메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1570-1579

A new kernelization framework for Mahalanobis distance learning algorithms

Author keywords

Dimensionality reduction; Distance metric learning; Kernel alignment; Kernel machines; Representer theorem

Indexed keywords

BRUTE FORCE; DATA SETS; DIMENSIONALITY REDUCTION; DISTANCE METRIC LEARNING; INFINITE DIMENSIONAL; KERNEL MACHINE; KERNEL TRICK; KERNELIZATION; MAHALANOBIS DISTANCES; MATHEMATICAL FORMULAS; REPRESENTER THEOREM; SPEED-UPS;

EID: 77952550960     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.11.037     Document Type: Article
Times cited : (71)

References (37)
  • 1
    • 77952551067 scopus 로고    scopus 로고
    • UCI machine learning repository.
    • A. Asuncion, D.J. Newman, UCI machine learning repository, 2007.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • Bach F., Jordan M. Learning spectral clustering, with application to speech separation. Journal of Machine Learning Research 2006, 7:1963-2001.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1963-2001
    • Bach, F.1    Jordan, M.2
  • 4
    • 77952551137 scopus 로고    scopus 로고
    • Incorporating invariances in nonlinear SVMs, in: NIPS
    • O. Chapelle, B. Schölkopf, Incorporating invariances in nonlinear SVMs, in: NIPS, 2001.
    • (2001)
    • Chapelle, O.1    Schölkopf, B.2
  • 5
    • 33749252873 scopus 로고    scopus 로고
    • The MIT Press, Cambridge, MA, O. Chapelle, B. Schölkopf, A. Zien (Eds.)
    • Semi-supervised Learning 2006, The MIT Press, Cambridge, MA. O. Chapelle, B. Schölkopf, A. Zien (Eds.).
    • (2006) Semi-supervised Learning
  • 6
    • 77952553345 scopus 로고    scopus 로고
    • On kernelizing Mahalanobis distance learning algorithms. Arxiv preprint.
    • R. Chatpatanasiri, T. Korsrilabutr, P. Tangchanachaianan, B. Kijsirikul, On kernelizing Mahalanobis distance learning algorithms, 2008. Arxiv preprint. http://arxiv.org/abs/0804.1441.
    • (2008)
    • Chatpatanasiri, R.1    Korsrilabutr, T.2    Tangchanachaianan, P.3    Kijsirikul, B.4
  • 7
    • 24644496298 scopus 로고    scopus 로고
    • Local discriminant embedding and its variants, in: CVPR.
    • H.T. Chen, H.W. Chang, T.L. Liu, Local discriminant embedding and its variants, in: CVPR, vol. 2, 2005.
    • (2005) , vol.2
    • Chen, H.T.1    Chang, H.W.2    Liu, T.L.3
  • 9
    • 77952547299 scopus 로고    scopus 로고
    • Metric learning by collapsing classes, in: NIPS
    • A. Globerson, S. Roweis, Metric learning by collapsing classes, in: NIPS, 2006.
    • (2006)
    • Globerson, A.1    Roweis, S.2
  • 11
    • 77952549023 scopus 로고    scopus 로고
    • A kernel for protein secondary structure prediction, in: Kernel Methods in Computational Biology.
    • Y. Guermeur, A. Lifchitz, R. Vert, A kernel for protein secondary structure prediction, in: Kernel Methods in Computational Biology, 2004.
    • (2004)
    • Guermeur, Y.1    Lifchitz, A.2    Vert, R.3
  • 12
    • 77952548180 scopus 로고    scopus 로고
    • Metric and kernel learning using a linear transformation. Arxiv preprint: arXiv:0910.5932.
    • P. Jain, B. Kulis, J. Davis, I. Dhillon, Metric and kernel learning using a linear transformation, 2009. Arxiv preprint: arXiv:0910.5932.
    • (2009)
    • Jain, P.1    Kulis, B.2    Davis, J.3    Dhillon, I.4
  • 15
    • 77952541362 scopus 로고    scopus 로고
    • Lecture Notes on Real Analysis I-II.
    • W. Lewkeeratiyutkul, Lecture Notes on Real Analysis I-II, 2006. http://pioneer.netserv.chula.ac.th/~lwicharn/2301622/.
    • (2006)
    • Lewkeeratiyutkul, W.1
  • 16
    • 45549085231 scopus 로고    scopus 로고
    • KPCA for semantic object extraction in images
    • Li J., Li X., Tao D. KPCA for semantic object extraction in images. Pattern Recognition 2008, 41:3244-3250.
    • (2008) Pattern Recognition , vol.41 , pp. 3244-3250
    • Li, J.1    Li, X.2    Tao, D.3
  • 17
    • 41649120173 scopus 로고    scopus 로고
    • Discriminant locally linear embedding with high-order tensor data
    • Li X., Lin S., Yan S., Xu D. Discriminant locally linear embedding with high-order tensor data. Systems Man and Cybernetics-Part B 2008, 38:342-352.
    • (2008) Systems Man and Cybernetics-Part B , vol.38 , pp. 342-352
    • Li, X.1    Lin, S.2    Yan, S.3    Xu, D.4
  • 18
    • 84880875744 scopus 로고    scopus 로고
    • Link analysis, eigenvectors and stability, in: IJCAI.
    • A. Ng, A. Zheng, M. Jordan, Link analysis, eigenvectors and stability, in: IJCAI, 2001, pp. 903-910.
    • (2001) , pp. 903-910
    • Ng, A.1    Zheng, A.2    Jordan, M.3
