메뉴 건너뛰기




Volumn 56, Issue 1-3, 2004, Pages 209-239

Semi-supervised learning on riemannian manifolds

Author keywords

Graph laplacian; Graph regularization; Laplace operator; Manifold learning; Semi supervised learning

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED ANALYSIS; DATA ACQUISITION; GRAPH THEORY; LAPLACE TRANSFORMS; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; OBJECT RECOGNITION; RANDOM PROCESSES; SPEECH RECOGNITION; VECTORS;

EID: 3142725535     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MACH.0000033120.25363.1e     Document Type: Article
Times cited : (718)

References (28)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkln, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:6, 1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkln, M.1    Niyogi, P.2
  • 2
    • 3142702013 scopus 로고    scopus 로고
    • Regression and regularization on large graphs
    • University of Chicago Computer Science
    • Belkin, M., Matveeva, I., & Niyogi, P. (2003). Regression and regularization on large graphs. University of Chicago Computer Science, Technical Report TR-2003-11.
    • (2003) Technical Report TR-2003-11.
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 5
    • 0000720752 scopus 로고
    • A note on the isoperimetric constant
    • Buser, P. (1982). A note on the isoperimetric constant. Ann. Sci. EC. Norm. Sup. 15.
    • (1982) Ann. Sci. EC. Norm. Sup. , vol.15
    • Buser, P.1
  • 7
    • 20344362744 scopus 로고
    • A lower bound for the smallest eigenvalue of the laplacian
    • R.C. Gunnings (Ed.), Princeton University Press
    • Cheeger, J. (1970). A lower bound for the smallest eigenvalue of the laplacian. In R.C. Gunnings (Ed.), Problems in analysis. Princeton University Press.
    • (1970) Problems in Analysis
    • Cheeger, J.1
  • 9
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., & Smale, S. (2001). On the mathematical foundations of learning. Bulletin of the AMS, 39, 1-49.
    • (2001) Bulletin of the AMS , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 10
    • 84951832269 scopus 로고    scopus 로고
    • Regional Conference Series in Mathematics
    • Chung, F. R. K. (1997). Spectral graph theory. Regional Conference Series in Mathematics, number 92.
    • (1997) Spectral Graph Theory , vol.92
    • Chung, F.R.K.1
  • 11
    • 0038384221 scopus 로고    scopus 로고
    • Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs
    • Chung, F. R. K., Grigor'yan, A., & Yau, S.-T. (2000). Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Communications on Analysis and Geometry, 8, 969-1026.
    • (2000) Communications on Analysis and Geometry , vol.8 , pp. 969-1026
    • Chung, F.R.K.1    Grigor'yan, A.2    Yau, S.-T.3
  • 19
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290.
    • (2000) Science , vol.290
    • Roweis, S.T.1    Saul, L.K.2
  • 20
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., & Mller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:5.
    • (1998) Neural Computation , vol.10 , Issue.5
    • Schölkopf, B.1    Smola, A.2    Mller, K.-R.3
  • 24
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290.
    • (2000) Science , vol.290
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.