메뉴 건너뛰기




Volumn 30, Issue , 2015, Pages 1-151

Metric learning

Author keywords

edit distance; learning theory; Mahalanobis distance; metric learning; similarity learning; structured data

Indexed keywords

COGNITIVE SYSTEMS; DATA MINING; MACHINE LEARNING; PATTERN RECOGNITION; REVIEWS; SUPERVISED LEARNING; TREES (MATHEMATICS);

EID: 84924034422     PISSN: 19394608     EISSN: 19394616     Source Type: Book Series    
DOI: 10.2200/s00626ed1v01y201501aim030     Document Type: Article
Times cited : (152)

References (276)
  • 2
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • Noga Alon, Shai Ben-David, Nicolò Cesa-Bianchi, and David Haussler. Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the ACM, 44(4):615-631, 1997. DOI: 10.1145/263867.263927. 61
    • (1997) Journal of the ACM , vol.44 , Issue.4 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 3
    • 0000581356 scopus 로고
    • Altman. An introduction to kernel and nearest-neighbor nonparametric regression
    • Naomi S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. American Statistician, 46(3):175-185, 1992. DOI: 10.1080/00031305.1992.10475879. 14
    • (1992) American Statistician , vol.46 , Issue.3 , pp. 175-185
    • Naomi, S.1
  • 4
    • 0000443648 scopus 로고
    • Toward a unified theory of similarity and recognition
    • 26
    • F. Gregory Ashby and Nancy A. Perrin. Toward a unified theory of similarity and recognition. Psychological Review, 95(1):124-150, 1988. DOI: 10.1037/0033-295X.95.1.124. 1, 26
    • (1988) Psychological Review , vol.95 , Issue.1 , pp. 124-150
    • Gregory Ashby, F.1    Perrin, N.A.2
  • 10
    • 57049163657 scopus 로고    scopus 로고
    • A discriminative framework for clustering via similarity functions
    • Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A Discriminative Framework for Clustering via Similarity Functions. In ACM Symposium on ?eory of Computing (STOC), pages 671-680, 2008 b. DOI: 10.1145/1374376.1374474. 101
    • (2008) ACM Symposium on ?Eory of Computing (STOC , pp. 671-680
    • Balcan, M.1    Blum, A.2    Vempala, S.3
  • 11
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher gaussian complexities risk bounds and structural results
    • 61, 62 80
    • Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. Journal of Machine Learning Research (JMLR), 3:463- 482, 2002. 61, 62, 80
    • (2002) Journal of Machine Learning Research (JMLR , vol.3 , pp. 463-482
    • Peter, L.B.1    Mendelson, S.2
  • 13
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on riemannian manifolds
    • Mikhail Belkin and Partha Niyogi. Semi-Supervised Learning on Riemannian Manifolds. Machine Learning Journal (MLJ), 56(1- 3):209-239, 2004. DOI: 10.1023/B:MACH.0000033120.25363.1e. 47
    • (2004) Machine Learning Journal (MLJ , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 15
    • 84922712714 scopus 로고    scopus 로고
    • Robustness and generalization for metric learning
    • 62 68 72
    • Aurélien Bellet,Amaury Habrard, Robustness and generalization for metric learning, Neurocomputing, 151, 1, 259-267, 2015,doi 10.1016/j.neucom.2014.09.044, 62 68 72.
    • (2015) Neurocomputing , vol.151 , Issue.1 , pp. 259-267
    • Bellet, A.1    Habrard, A.2
  • 17
    • 84865203025 scopus 로고    scopus 로고
    • Good edit similarity learning by loss minimization
    • 57 63
    • Auré lien Bellet, Amaury Habrard, and Marc Sebban. Good edit similarity learning by loss minimization. Machine Learning Journal (MLJ), 89(1):5- 35, 2012a. DOI: 10.1007/s10994-012-5293-8. 57, 63
    • (2012) Machine Learning Journal (MLJ , vol.89 , Issue.1 , pp. 5-35
    • Bellet, A.1    Habrard, A.2    Sebban, M.3
  • 19
    • 84897087959 scopus 로고    scopus 로고
    • A survey on metric learning for feature vectors and structured data
    • arXiv 1306.6709
    • Auré lien Bellet, Amaury Habrard, and Marc Sebban. A Survey on Metric Learning for Feature Vectors and Structured Data. Technical report, arXiv:1306.6709, 2013. 4
    • (2013) Technical Report , pp. 4
    • Bellet, A.1    Habrard, A.2    Sebban, M.3
  • 23
    • 42749094100 scopus 로고    scopus 로고
    • Learning probabilistic models of tree edit distance
    • Marc Bernard, Laurent Boyer, Amaury Habrard, and Marc Sebban. Learning probabilistic models of tree edit distance. Pattern Recognition (PR), 41(8):2611-2629, 2008. DOI: 10.1016/j.patcog.2008.01.011. 58
    • (2008) Pattern Recognition (PR , vol.41 , Issue.8 , pp. 2611-2629
    • Bernard, M.1    Boyer, L.2    Habrard, A.3    Sebban, M.4
  • 24
    • 80855141835 scopus 로고    scopus 로고
    • Quality metrics in high-dimensional data visualization: An overview and systematization
