메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1217-1222

Semi-supervised metric learning using pairwise constraints

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; LINEAR TRANSFORMATIONS; MACHINE LEARNING; MATHEMATICAL TRANSFORMATIONS;

EID: 77949265725     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (105)

References (19)
  • 3
    • 33646084850 scopus 로고    scopus 로고
    • Locally linear metric adaptation with application to semisupervised clustering and image retrieval
    • H. Chang and D.Y. Yeung. Locally linear metric adaptation with application to semisupervised clustering and image retrieval. Pattern Recognition, 39:1253-1264, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 1253-1264
    • Chang, H.1    Yeung, D.Y.2
  • 4
    • 33745405918 scopus 로고    scopus 로고
    • Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval
    • H. Chang, D.Y. Yeung, and W.K. Cheung. Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval. Pattern Recognition, 39:1905-1917, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 1905-1917
    • Chang, H.1    Yeung, D.Y.2    Cheung, W.K.3
  • 8
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • Sydney, Australia
    • D. Klein, S.D. Kamvar, and C. Manning. From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In Proc. of the 19th Int. Conf. on Machine Learning (ICML-02), pages 307-314, Sydney, Australia, 2002.
    • (2002) Proc. of the 19th Int. Conf. on Machine Learning (ICML-02) , pp. 307-314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.3
  • 9
    • 40349116323 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning using relative comparisons
    • N. Kumar and K. Kummamuru. Semi-supervised clustering with metric learning using relative comparisons. IEEE Trans. on Knowledge and Data engineering, 20(4):496-503, 2007.
    • (2007) IEEE Trans. on Knowledge and Data Engineering , vol.20 , Issue.4 , pp. 496-503
    • Kumar, N.1    Kummamuru, K.2
  • 11
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 12
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • MIT Press, Cambridge, MA, USA
    • M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In Advances in NIPS, pages 41-48, MIT Press, Cambridge, MA, USA, 2004.
    • (2004) Advances in NIPS , pp. 41-48
    • Schultz, M.1    Joachims, T.2
  • 13
    • 49449088902 scopus 로고    scopus 로고
    • Learning a Mahalanobis distance metric for data clustering and classification
    • doi: 10.1016/j.patcog.2008.05.018
    • S. Xiang, F. Nie, and C. Zhang. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition, 2008. doi: 10.1016/j.patcog.2008.05.018.
    • (2008) Pattern Recognition
    • Xiang, S.1    Nie, F.2    Zhang, C.3
  • 14
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side information
    • MIT Press, Cambridge, MA, USA
    • E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning with application to clustering with side information. In Advances in NIPS, pages 505-512, MIT Press, Cambridge, MA, USA, 2003.
    • (2003) Advances in NIPS , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 16
    • 33244489358 scopus 로고    scopus 로고
    • Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints
    • D.Y. Yeung and H. Chang. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition, 39:1007-1010, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 1007-1010
    • Yeung, D.Y.1    Chang, H.2
  • 17
    • 33846040203 scopus 로고    scopus 로고
    • A Kernel Approach for semi-supervised metric learning
    • D.Y. Yeung and H. Chang. A Kernel Approach for semi-supervised metric learning. IEEE Trans. on Neural Networks, 18(1):141-149, 2007.
    • (2007) IEEE Trans. on Neural Networks , vol.18 , Issue.1 , pp. 141-149
    • Yeung, D.Y.1    Chang, H.2
  • 18
    • 77952583365 scopus 로고    scopus 로고
    • A Scalable Kernel-Based Algorithm for Semi-Supervised Metric Learning
    • D.Y. Yeung, H. Chang, and G. Dai. A Scalable Kernel-Based Algorithm for Semi-Supervised Metric Learning. In Proceedings of IJCAI, pages 1138-1143, 2007.
    • (2007) Proceedings of IJCAI , pp. 1138-1143
    • Yeung, D.Y.1    Chang, H.2    Dai, G.3
  • 19
    • 84880784532 scopus 로고    scopus 로고
    • Parametric distance metric learning with label information
    • Acapulco, Mexico
    • Z.H. Zhang, J.T. Kwok, and D.Y. Yeung. Parametric distance metric learning with label information. In Proceedings of IJCAI, pages 1450-1452, Acapulco, Mexico, 2003.
    • (2003) Proceedings of IJCAI , pp. 1450-1452
    • Zhang, Z.H.1    Kwok, J.T.2    Yeung, D.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.