hashimoto Synchronization based control for walking assist suit-evaluation on synchronization and assist effect Key Eng. Mater. 464 2011 115 118
    • (2011) Key Eng. Mater. , vol.464 , pp. 115-118
    • Zhang, X.1    Hashimoto, M.2
  • 62
    • 84857045190 scopus 로고    scopus 로고
    • Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint support in walking
    • X. Zhang, and M. Hashimoto Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint support in walking Mechatronics 22 2012 33 44
    • (2012) Mechatronics , vol.22 , pp. 33-44
    • Zhang, X.1    Hashimoto, M.2
  • 66
    • 33947100380 scopus 로고    scopus 로고
    • Design and control of an exoskeleton for the elderly and patients
    • K. Kong, and D. Jeon Design and control of an exoskeleton for the elderly and patients IEEE/ASME Trans. Mechatronics 11 2006 428 432
    • (2006) IEEE/ASME Trans. Mechatronics , vol.11 , pp. 428-432
    • Kong, K.1    Jeon, D.2
  • 71
    • 33646683841 scopus 로고    scopus 로고
    • Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)
    • H. Kazerooni, R. Steger, and L. Huang Hybrid control of the berkeley lower extremity exoskeleton (BLEEX) Int. J. Robot. Res. 25 2006 561 573
    • (2006) Int. J. Robot. Res. , vol.25 , pp. 561-573
    • Kazerooni, H.1    Steger, R.2    Huang, L.3
  • 72
    • 77957918243 scopus 로고    scopus 로고
    • Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis
    • T.-J. Yeh, M.-J. Wu, T.-J. Lu, F.-K. Wu, and C.-R. Huang Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis Mechatronics 20 2010 686 697
    • (2010) Mechatronics , vol.20 , pp. 686-697
    • Yeh, T.-J.1    Wu, M.-J.2    Lu, T.-J.3    Wu, F.-K.4    Huang, C.-R.5
  • 75
    • 84888123227 scopus 로고    scopus 로고
    • Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
    • T. Lenzi, M.C. Carrozza, and S.K. Agrawal Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking IEEE Trans. Neural Syst. Rehabil. Eng. 21 2013 938 948
    • (2013) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.21 , pp. 938-948
    • Lenzi, T.1    Carrozza, M.C.2    Agrawal, S.K.3
  • 78
    • 41149092852 scopus 로고    scopus 로고
    • Hip orthosis powered by pneumatic artificial muscle: Voluntary activation in absence of myoelectrical signal
    • B.G. Do Nascimento, C.B.S. Vimieiro, D.A.P. Nagem, and M. Pinotti Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal Artif. Organs 32 2008 317 322
    • (2008) Artif. Organs , vol.32 , pp. 317-322
    • Do Nascimento, B.G.1    Vimieiro, C.B.S.2    Nagem, D.A.P.3    Pinotti, M.4
  • 79
    • 79952039109 scopus 로고    scopus 로고
    • Invariant hip moment pattern while walking with a robotic hip exoskeleton
    • C.L. Lewis, and D.P. Ferris Invariant hip moment pattern while walking with a robotic hip exoskeleton J. Biomech. 44 2011 789 793
    • (2011) J. Biomech. , vol.44 , pp. 789-793
    • Lewis, C.L.1    Ferris, D.P.2
  • 80
    • 84856481679 scopus 로고    scopus 로고
    • Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: Initial experiments
    • G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments IEEE Trans. Neural Syst. Rehabil. Eng. 20 2012 68 77
    • (2012) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.20 , pp. 68-77
    • Aguirre-Ollinger, G.1    Colgate, J.E.2    Peshkin, M.A.3    Goswami, A.4
  • 82
    • 50649101449 scopus 로고    scopus 로고
    • A human-exoskeleton interface utilizing electromyography
    • C. Fleischer, and G. Hommel A human-exoskeleton interface utilizing electromyography IEEE Trans. Robot. 24 2008 872 882
    • (2008) IEEE Trans. Robot. , vol.24 , pp. 872-882
    • Fleischer, C.1    Hommel, G.2
  • 83
    • 84877897716 scopus 로고    scopus 로고
    • Effects of robotic knee exoskeleton on human energy expenditure
    • A. Gams, T. Petric, T. Debevec, and J. Babic Effects of robotic knee exoskeleton on human energy expenditure IEEE Trans. Biomed. Eng. 60 2013 1636 1644
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , pp. 1636-1644
    • Gams, A.1    Petric, T.2    Debevec, T.3    Babic, J.4
  • 85
    • 84888993700 scopus 로고    scopus 로고
    • The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis
    • 0309364612469140
    • M. Arazpour, A. Chitsazan, M.A. Bani, G. Rouhi, F.T. Ghomshe, and S.W. Hutchins The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis Prosthet. Orthot. Int. 2013 0309364612469140
    • (2013) Prosthet. Orthot. Int.