    • Enrico Bertini, Andrada Tatu, and Daniel Keim. Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization. IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12):2203 -2212, 2011. DOI: 10.1109/TVCG.2011.229. 15
    • (2011) IEEE Transactions on Visualization and Computer Graphics (TVCG , vol.17 , Issue.12 , pp. 2203-2212
    • Bertini, E.1    Tatu, A.2    Keim, D.3
  • 27
    • 84873598142 scopus 로고    scopus 로고
    • Constrained empirical risk minimization framework for distance metric learning
    • Wei Bian and Dacheng Tao. Constrained Empirical Risk Minimization Framework for Distance Metric Learning. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 23 (8):1194 -1205, 2012. DOI: 10.1109/TNNLS.2012.2198075. 62
    • (2012) IEEE Transactions on Neural Networks and Learning Systems (TNNLS , vol.23 , Issue.8 , pp. 1194-1205
    • Bian, W.1    Tao, D.2
  • 30
    • 18444373554 scopus 로고    scopus 로고
    • A survey on tree edit distance and related problems
    • Philip Bille. A survey on tree edit distance and related problems. ?eoretical Computer Science (TCS), 337(1- 3):217-239, 2005. DOI: 10.1016/j.tcs.2004.12.030. 13
    • (2005) ?Eoretical Computer Science (TCS , vol.337 , Issue.1-3 , pp. 217-239
    • Bille, P.1
  • 33
    • 0038368335 scopus 로고    scopus 로고
    • Stability and generalization
    • 62, 64, 65, 78 103
    • Olivier Bousquet and André Elisseeff. Stability and Generalization. Journal of Machine Learning Research (JMLR), 2:499- 526, 2002. DOI: 10.1162/153244302760200704. 62, 64, 65, 78, 103
    • (2002) Journal of Machine Learning Research (JMLR , vol.2 , pp. 499-526
    • Bousquet, O.1    Elisseeff, A.2
  • 35
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical Learning via the alternating direction method of multipliers
    • Stephen P. B., Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning (FTML), 3(1):1 -122, 2011. DOI: 10.1561/2200000016. 30
    • (2011) Foundations and Trends in Machine Learning (FTML , vol.3 , Issue.1 , pp. 1-122
    • Stephen, P.B.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 39
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex prog ramming
    • Lev M. Bregman. ?e relaxation method of finding the common points of convex sets and its application to the solution of problems in convex prog ramming. USSR Computational Mathematics and Mathematical Physics, 7(3):200-217, 1967. DOI: 10.1016/0041-5553(67)90040-7. 40
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , Issue.3 , pp. 200-217
    • Lev, M.B.1
  • 40
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Leo Breiman. Random Forests. Machine Learning Journal (MLJ), 45(1):5-32, 2001. DOI: 10.1023/A:1010933404324. 41
    • (2001) Machine Learning Journal (MLJ , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 42
    • 84893494954 scopus 로고    scopus 로고
    • Generalization bounds for metric and similarity learning
    • University of Exeter, July arXiv 1207.5437. 62 63 80
    • Qiong Cao, Zheng-Chu Guo, and Yiming Ying. Generalization Bounds for Metric and Similarity Learning. Technical report, University of Exeter, July 2012a. arXiv:1207.5437. 62, 63, 80
    • (2012) Technical Report
    • Cao, Q.1    Guo, Z.2    Ying, Y.3
  • 45
    • 38349160409 scopus 로고    scopus 로고
    • Improv ed risk tail bounds for on-line algorithms
    • Nicoló Cesa-Bianchi and Claudio Gentile. Improv ed Risk Tail Bounds for On-Line Algorithms. IEEE Transactions on Information ?eory (TIT), 54(1):386-390, 2008. DOI: 10.1109/TIT.2007.911292. 62
    • (2008) IEEE Transactions on Information ?Eory (TIT , vol.54 , Issue.1 , pp. 386-390
    • Cesa-Bianchi, N.1    Gentile, C.2
  • 47
    • 77952550960 scopus 로고    scopus 로고
    • A new kernelization framework for Mahalanobis distance learning algorithms
    • Ratthachat Chatpatanasiri, Teesid Korsrilabutr, Pasakorn Tangchanachaianan, and Boonserm Kijsirikul. A new kernelization framework for Mahalanobis distance learning algorithms. Neurocomputing, 73:1570 -1579, 2010. DOI: 10.1016/j.neucom.2009.11.037. 34
    • (2010) Neurocomputing , vol.73 , pp. 1570-1579
    • Chatpatanasiri, R.1    Korsrilabutr, T.2    Tangchanachaianan, P.3    Kijsirikul, B.4
  • 54
    • 84924057510 scopus 로고    scopus 로고
    • Scaling-up empirical risk minimization: Optimization of incomplete u-statistics
    • arXiv 1501.02629
    • Stéphan Clé mençon, Aurélien Bellet, and Igor Colin. Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics. Technical report, arXiv:1501.02629, 2015. DOI: 10.1109/ICCV.20 11.6126415. 28, 31
    • (2015) Technical Report
    • Clémençon, S.1    Bellet, A.2    Colin, I.3
  • 57
