메뉴 건너뛰기




Volumn , Issue , 2008, Pages

In defense of nearest-neighbor based image classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTER VISION; FEATURE EXTRACTION; IMAGE ANALYSIS; IMAGE PROCESSING; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 51949090223     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587598     Document Type: Conference Paper
Times cited : (1025)

References (31)
  • 1
    • 0033874757 scopus 로고    scopus 로고
    • Expected-case complexity of approximate nearest neighbor searching
    • S. Arya and H.-Y. A. Fu. Expected-case complexity of approximate nearest neighbor searching. In Symposium on Discrete Algorithms, 2000.
    • (2000) Symposium on Discrete Algorithms
    • Arya, S.1    Fu, H.-Y.A.2
  • 4
    • 85157960220 scopus 로고    scopus 로고
    • Similarity by composition
    • O. Boiman and M. Irani. Similarity by composition. In NIPS, 2006.
    • (2006) NIPS
    • Boiman, O.1    Irani, M.2
  • 5
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In ICCV, 2007.
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 6
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. In CIVR, 2007.
    • (2007) CIVR
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 8
    • 85199272861 scopus 로고    scopus 로고
    • R. Fei-Fei, L.and Fergus and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision, 2004.
    • R. Fei-Fei, L.and Fergus and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision, 2004.
  • 9
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 61, 2005.
    • (2005) IJCV , vol.61
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 10
    • 33745956065 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR'03.
    • CVPR'03
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 11
    • 50649117726 scopus 로고    scopus 로고
    • Learning globally-consistent local distance functions for shape-based image retrieval and classification
    • A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local distance functions for shape-based image retrieval and classification. In ICCV, 2007.
    • (2007) ICCV
    • Frome, A.1    Singer, Y.2    Sha, F.3    Malik, J.4
  • 12
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. In ICCV, 2005.
    • (2005) ICCV
    • Grauman, K.1    Darrell, T.2
  • 13
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset
    • Technical report, CalTech, 2007
    • G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical report, CalTech, 2007.
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 14
    • 33745934686 scopus 로고    scopus 로고
    • Creating efficient codebooks for visual recognition
    • F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In ICCV, 2005.
    • (2005) ICCV
    • Jurie, F.1    Triggs, B.2
  • 15
    • 50649102858 scopus 로고    scopus 로고
    • Support kernel machines for object recognition
    • A. Kumar and C. Sminchisescu. Support kernel machines for object recognition. In ICCV, 2007.
    • (2007) ICCV
    • Kumar, A.1    Sminchisescu, C.2
  • 18
    • 35148859368 scopus 로고    scopus 로고
    • Local ensemble kernel learning for object category recognition
    • Y. Lin, T. Liu, and C. Fuh. Local ensemble kernel learning for object category recognition. In CVPR, 2007.
    • (2007) CVPR
    • Lin, Y.1    Liu, T.2    Fuh, C.3
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2), 2004.
    • (2004) IJCV , vol.60 , Issue.2
    • Lowe, D.1
  • 20
    • 51949113525 scopus 로고    scopus 로고
    • M. Marsza?ek, C. Schmid, H. Harzallah, and J. van de Weijer. Learning object representations for visual object class recognition. In Visual Recognition Challange, 2007.
    • M. Marsza?ek, C. Schmid, H. Harzallah, and J. van de Weijer. Learning object representations for visual object class recognition. In Visual Recognition Challange, 2007.
  • 21
    • 3042525106 scopus 로고    scopus 로고
    • C. M. J. Martin, D.R.; Fowlkes. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 26(5), 2004.
    • C. M. J. Martin, D.R.; Fowlkes. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 26(5), 2004.
  • 22
    • 28044434408 scopus 로고    scopus 로고
    • Efficient shape matching using shape contexts
    • G. Mori, S. Belongie, and J. Malik. Efficient shape matching using shape contexts. PAMI, 27(11), 2005.
    • (2005) PAMI , vol.27 , Issue.11
    • Mori, G.1    Belongie, S.2    Malik, J.3
  • 24
    • 21944442484 scopus 로고    scopus 로고
    • Weak hypotheses and boosting for generic object detection and recognition
    • A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hypotheses and boosting for generic object detection and recognition. In ECCV, 2004.
    • (2004) ECCV
    • Opelt, A.1    Fussenegger, M.2    Pinz, A.3    Auer, P.4
  • 25
    • 34948845616 scopus 로고    scopus 로고
    • Matching local self-similarities across images and videos
    • E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In CVPR, 2007.
    • (2007) CVPR
    • Shechtman, E.1    Irani, M.2
  • 26
    • 50649101051 scopus 로고    scopus 로고
    • Vector quantizing feature space with a regular lattice
    • T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular lattice. In ICCV, 2007.
    • (2007) ICCV
    • Tuytelaars, T.1    Schmid, C.2
  • 27
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative power-invariance trade-off
    • M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In ICCV, 2007.
    • (2007) ICCV
    • Varma, M.1    Ray, D.2
  • 28
    • 8644245233 scopus 로고    scopus 로고
    • Unifying statistical texture classification frameworks
    • M. Varma and A. Zisserman. Unifying statistical texture classification frameworks. IVC, 22(14), 2004.
    • (2004) IVC , vol.22 , Issue.14
    • Varma, M.1    Zisserman, A.2
  • 29
    • 33845591067 scopus 로고    scopus 로고
    • Using dependent regions for object categorization in a generative framework
    • G. Wang, Y. Zhang, and L. Fei-Fei. Using dependent regions for object categorization in a generative framework. In CVPR, 2006.
    • (2006) CVPR
    • Wang, G.1    Zhang, Y.2    Fei-Fei, L.3
  • 30
    • 33845566162 scopus 로고    scopus 로고
    • Svm-knn: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.2    Maire, M.3    Malik, J.4
  • 31
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV, 73(2), 2007.
    • (2007) IJCV , vol.73 , Issue.2
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.