메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 165-202

Optimal distributed online prediction using mini-batches

Author keywords

Convex optimization; Distributed computing; Online learning; Regret bounds; Stochastic optimization

Indexed keywords

ASYMPTOTICALLY LINEAR; ASYMPTOTICALLY OPTIMAL; COMMUNICATION LATENCY; DISTRIBUTED ENVIRONMENTS; GRADIENT BASED; HIGH RATE; LOSS FUNCTIONS; MULTIPLE PROCESSORS; ONLINE LEARNING; ONLINE PREDICTION; PREDICTION PROBLEM; REGRET BOUNDS; SERIAL ALGORITHMS; SINGLE PROCESSORS; STOCHASTIC INPUTS; STOCHASTIC OPTIMIZATION PROBLEMS; STOCHASTIC OPTIMIZATIONS;

EID: 84857527621     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (727)

References (37)
  • 5
    • 0000433247 scopus 로고
    • Convergence analysis of a proximal-like minimization algorithm using Bregman functions
    • August
    • G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal on Optimization, 3(3):538-543, August 1993.
    • (1993) SIAM Journal on Optimization , vol.3 , Issue.3 , pp. 538-543
    • Chen, G.1    Teboulle, M.2
  • 8
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:2873-2898, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2873-2898
    • Duchi, J.1    Singer, Y.2
  • 12
    • 45849097241 scopus 로고    scopus 로고
    • Local strong convexity and local Lipschitz continuity of the gradient of convex functions
    • R. Goebel and R. T. Rockafellar. Local strong convexity and local Lipschitz continuity of the gradient of convex functions. Journal of Convex Analysis, 15(2):263-270, 2008.
    • (2008) Journal of Convex Analysis , vol.15 , Issue.2 , pp. 263-270
    • Goebel, R.1    Rockafellar, R.T.2
  • 13
    • 0024012163 scopus 로고
    • Reevaluating amdahl's law
    • J. L. Gustafson. Reevaluating Amdahl's Law. Communications of the ACM, 31(5):532-533, 1988.
    • (1988) Communications of the ACM , vol.31 , Issue.5 , pp. 532-533
    • Gustafson, J.L.1
  • 15
    • 77956508892 scopus 로고    scopus 로고
    • Accelerated gradient methods for stochastic optimization and online learning
    • Y. Bengio, D. Schuurmans, C. K. I. Williams, and A. Culotta, editors
    • C. Hu, J. T. Kwok, andW. Pan. Accelerated gradient methods for stochastic optimization and online learning. In Y. Bengio, D. Schuurmans, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 781-789, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 781-789
    • Hu, C.1    Kwok, J.T.2    Pan, W.3
  • 16
    • 84875940432 scopus 로고    scopus 로고
    • Solving variational inequalities with stochastic mirrorprox algorithm
    • A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirrorprox algorithm. Stochastic Systems, 1:1-42, 2011.
    • (2011) Stochastic Systems , vol.1 , pp. 1-42
    • Juditsky, A.1    Nemirovski, A.2    Tauvel, C.3
  • 18
    • 78651417720 scopus 로고    scopus 로고
    • Primal-dual first-order methods with O(1/e) iterationcomplexity for cone programming
    • G. Lan, Z. Lu, and R. D. C. Monteiro. Primal-dual first-order methods with O(1/e) iterationcomplexity for cone programming. Mathematical Programming, 126:1-29, 2011.
    • (2011) Mathematical Programming , vol.126 , pp. 1-29
    • Lan, G.1    Lu, Z.2    Monteiro, R.D.C.3
  • 20
    • 59649103668 scopus 로고    scopus 로고
    • Distributed subgradient methods for multi-agent optimization
    • A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48-61, 2009.
    • (2009) IEEE Transactions on Automatic Control , vol.54 , Issue.1 , pp. 48-61
    • Nedić, A.1    Ozdaglar, A.2
  • 23
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 25
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of nonsmooth functions
    • Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103: 127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 26
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • August
    • Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, August 2009.
    • (2009) Mathematical Programming , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 27
    • 44349128988 scopus 로고    scopus 로고
    • Confidence level solutions for stochastic programming
    • Y. Nesterov and J.-Ph. Vial. Confidence level solutions for stochastic programming. Automatica, 44(6):1559-1568, 2008.
    • (2008) Automatica , vol.44 , Issue.6 , pp. 1559-1568
    • Nesterov, Y.1    Vial, J.-Ph.2
  • 29
    • 0020021696 scopus 로고
    • On the interchange of subdifferentiation and conditional expectation for convex functionals
    • R. T. Rockafellar and R. J-B Wets. On the interchange of subdifferentiation and conditional expectation for convex functionals. Stochastics: An International Journal of Probability and Stochastic Processes, 7(3):173-182, 1982. (Pubitemid 12550944)
    • (1982) Stochastics , vol.7 , Issue.3 , pp. 173-182
    • Rockafellar, R.T.1    Wets, R.J.B.2
  • 32
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convex-concave optimization. Submitted to
    • P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Submitted to SIAM Journal on Optimization, 2008.
    • (2008) SIAM Journal on Optimization
    • Tseng, P.1
  • 33
    • 0022783899 scopus 로고
    • AndM. Athans. Distributed asynchronous deterministic and stochastic gradient optimization algorithms
    • J. N. Tsitsiklis, D. P. Bertsekas, andM. Athans. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9):803-812, 1986.
    • (1986) IEEE Transactions on Automatic Control , vol.31 , Issue.9 , pp. 803-812
    • Tsitsiklis, J.N.1    Bertsekas, D.P.2
  • 34
    • 77957099013 scopus 로고
    • Stochastic programming
    • G. Nemhauser and A. Rinnnooy Kan, editors, Elsevier Science Publishers, Amsterdam, The Netherlands
    • R. J-B Wets. Stochastic programming. In G. Nemhauser and A. Rinnnooy Kan, editors, Handbook for Operations Research and Management Sciences, volume 1, pages 573-629. Elsevier Science Publishers, Amsterdam, The Netherlands, 1989.
    • (1989) Handbook for Operations Research and Management Sciences , vol.1 , pp. 573-629
    • Wets, R.J.-B.1
  • 35
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11:2543-2596, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2543-2596
    • Xiao, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.