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Lomas Cover and Pet er Hart. Nearest neighbor pattern classification. IEEE Transactions on Information ?eory (TIT), 13(1):21-27, 1967. DOI: 10.1109/TIT.1967.1053964. 1, 14
    • (1967) IEEE Transactions on Information ?Eory (TIT , vol.13 , Issue.1 , pp. 21-27
    • Cover, L.1    Hart, P.2
  • 60
    • 84877734100 scopus 로고    scopus 로고
    • Ground metric learning
    • Kyoto University 51
    • Marco Cuturi and David Avis. Ground Metric Learning. Technical report, Kyoto University, 2011. 1110-2306. 51
    • (2011) Technical Report , pp. 1110-2306
    • Cuturi, M.1    Avis, D.2
  • 69
  • 70
    • 38349053625 scopus 로고    scopus 로고
    • Matrix nearness problems with bregman divergences
    • Inderjit S. Dhillon and Joel A. Tropp. Matrix Nearness Problems with Bregman Divergences. SIAM Journal on Matrix Analysis and Applications, 29(4):1120-1146, 2007. DOI: 10.1137/060649021. 45
    • (2007) SIAM Journal on Matrix Analysis and Applications , vol.29 , Issue.4 , pp. 1120-1146
    • Inderjit, S.D.1    Joel, A.T.2
  • 72
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • 30
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research (JMLR), 12:2121-2159, 2011. 30
    • (2011) Journal of Machine Learning Research (JMLR) , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 73
    • 84857708133 scopus 로고    scopus 로고
    • Dual averaging for distributed optimization: Convergence analysis and network scaling
    • John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling. IEEE Transactions on Automatic Control (TAC), 57(3):592 -606, 2012. DOI: 10.1109/TAC.2011.2161027. 30
    • (2012) IEEE Transactions on Automatic Control (TAC) , vol.57 , Issue.3 , pp. 592-606
    • John, C.D.1    Agarwal, A.2    Martin, J.W.3
  • 77
    • 0141732279 scopus 로고    scopus 로고
    • Equivalence constants for certain matrix norms
    • Bao Q. Feng. Equivalence constants for certain matrix norms. Linear Algebra and Its Applications, 374:247-253, 2003. DOI: 10.1016/S0024-3795(03)00616-5. 110
    • (2003) Linear Algebra and Its Applications , vol.374 , pp. 247-253
    • Bao, Q.F.1
  • 78
    • 1042275194 scopus 로고    scopus 로고
    • A survey of dimension reduction techniques
    • Lawrence Livermore National Laboratory UCRL-ID-148494
    • Imola K. Fodor. A Survey of Dimension Reduction Techniques. Technical report, Lawrence Livermore National Laboratory, 2002. UCRL-ID-148494. DOI: 10.2172/15002155. 3
    • (2002) Technical Report
    • Imola, K.F.1
  • 81
    • 84924026477 scopus 로고
    • Flexible metric nearest neighbor classification
    • Stanford University
    • Jerome H. Friedman. Flexible Metric Nearest Neighbor Classification. Technical report, Department of Statistics, Stanford University, 1994. DOI: 10.1109/IGARSS.2008.4779695. 1
    • (1994) Technical Report Department of Statistics
    • Jerome, H.F.1
  • 82
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics (AOS), 29(5):1189-1232, 2001. DOI: 10.1214/aos/1013203451. 36
    • (2001) Annals of Statistics (AOS) , vol.29 , Issue.5 , pp. 1189-1232
    • Jerome, H.F.1
  • 85
    • 73749086870 scopus 로고    scopus 로고
    • A survey of graph edit distance
    • Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern Analysis and Applications (PAA), 13(1):113- 129, 2010. DOI: 10.1007/s10044-008-0141-y. 13
    • (2010) Pattern Analysis and Applications (PAA , vol.13 , Issue.1 , pp. 113-129
    • Gao, X.1    Xiao, B.2    Tao, D.3    Li, X.4
  • 87
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • Lomas Gä rtner. A survey of kernels for structured data. SIGKDD Explorations, 5(1):49-58, 2003. DOI: 10.1145/959242.959248. 15
    • (2003) SIGKDD Explorations , vol.5 , Issue.1 , pp. 49-58
    • Gärtner, L.1
  • 89
    • 80052880025 scopus 로고    scopus 로고
    • DAML: Domain adaptation metric learning
    • Bo Geng, Dacheng Tao, and Chao Xu. DAML: Domain Adaptation Metri c Learning. IEEE Transactions on Image Processing (TIP), 20(10):2980- 2989, 2011. DOI: 10.1109/TIP.2011.2134107. 49
    • (2011) IEEE Transactions on Image Processing (TIP , vol.20 , Issue.10 , pp. 2980-2989
    • Geng, B.1    Tao, D.2    Xu, C.3
  • 98
    • 84893506546 scopus 로고    scopus 로고
    • Guaranteed classification via regularized similarity learning
    • Zheng-Chu Guo and Yiming Ying. Guaranteed Classification via Regularized Similarity Learning. Neural Computation, 26(3):497-522, 2014. DOI: 10.1162/NECO-a-00556. 63, 80, 81, 82, 102
    • (2014) Neural Computation , vol.26 , Issue.3 , pp. 497-522
    • Guo, Z.1    Ying, Y.2
  • 100
    • 0346668142 scopus 로고    scopus 로고
    • Similarity as transformation
    • DOI: 10.1016/S0010-0277(02)00184-1.1.
    • Ulrike Hahn,Nick Chater,Lucy B.R.,Similarity as transformation, Cognition, 87, 1,1-32, 2003.
