메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 429-458

Online learning in the embedded manifold of low-rank matrices

Author keywords

Low rank; Metric learning; Multitask learning; Online learning; Retractions; Riemannian manifolds

Indexed keywords

LOW RANK; METRIC LEARNING; MULTITASK LEARNING; ONLINE LEARNING; RETRACTIONS; RIEMANNIAN MANIFOLD;

EID: 84857807897     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (62)

References (43)
  • 1
    • 84857871623 scopus 로고    scopus 로고
    • Projection-like retractions on matrix manifolds
    • Department of Mathematical Engineering, Université catholique de Louvain, July
    • P.-A. Absil and J. Malick. Projection-like retractions on matrix manifolds. Technical Report UCLINMA-2010.038, Department of Mathematical Engineering, Université catholique de Louvain, July 2010.
    • (2010) Technical Report UCLINMA-2010.038
    • Absil, P.-A.1    Malick, J.2
  • 11
    • 68149125583 scopus 로고    scopus 로고
    • A Newton-Grassmann method for computing the best multi-linear rank-(r1, r2, r3) approximation of a tensor
    • L. Eldén and B. Savas. A Newton-Grassmann method for computing the best multi-linear rank-(r1, r2, r3) approximation of a tensor. SIAM Journal on Matrix Analysis and applications, 31(2): 248-271, 2009.
    • (2009) SIAM Journal on Matrix Analysis and Applications , vol.31 , Issue.2 , pp. 248-271
    • Eldén, L.1    Savas, B.2
  • 12
    • 0142257025 scopus 로고    scopus 로고
    • PhD thesis, Electrical Engineering Department, Stanford University
    • M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Electrical Engineering Department, Stanford University, 2002.
    • (2002) Matrix Rank Minimization with Applications
    • Fazel, M.1
  • 17
    • 79952430949 scopus 로고    scopus 로고
    • Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme
    • M. Ishteva, L. De Lathauwer, P.-A. Absil, and S. Van Huffel. Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM Journal on Matrix Analysis and Applications, 32(1):115-132, 2011.
    • (2011) SIAM Journal on Matrix Analysis and Applications , vol.32 , Issue.1 , pp. 115-132
    • Ishteva, M.1    De Lathauwer, L.2    Absil, P.-A.3    Van Huffel, S.4
  • 20
    • 77956086700 scopus 로고    scopus 로고
    • Low-rank optimization on the cone of positive semidefinite matrices
    • M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-Rank Optimization on the Cone of Positive Semidefinite Matrices. SIAM Journal on Optimization, 20(5):2327-2351, 2010a.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.5 , pp. 2327-2351
    • Journée, M.1    Bach, F.2    Absil, P.-A.3    Sepulchre, R.4
  • 28
    • 0008495637 scopus 로고
    • Generalized inversion of modified matrices
    • C.D. Meyer. Generalized inversion of modified matrices. SIAM Journal on Applied Mathematics, 24(3):315-323, 1973.
    • (1973) SIAM Journal on Applied Mathematics , vol.24 , Issue.3 , pp. 315-323
    • Meyer, C.D.1
  • 29
    • 79952746338 scopus 로고    scopus 로고
    • Regression on fixed-rank positive semidefinite matrices: A Riemannian approach
    • G. Meyer, S. Bonnabel, and R. Sepulchre. Regression on fixed-rank positive semidefinite matrices: a Riemannian approach. The Journal of Machine Learning Research, 12:593-625, 2011.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 593-625
    • Meyer, G.1    Bonnabel, S.2    Sepulchre, R.3
  • 30
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24 (2):227-234, 1995.
    • (1995) SIAM Journal on Computing , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 32
    • 34249040506 scopus 로고    scopus 로고
    • Active set identification in nonlinear programming
    • C. Oberlin and S.J. Wright. Active set identification in nonlinear programming. SIAM Journal on Optimization, 17(2):577-605, 2007.
    • (2007) SIAM Journal on Optimization , vol.17 , Issue.2 , pp. 577-605
    • Oberlin, C.1    Wright, S.J.2
  • 34
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • B. Recht,M. Fazel, and P.A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010.
    • (2010) SIAM Review , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 37
    • 79251469735 scopus 로고    scopus 로고
    • A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations
    • B. Vandereycken and S. Vandewalle. A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations. SIAM Journal on Matrix Analysis and Applications, 31(5): 2553-2579, 2010.
    • (2010) SIAM Journal on Matrix Analysis and Applications , vol.31 , Issue.5 , pp. 2553-2579
    • Vandereycken, B.1    Vandewalle, S.2
  • 39
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10:207-244, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 41
  • 42
    • 67650231318 scopus 로고    scopus 로고
    • An overview of distance metric learning
    • Carnegie Mellon University
    • L. Yang. An overview of distance metric learning. Technical report, School of Computer Science, Carnegie Mellon University, 2007.
    • (2007) Technical Report, School of Computer Science
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.