    • Arazpour, M.1    Chitsazan, A.2    Bani, M.A.3    Rouhi, G.4    Ghomshe, F.T.5    Hutchins, S.W.6
  • 86
    • 84885706018 scopus 로고    scopus 로고
    • Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback
    • K. Kim, C.-H. Yu, G.-Y. Jeong, M. Heo, and T.-K. Kwon Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback J. Mech. Sci. Technol. 27 2013 3161 3169
    • (2013) J. Mech. Sci. Technol. , vol.27 , pp. 3161-3169
    • Kim, K.1    Yu, C.-H.2    Jeong, G.-Y.3    Heo, M.4    Kwon, T.-K.5
  • 90
    • 72249106205 scopus 로고    scopus 로고
    • Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton
    • P.-C. Kao, C.L. Lewis, and D.P. Ferris Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton J. Biomech. 43 2010 203 209
    • (2010) J. Biomech. , vol.43 , pp. 203-209
    • Kao, P.-C.1    Lewis, C.L.2    Ferris, D.P.3
  • 91
    • 77951976836 scopus 로고    scopus 로고
    • Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking
    • P.-C. Kao, C.L. Lewis, and D.P. Ferris Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking J. Biomech. 43 2010 1401 1407
    • (2010) J. Biomech. , vol.43 , pp. 1401-1407
    • Kao, P.-C.1    Lewis, C.L.2    Ferris, D.P.3
  • 92
    • 77954881190 scopus 로고    scopus 로고
    • Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude
    • P.-C. Kao, C.L. Lewis, and D.P. Ferris Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude J. Neuroeng. Rehabil. 7 2010 33
    • (2010) J. Neuroeng. Rehabil. , vol.7 , pp. 33
    • Kao, P.-C.1    Lewis, C.L.2    Ferris, D.P.3
  • 93
    • 33847342577 scopus 로고    scopus 로고
    • Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults
    • J.A. Norris, K.P. Granata, M.R. Mitros, E.M. Byrne, and A.P. Marsh Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults Gait Posture 25 2007 620 627
    • (2007) Gait Posture , vol.25 , pp. 620-627
    • Norris, J.A.1    Granata, K.P.2    Mitros, M.R.3    Byrne, E.M.4    Marsh, A.P.5
  • 96
    • 84870423379 scopus 로고    scopus 로고
    • Design and control of a wearable stewart platform-type ankle-foot assistive device
    • H. Takemura, T. Onodera, D. Ming, and H. Mizoguchi Design and control of a wearable stewart platform-type ankle-foot assistive device Int. J. Adv. Robot. Syst. 9 2012
    • (2012) Int. J. Adv. Robot. Syst. , vol.9
    • Takemura, H.1    Onodera, T.2    Ming, D.3    Mizoguchi, H.4
  • 98
    • 1542723639 scopus 로고    scopus 로고
    • Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait
    • J.A. Blaya, and H. Herr Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait IEEE Trans. Neural Syst. Rehabil. Eng. 12 2004 24 31
    • (2004) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.12 , pp. 24-31
    • Blaya, J.A.1    Herr, H.2
  • 99
    • 68349141650 scopus 로고    scopus 로고
    • Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton
    • P. Malcolm, P. Fiers, V. Segers, I. Van Caekenberghe, M. Lenoir, and D. De Clercq Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton Gait Posture 30 2009 322 327
    • (2009) Gait Posture , vol.30 , pp. 322-327
    • Malcolm, P.1    Fiers, P.2    Segers, V.3    Van Caekenberghe, I.4    Lenoir, M.5    De Clercq, D.6
  • 100
    • 84873925118 scopus 로고    scopus 로고
    • A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking
    • P. Malcolm, W. Derave, S. Galle, and D. De Clercq A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking PLoS One 8 2013 e56137
    • (2013) PLoS One , vol.8 , pp. e56137
    • Malcolm, P.1    Derave, W.2    Galle, S.3    De Clercq, D.4
  • 101
    • 0034785709 scopus 로고    scopus 로고
    • Dynamic optimization of human walking
    • F.C. Anderson, and M.G. Pandy Dynamic optimization of human walking J. Biomech. Eng. 123 2001 381 390
    • (2001) J. Biomech. Eng. , vol.123 , pp. 381-390
    • Anderson, F.C.1    Pandy, M.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.