    • (2003) Cognition , vol.87 , Issue.1 , pp. 1-32
    • Hahn, U.1    Chater, N.2    Lucy, B.R.3
  • 103
    • 84924021041 scopus 로고    scopus 로고
    • Kernel density metric learning
    • Washington University in St. Louis
    • Yujie He, Wenlin Chen, and Yixin Chen. Kernel Density Metric Learning. Technical report, Washington University in St. Louis, 2013. 34
    • (2013) Technical Report , pp. 34
    • He, Y.1    Chen, W.2    Chen, Y.3
  • 108
    • 84911459575 scopus 로고    scopus 로고
    • Discriminative deep metric learning for face verification in the wild
    • Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative Deep Metric Learning for Face Verification in the Wild. In IEEE Conference on Computer Vision an d Pattern Recognition (CVPR), pages 1875-1882, 2014. DOI: 10.1145/1823746.1823752. 35
    • (2014) IEEE Conference on Computer Vision An D Pattern Recognition (CVPR , pp. 1875-1882
    • Hu, J.1    Lu, J.2    Tan, Y.3
  • 109
    • 51849117118 scopus 로고    scopus 로고
    • Labeled faces in the wild: A database for studying face recognition in unconstrained environments
    • University of Massachusetts, Amherst
    • G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007. 86
    • (2007) Technical Report 07-49 , pp. 86
    • Huang, G.1    Ramesh, M.2    Berg, T.3    Learned-Miller, E.4
  • 113
    • 79957533818 scopus 로고    scopus 로고
    • Weighted dynamic time warping for time series classification
    • Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu. Weighted dynamic time warping for time series classification. Pattern Recognition, 44(9):2231- 2240, 2010. DOI: 10.1016/j.patcog.2010.09.022. 59
    • (2010) Pattern Recognition , vol.44 , Issue.9 , pp. 2231-2240
    • Jeong, Y.1    Myong, K.J.2    Olufemi, A.O.3
  • 115
    • 69549111057 scopus 로고    scopus 로고
    • Cuttin g-plane training of structural SVMs
    • Lorsten Joachims, ?omas Finley, and Chun-Nam J. Yu. Cuttin g-plane training of structural SVMs. Machine Learning Journal (MLJ), 77(1):27-59, 2009. DOI: 10.1007/s10994-009-5108-8. 46
    • (2009) Machine Learning Journal (MLJ) , vol.77 , Issue.1 , pp. 27-59
    • Joachims, L.1    Finley, O.2    Chun-Nam, J.Y.3
  • 118
    • 77958500041 scopus 로고    scopus 로고
    • Metric learning for enzyme active-site search
    • Tsuyoshi Kato and Nozomi Nagano. Metric learning for enzyme active-site search. Bioinformatics, 26(21):2698- 2704, 2010. DOI: 10.1093/bioinformatics/btq519. 94
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2698-2704
    • Kato, T.1    Nagano, N.2
  • 121
    • 0041750752 scopus 로고
    • Isometries for the vector (p,q) norm and the induced (p,q) norm
    • Anne-Louise Klaus and Chi-Kwong Li. Isometries for the vector (p,q) norm and the induced (p,q) norm. Linear & Multilinear Algebra, 38(4):315-332, 1995. DOI: 10.1080/03081089508818368. 110
    • (1995) Linear & Multilinear Algebra , vol.38 , Issue.4 , pp. 315-332
    • Klaus, A.1    Li, C.2
  • 123
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on Information ?eory (TIT), 47(5):1902- 1914, 2001. DOI: 10.1109/18.930926. 61
    • (2001) IEEE Transactions on Information ?Eory (TIT) , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 128
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Solomon Kullback and Richard Leibler. On Information and Sufficiency. Annals of Mathematical Statistics, 22(1):79-86, 1951. DOI: 10.1214/aoms/1177729694. 41
    • (1951) Annals of Mathematical Statistics , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 133
    • 84872514178 scopus 로고    scopus 로고
    • A stochastic gradient method with an exponential convergence rate for finite training sets
    • 30
    • Nicolas Le Roux, Mark W. Schmidt, and Francis Bach. A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets. In Advances in Neural Information Processing Systems (NIPS) 25, pages 2672-2680, 2012. 30
    • (2012) Advances in Neural Information Processing Systems (NIPS) , vol.25 , pp. 2672-2680
    • Le Roux, N.1    Mark, W.S.2    Bach, F.3
  • 136
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for svm protein classification
    • C hristina S. Leslie, Eleazar Eskin, and William S. Noble. ?e Spectrum Kernel: A String Kernel for SVM Protein Classification. In Pacific Symposium on Biocomputing, pages 566-575, 2002 a. 13
    • (2002) Pacific Symposium on Biocomputing , vol.13 , pp. 566-575
    • Christina, S.L.1    Eskin, E.2    William, S.N.3
  • 138
    • 0001116877 scopus 로고
    • Binary codes capable of correcting deletions insertions and reversals
    • 12
    • Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics-Doklandy, 6:707- 710, 1966. 12
    • (1966) Soviet Physics-Doklandy , vol.6 , pp. 707-710
    • Vladimir, I.L.1
  • 144
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-?reshold algorithm
    • Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-?reshold Algorithm. Machine Learning Journal (MLJ) , 2(4):285-318, 1988. DOI: 10.1023/A:1022869011914. 28
    • (1988) Machine Learning Journal (MLJ) , vol.2 , Issue.4 , pp. 285-318
    • Littlestone, N.1
  • 145
    • 84924058519 scopus 로고    scopus 로고
    • Similarity learning for high-dimensional sparse data
    • arXiv 1411.2374
    • Kuan Liu, Auré lien Bellet, and Fei Sha. Similarity Learning for High-Dimensional Sparse Data. Technical report, arXiv:1411.2374, 2014. 32
    • (2014) Technical Report , pp. 32
    • Liu, K.1    Bellet, A.2    Sha, F.3
  • 147
    • 69249119464 scopus 로고    scopus 로고
    • Learning to rank for information retrieval
    • Tie-Yan Liu. Learning to Rank for Information Retrieval. Foundations and Trends in Information Retrieval (FTIR), 3(3):225-331, 2009. DOI: 10.1561/1500000016.