  • 19
    • 70450203831 scopus 로고    scopus 로고
    • Preconditioning, randomization, solving linear systems, eigen-solving, and root-finding, in: The 2009 Conference on Symbolic Numeric Computation, ACM, New York, NY.
    • V. Pan, G. Qian, A. Zheng, Preconditioning, randomization, solving linear systems, eigen-solving, and root-finding, in: The 2009 Conference on Symbolic Numeric Computation, ACM, New York, NY, 2009.
    • (2009)
    • Pan, V.1    Qian, G.2    Zheng, A.3
  • 20
    • 32544440932 scopus 로고    scopus 로고
    • A new nonlinear feature extraction method for face recognition
    • Pang Y., Liu Z., Yu N. A new nonlinear feature extraction method for face recognition. Neurocomputing 2006, 69(7-9):949-953.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 949-953
    • Pang, Y.1    Liu, Z.2    Yu, N.3
  • 21
    • 77952580506 scopus 로고    scopus 로고
    • Generalized KPCA by Adaptive Rules in Feature Space, International Journal of Computer Mathematics. DOI:.
    • Y. Pang, L. Wang, Y. Yuan, Generalized KPCA by Adaptive Rules in Feature Space, International Journal of Computer Mathematics (2009). DOI:. http://10.1080/00207160802044118.
    • (2009)
    • Pang, Y.1    Wang, L.2    Yuan, Y.3
  • 23
    • 77952551484 scopus 로고    scopus 로고
    • A generalized representer theorem, in: COLT.
    • B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in: COLT, 2001.
    • (2001)
    • Schölkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 25
    • 33749237332 scopus 로고    scopus 로고
    • Local fisher discriminant analysis for supervised dimensionality reduction, in: ICML.
    • M. Sugiyama, Local fisher discriminant analysis for supervised dimensionality reduction, in: ICML, 2006.
    • (2006)
    • Sugiyama, M.1
  • 26
    • 84864062501 scopus 로고    scopus 로고
    • Large margin components analysis, in: NIPS.
    • L. Torresani, K. Lee, Large margin components analysis, in: NIPS, 2007.
    • Torresani, L.1    Lee, K.2
  • 27
    • 77952544311 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification, in: NIPS.
    • K. Weinberger, J. Blitzer, L. Saul, Distance metric learning for large margin nearest neighbor classification, in: NIPS, 2006.
    • (2006)
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 28
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information, in: NIPS.
    • E.P. Xing, A.Y. Ng, M.I. Jordan, S. Russell, Distance metric learning with application to clustering with side-information, in: NIPS, 2003.
    • (2003)
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 30
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • Yang J., Yang J.Y. Why can LDA be performed in PCA transformed space?. Pattern Recognition 2003, 36:563-566.
    • (2003) Pattern Recognition , vol.36 , pp. 563-566
    • Yang, J.1    Yang, J.Y.2
  • 31
    • 77952550229 scopus 로고    scopus 로고
    • An efficient algorithm for local distance metric learning, in: AAAI.
    • L. Yang, R. Jin, R. Sukthankar, Y. Liu, An efficient algorithm for local distance metric learning, in: AAAI, 2006.
    • (2006)
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Liu, Y.4
  • 32
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data-with application to face recognition
    • Yu H., Yang J. A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognition 2001, 34:2067-2070.
    • (2001) Pattern Recognition , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 33
    • 75749153570 scopus 로고    scopus 로고
    • A general kernelization framework for learning algorithms based on kernel PCA
    • Zhang C., Nie F., Xiang S. A general kernelization framework for learning algorithms based on kernel PCA. Neurocomputing 2009, 73:959-967.
    • (2009) Neurocomputing , vol.73 , pp. 959-967
    • Zhang, C.1    Nie, F.2    Xiang, S.3
  • 36
    • 77952543547 scopus 로고    scopus 로고
    • Optimal dimensionality of metric space for classification, in: ICML,.
    • W. Zhang, X. Xue, Z. Sun, Y.-F. Guo, H. Lu, Optimal dimensionality of metric space for classification, in: ICML, 2007.
    • (2007)
    • Zhang, W.1    Xue, X.2    Sun, Z.3    Guo, Y.F.4    Lu, H.5
  • 37
    • 84899028404 scopus 로고    scopus 로고
    • Nonparametric transforms of graph kernels for semi-supervised learning
    • X. Zhu, J. Kandola, Z. Ghahramani, J. Lafferty, Nonparametric transforms of graph kernels for semi-supervised learning, in: NIPS, 2005.
    • (2005) NIPS
    • Zhu, X.1    Kandola, J.2    Ghahramani, Z.3    Lafferty, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.