메뉴 건너뛰기




Volumn , Issue , 2009, Pages 841-848

An efficient sparse metric learning in high-dimensional space via ℓ1-penalized log-determinant regularization

Author keywords

[No Author keywords available]

Indexed keywords

COORDINATE DESCENT; COVARIANCE ESTIMATION; DATA SETS; DISTANCE LEARNING; DISTANCE MATRICES; DISTANCE METRIC LEARNING; DISTANCE METRICS; HIGH DIMENSIONAL SPACES; HIGH DIMENSIONS; HIGH-DIMENSIONAL FEATURE SPACE; METRIC LEARNING; SEMI-DEFINITE PROGRAMMING;

EID: 71149095035     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (85)

References (13)
  • 3
    • 33646365077 scopus 로고    scopus 로고
    • For most large undertermined systems of linear equations the minimum 11-norm is also the sparsest solution
    • Donoho, D. (2006). For most large undertermined systems of linear equations the minimum 11-norm is also the sparsest solution. Comm. On Pure and Applied Math, 59, 797-829.
    • (2006) Comm. On Pure and Applied Math , vol.59 , pp. 797-829
    • Donoho, D.1
  • 4
    • 41549108614 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T., & Tibshirani, R. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostat.
    • (2007) Biostat
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 5
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the minimum description length principle
    • Hansen, M., & Yu, B. (2001). Model selection and the minimum description length principle. Journal of the American Statistical Association, 96, 746-774.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 746-774
    • Hansen, M.1    Yu, B.2
  • 6
    • 51949106897 scopus 로고    scopus 로고
    • Semi-supervised distance learning for collaborative image retrieval
    • Hoi, S. C. H., Liu, W., & Chang, S.-F. (2008). Semi-supervised distance learning for collaborative image retrieval. Proc. of IEEE CVPR.
    • (2008) Proc. of IEEE CVPR
    • Hoi, S.C.H.1    Liu, W.2    Chang, S.-F.3
  • 8
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • Schultz, M., & Joachims, T. (2004). Learning a distance metric from relative comparisons. Proc. of NIPS.
    • (2004) Proc. of NIPS
    • Schultz, M.1    Joachims, T.2
  • 9
    • 0000920501 scopus 로고    scopus 로고
    • Semidefinite optimization
    • Todd, M. (2001). Semidefinite optimization. Acta Numerica, 515-560.
    • (2001) Acta Numerica , pp. 515-560
    • Todd, M.1
  • 10
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2005). Distance metric learning for large margin nearest neighbor classification. Proc. of NIPS.
    • (2005) Proc. of NIPS
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 12
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2003). Distance metric learning, with application to clustering with side-information. Proc. of NIPS.
    • (2003) Proc. of NIPS
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 13
    • 50649106795 scopus 로고    scopus 로고
    • Optimal dimensionality of metric space for classification
    • Zhang, W., Xue, X., Sun, Z., Guo, Y.-F., & Lu, H. (2007). Optimal dimensionality of metric space for classification. Proc. of ICML.
    • (2007) Proc. of ICML
    • Zhang, W.1    Xue, X.2    Sun, Z.3    Guo, Y.-F.4    Lu, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.