    • (2009) Foundations and Trends in Information Retrieval (FTIR , vol.3 , Issue.3 , pp. 225-331
    • Liu, T.1
  • 149
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • 15
    • Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information ?eory (TIT), 28:129- 137, 1982. DOI: 10.1109/TIT.1982.1056489. 1, 15
    • (1982) IEEE Transactions on Information ?Eory (TIT , vol.28 , pp. 129-137
    • Stuart, P.L.1
  • 156
    • 21344477317 scopus 로고
    • Structural alignment during similarity comparisons
    • Arthur B. Markman and Dedre Gentner. Structural Alignment during Similarity Comparisons. Cognitive Psychology, 25(4):431-467, 1993. DOI: 10.1006/cogp.1993.1011. 1
    • (1993) Cognitive Psychology , vol.25 , Issue.4 , pp. 431-467
    • Arthur, B.M.1    Gentner, D.2
  • 158
    • 0001035413 scopus 로고
    • chapter On the method of bounded differences Cambridge University Press
    • Colin McDiarmid. Surveys in Combinatorics, chapter On the method of bounded differences, pages 148-188. Cambridge University Press, 1989. 66
    • (1989) Surveys in Combinatorics , vol.66 , pp. 148-188
    • McDiarmid, C.1
  • 160
    • 12044250792 scopus 로고
    • Respects for similarity
    • Douglas L. Medin, Robert L. Goldstone, and Dedre Gentner. Respects for similarity. Psychological Review, 100(2):254-278, 1993. DOI: 10.1037/0033-295X.100.2.254. 1
    • (1993) Psychological Review , vol.100 , Issue.2 , pp. 254-278
    • Douglas, L.M.1    Robert, L.G.2    Gentner, D.3
  • 162
    • 0032021907 scopus 로고    scopus 로고
    • Comparison of fast nearest neighbour classifiers for handwritten character recognition
    • Luisa Micó and Jose Oncina. Comparison of fast nearest neighbour classifiers for handwritten character recognition. Pattern Reco gnition Letters (PRL), 19:351-356, 1998. DOI: 10.1016/S0167-8655(98)00007-5. 54
    • (1998) Pattern Reco Gnition Letters (PRL , vol.19 , pp. 351-356
    • Micó, L.1    Oncina, J.2
  • 164
    • 84923285437 scopus 로고    scopus 로고
    • An optimal weighting method by using the category information in text classification based on metric learning
    • Kenta Mikawa,Takashi Ishida,Masayuki Goto, An optimal weighting method by using the category information in text classification based on metric learning, Industrial Engineering & Management Systems, 11(1), 87 -93, 2012,doi 10.7232/iems.2012.1 1.1.087. 96.
    • (2012) Industrial Engineering & Management Systems , vol.11 , Issue.1 , pp. 87-93
    • Mikawa, K.1    Ishida, T.2    Goto, M.3
  • 166
    • 0014757386 scopus 로고
    • A general method applicable to the search for similarities in the amino acid sequence of two proteins
    • Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology (JMB), 48 (3):443-453, 1970. DOI: 10.1016/0022-2836(70)90057-4. 13
    • (1970) Journal of Molecular Biology (JMB , vol.48 , Issue.3 , pp. 443-453
    • Saul, B.N.1    Christian, D.W.2
  • 167
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Yurii Nesterov. Smoot h minimization of non-smooth functions. Mathematical Programming, 103:127-152, 2005. DOI: 10.1007/s10107-004-0552-5. 25
    • (2005) Mathematical Programming , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 168
    • 33749655363 scopus 로고    scopus 로고
    • Automatic learning of cost functions for graph edit distance
    • Michel Neuhaus and Horst Bunke. Automatic learning of cost functions for graph edit distance. Journal of Information Science (JIS), 177(1):239-247, 2007. DOI: 10.1016/j.ins.2006.02.013. 58
    • (2007) Journal of Information Science (JIS , vol.177 , Issue.1 , pp. 239-247
    • Neuhaus, M.1    Bunke, H.2
  • 174
    • 0022686961 scopus 로고
    • Attention similarity, and the identification-categorization relationship
    • Robert M. Nosofsky. Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1):39-57, 1986. DOI: 10.1037/0096-3445.115.1.39. 1
    • (1986) Journal of Experimental Psychology: General , vol.115 , Issue.1 , pp. 39-57
    • Robert, M.N.1
  • 176
    • 33744981648 scopus 로고    scopus 로고
    • Learning stochastic edit distance: Application in handwritten character recognition
    • 58
    • Jose Oncina and Ma rc Sebban. Learning Stochastic Edit Distance: application in handwritten character recognition. Pattern Recognition (PR), 39(9):1575-1587, 2006. DOI: 10.1016/j.patcog.2006.03.011. 55, 58
    • (2006) Pattern Recognition (PR) , vol.39 , Issue.9 , pp. 1575-1587
    • Oncina, J.1    Sebban, M.2
  • 179
    • 84863761505 scopus 로고    scopus 로고
    • RTED: A robust algorithm for the tree edit distance
    • Mateusz Pawlik and Nikolaus Augs ten. RTED: a robust algorithm for the tree edit distance. Proceedings of the VLDB Endowment, 5(4):334- 345, 2011. DOI: 10.14778/2095686.2095692. 13
    • (2011) Proceedings of the VLDB Endowment , vol.5 , Issue.4 , pp. 334-345
    • Pawlik, M.1    Augsten, N.2
  • 180
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to points in space
    • Karl Pearson 34
    • Karl Pearson. On Lines and Planes of Closest Fit to Points in Space. Philosophical Magazine, 2 (6):559-572, 1901. DOI: 10.1080/14786440109462720. 14, 34
    • (1901) Philosophical Magazine , vol.2 , Issue.6 , pp. 559-572
  • 185
    • 84924085440 scopus 로고    scopus 로고
    • An integrate d framework for high dimensional distance metric learning and its application to fine-grained visual categorization
    • arXiv 1402.0453
    • Qi Qian, Rong Jin, Shenghuo Zhu, and Yuanqing Lin. An Integrate d Framework for High Dimensional Distance Metric Learning and Its Application to Fine-Grained Visual Categorization. Technical report, arXiv:1402.0453, 2014. 32
    • (2014) Technical Report , pp. 32
    • Qian, Q.1    Jin, R.2    Zhu, S.3    Lin, Y.4
  • 187
    • 79951945041 scopus 로고    scopus 로고
    • IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
    • Deva Ramanan and Simon Baker. Local Distance Functions: A Taxonomy, New Algorithms, and an Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 33(4):794 -806, 2011. DOI: 10.1109/TPAMI.2010.127. 37
    • (2011) , vol.33 , Issue.4 , pp. 794-806
    • Ramanan, D.1    Baker, S.2    Distance Functions, L.3    Taxonomy N, A.4
  • 192
    • 0000272110 scopus 로고
    • Cognitive reference points
    • Eleanor Rosch. Cognitive reference points. Cognitive Psychology, 7(4):532-547, 1975. DOI: 10.1016/0010-0285(75)90021-3. 26
    • (1975) Cognitive Psychology , vol.7 , Issue.4 , pp. 532-547
    • Rosch, E.1
  • 193
    • 0034313871 scopus 로고    scopus 로고
    • The earth mover's distance as a metric for image retrieval
    • 51
    • Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. ?e Earth Mover's Distance as a Metric for Image Retrieval. International Journal of C omputer Vision (IJCV), 40(2):99-121, 2000. DOI: 10.1023/A:1026543900054. 11, 51
    • (2000) International Journal of C Omputer Vision (IJCV) , vol.40 , Issue.2 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Leonidas, J.G.3
  • 195
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • 56
    • Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein homology detection using string alignment kernels. Bioinformatics, 20(11):1682-1689, 2004. DOI: 10.1093/bioinformatics/bth141. 14, 56
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1682-1689
    • Saigo, H.1    Vert, J.2    Ueda, N.3    Akutsu, T.4
  • 196
    • 33746329568 scopus 로고    scopus 로고
    • Optimizing amino acid substitution matrices with a local alignment kernel
    • 93
    • Hiroto Saigo, Jean-Philippe Vert, and Tatsuya Akutsu. Optimizing amino acid substitution matrices with a local alignment kernel. Bioinformatics, 7(246):1-12, 2006. DOI: 10.1186/1471-2105-7-246. 56, 93
    • (2006) Bioinformatics , vol.7 , Issue.246 , pp. 1-12
    • Saigo, H.1    Vert, J.2    Akutsu, T.3
  • 197
    • 0017930815 scopus 로고
    • Dynamic programming a lgorithm optimization for spoken word recognition
    • Hiroaki Sakoe. Dynamic programming a lgorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing (TASS), 26:43-49, 1978. DOI: 10.1109/TASSP.1978.1163055. 59
    • (1978) IEEE Transactions on Acoustics, Speech, and Signal Processing (TASS , vol.26 , pp. 43-49
    • Sakoe, H.1
  • 199
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • G erard Salton, Andrew Wong, and C. S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613-620, 1975. DOI: 10.1145/361219.361220. 10, 11, 15, 53
    • (1975) Communications of the ACM , vol.18 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 202
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • arXiv 1404.7828
    • Jü rgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Technical report, arXiv:1404.7828, 2014. DOI: 10.1016/j.neunet.2014.09.003. 35
    • (2014) Technical Report
    • Schmidhuber, J.1
  • 204
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Bernhard Schö lkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation (NECO), 10(1):1299-1319, 1998. DOI: 10.1162/089976698 300017467. 14, 34
    • (1998) Neural Computation (NECO , vol.10 , Issue.1 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 206
    • 0001122858 scopus 로고
    • The tree-to-tree editing problem
    • 13, 58
    • Stanley M. Selkow. ?e tree-to-tree editing problem. Information Processing Letters, 6(6):184-186, 1977. DOI: 10.1016/0020-0190(77)90064-3. 13, 58
    • (1977) Information Processing Letters , vol.6 , Issue.6 , pp. 184-186
    • Stanley, M.S.1
  • 207
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • 30
    • Shai Shalev-Shwartz,Tong Zhang, Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization, Journal of Machine Learning Research (JMLR), 14(1):567-599, 2013, 30.
    • (2013) Journal of Machine Learning Research (JMLR) , vol.14 , Issue.1 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 214
    • 0023223978 scopus 로고
    • Toward a universal law of generalization for psychological science
    • Roger N. Shepard. Toward a Universal Law of Generalization for Psychological Science. Science, 237(4820):1317-1323, 1987. DOI: 10.1126/science.3629243. 1
    • (1987) Science , vol.237 , Issue.4820 , pp. 1317-1323
    • Roger, N.S.1
  • 216
    • 0019610270 scopus 로고
    • E optimal distance measure for nearest neighbor classification
    • IEEE
    • Robert D. Short and Keinosuke Fukunaga. ?e optimal distance measure for nearest neighbor classification. IEEE Transactions on Informa tion ?eory (TIT), 27(5):622-626, 1981. DOI: 10.1109/TIT.1981.1056403. 1
    • (1981) Transactions on Informa Tion ?Eory (TIT , vol.27 , Issue.5 , pp. 622-626
    • Short, R.D.1    Fukunaga, K.2
  • 218
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Temple F. Smith and Michael S. Waterman. Identification of common molecular subsequences. Journal of Molecular Biology (JMB), 147(1):195-197, 1981. DOI: 10.1016/0022-2836(81)90087-5. 13
    • (1981) Journal of Molecular Biology (JMB , vol.147 , Issue.1 , pp. 195-197
    • Temple, F.S.1    Michael, S.W.2
  • 225
    • 58149411184 scopus 로고
    • Features of similarity
    • 1,26
    • Amos Tversky. Features of similarity. Psychological Review, 84(4):327-352, 1977. DOI: 10.1037/0033-295X.84.4.327. 1, 26
    • (1977) Psychological Review , vol.84 , Issue.4 , pp. 327-352
    • Tversky, A.1
  • 226
    • 0020110683 scopus 로고
    • Similarity, separability, and the triangle inequality
    • Amos Tversky and Itamar Gati. Similarity, separabili ty, and the triangle inequality. Psychological Review, 89(2):123-154, 1982. DOI: 10.1037/0033-295X.89.2.123. 26
    • (1982) Psychological Review , vol.89 , Issue.2 , pp. 123-154
    • Tversky, A.1    Gati, I.2
  • 227
    • 0026256261 scopus 로고
    • Satisfying general proximity / similarity queries with metric trees
    • Jeffrey K. Uhlmann. Satisfying general proximity / similarity queries with metric trees. Information Processing Letters, 40(4):175-179, 1991. DOI: 10.1016/0020-0190(91)90074-R. 26
    • (1991) Information Processing Letters , vol.40 , Issue.4 , pp. 175-179
    • Jeffrey, K.U.1
  • 228
    • 0021518106 scopus 로고
    • A theory of the learnable
    • 61,64
    • Leslie G. Valiant, A theory of the learnable. Communications of the ACM, 27, 1134-1142, 1984,doi 10.1145/1968.1972. 61,64.
    • (1984) Communications of the ACM , vol.27 , pp. 1134-1142
    • Leslie, G.V.1
  • 230
    • 38349018685 scopus 로고    scopus 로고
    • Dimensionality reduction: A comparative review
    • Tilburg University TiCC-TR 2009-005
    • Laurens J.P. van der Maaten, Eric O. Postma, and H. Jaap van den Herik. Dimensionality Reduction: A Comparative Review. Technical report, Tilburg University, 2009. TiCC-TR 2009-005. 3
    • (2009) Technical Report , pp. 3
    • Laurens, J.P.1    Van Der Maaten2    Eric, O.P.3    Van H.D.H.Jaap4
  • 233
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vladimir N. V. and Alexey Y. C. On the uniform convergence of relative frequencies of events to their probabilities. ?eory of Probability and its Applications (TPA), 16(2): 264-280, 1971. DOI: 10.1137/1116025. 61
    • (1971) ?Eory of Probability and Its Applications (TPA , vol.16 , Issue.2 , pp. 264-280
    • Vladimir, N.V.1    Alexey, Y.C.2
  • 234
    • 84924032937 scopus 로고    scopus 로고
    • Riemannian metric learning for symmetric positive definite matrices
    • arXiv 1501.02393
    • Rav iteja Vemulapalli and David W. J. Riemannian Metric Learning for Symmetric Positive Definite Matrices. Technical report, arXiv:1501.02393, 2015. DOI: 10.1016/j.laa.2009.01.025. 101
    • (2015) Technical Report
    • Iteja Vemulapalli, R.1    David, W.J.2
  • 235
    • 77949507946 scopus 로고    scopus 로고
    • Information retrieval perspective to nonlinear dimensionality reduction for data visualization
    • Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel Kaski. Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization. Journal of Machine Learning Research (JMLR), 11:451 -490, 2010. DOI: 10.1145/1756006.1756019. 15
    • (2010) Journal of Machine Learning Research (JMLR) , vol.11 , pp. 451-490
    • Venna, J.1    Peltonen, J.2    Nybo, K.3    Aidos, H.4    Kaski, S.5
  • 238
  • 240
    • 84872784072 scopus 로고    scopus 로고
    • ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval
    • Jingyan Wang, Xin Gao, Quanquan Wang, and Yongping Li. ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval. BMC Bioinformatics, 13(S-7):S2, 2012b. DOI: 10.1186/1471 -2105-13-S7-S2. 95
    • (2012) BMC Bioinformatics , vol.13 , Issue.S-7 , pp. S2
    • Wang, J.1    Gao, X.2    Wang, Q.3    Li, Y.4
  • 245
    • 84897509678 scopus 로고    scopus 로고
    • Online learning with pairwise loss functions
    • Tufts University, January arXiv 1301.5332 62
    • Yuyang Wang, Roni Khardon, Dmitry Pechyony, and Rosie Jones. Online Learning with Pairwise Loss Functions. Technical report, Tufts University, January 2013b. arXiv:1301.5332. 62
    • (2013) Technical Report
    • Wang, Y.1    Khardon, R.2    Pechyony, D.3    Jones, R.4
  • 246
    • 78149339751 scopus 로고    scopus 로고
    • Image-to-class distance metric learning for image classification
    • Zhengxiang Wang, Yiqun Hu, and Liang-Tien Chia. Image-to-class distance metric learning for image classification. In Proceedings of the 10th European Conference on Computer Vision (ECCV), volume 6311, pages 706-719, 2010. DOI: 10.1007/978-3-642-15549-9-51. 89
    • (2010) Proceedings of the 10th European Conference on Computer Vision (ECCV , vol.6311 , pp. 706-719
    • Wang, Z.1    Hu, Y.2    Chia, L.3
  • 248
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Kilian Q. Weinberger and Lawrence K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research (JMLR), 10:207 -244, 2009. DOI: 10.1145/1577069.1577078. 21, 38
    • (2009) Journal of Machine Learning Research (JMLR , vol.10 , pp. 207-244
    • Kilian, Q.W.1    Lawrence, K.S.2
  • 249
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric lear ning for large margin nearest neighbor classification
    • Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance Metric Lear ning for Large Margin Nearest Neighbor Classification. In Advances in Neural Information Processing Systems (NIPS) 18, pages 1473-1480, 2005. DOI: 10.1145/1577069.1577078. 21
    • (2005) Advances in Neural Information Processing Systems (NIPS , vol.18 , pp. 1473-1480
    • Kilian, Q.W.1    Blitzer, J.2    Lawrence, K.S.3
  • 253
    • 85007201864 scopus 로고    scopus 로고
    • Large scale distributed distance metric learning
    • arXiv 1412.5949 31
    • Pengtao Xie and Eric Xing. Large Scale Distributed Distance Metric Learning. Technical report, arXiv:1412.5949, 2014. 31
    • (2014) Technical Report
    • Xie, P.1    Xing, E.2
  • 256
    • 33746131974 scopus 로고    scopus 로고
    • Kernel-based distance metric learning for microarray data classification
    • Huilin Xiong and Xue-Wen Chen. Kernel-based distance metric learning for microarray data classification. BMC Bioinformatics, 7:299, 2006. DOI: 10.1186/1471-2105-7-299. 95
    • (2006) BMC Bioinformatics , vol.7 , pp. 299
    • Xiong, H.1    Chen, X.2
  • 258
    • 84867738590 scopus 로고    scopus 로고
    • Robustness and generalization
    • 62, 68,69
    • Huan Xu and Shie Mannor. Robustness and Generalization. Machine Learning Journal (MLJ), 86(3):391-423, 2012. DOI: 10.1007/s10994-011-5268-1. 62, 68, 69
    • (2012) Machine Learning Journal (MLJ) , vol.86 , Issue.3 , pp. 391-423
    • Xu, H.1    Mannor, S.2
  • 260
    • 67949110882 scopus 로고    scopus 로고
    • Wiley-IEEE Press
    • Rui Xu and Don C. Wunsch. Clustering. Wiley-IEEE Press, 2008. 15
    • (2008) Clustering , pp. 15
    • Xu, R.1    Don, C.W.2
  • 267
    • 84857513492 scopus 로고    scopus 로고
    • Di stance metric learning with eigenvalue optimization
    • 20
    • Yiming Ying and Peng Li. Di stance Metric Learning with Eigenvalue Optimization. Journal of Machine Learning Research (JMLR), 13:1-26, 2012. 20
    • (2012) Journal of Machine Learning Research (JMLR , vol.13 , pp. 1-26
    • Ying, Y.1    Li, P.2
  • 269
    • 79953906169 scopus 로고    scopus 로고
    • Dynamic time warping constraint learning for large margin nearest neighbor classification
    • Daren Yu, Xiao Yu, Qinghua Hu, Jinfu Liu, and Anqi Wu. Dynamic time warping constraint learning for large margin nearest neighbor classification. Information Sciences, 181(13):2787 -2796, 2011. DOI: 10.1016/j.ins.2011.03.001. 59
    • (2011) Information Sciences , vol.181 , Issue.13 , pp. 2787-2796
    • Yu, D.1    Yu, X.2    Hu, Q.3    Liu, J.4    Wu, A.5
  • 272
    • 75749153570 scopus 로고    scopus 로고
    • A general kernelization framework for learning algorithms based on kernel PCA
    • Changshui Zhang, Feiping Nie, and Shiming Xiang. A general kernelization framework for learning algorithms based on kernel PCA. Neurocomputing, 73(4-6):959- 967, 2010. DOI: 10.1016/j.neucom.2009.08.014. 34.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 959-967
    • Zhang, C.1    Nie, F.2    Xiang, S.3
  • 273
    • 0024889169 scopus 로고
    • Simple fast algorithms for the editing distance between trees and related problems
    • Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal of Computing (SICOMP), 18(6):1245-1262, 1989. DOI: 10.1137/0218082. 13, 58
    • (1989) SIAM Journal of Computing (SICOMP) , vol.18 , Issue.6 , pp. 1245-1262
    • Zhang, K.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.