메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Inductive regularized learning of kernel functions

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; MATRIX ALGEBRA; METADATA;

EID: 85162055589     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (46)

References (34)
  • 1
    • 21844471282 scopus 로고    scopus 로고
    • Matrix exponentiated gradient updates for on-line learning and Bregman projection
    • K. Tsuda, G. Rätsch, and M. K.Warmuth. Matrix exponentiated gradient updates for on-line learning and Bregman projection. JMLR, 6:995-1018, 2005.
    • (2005) JMLR , vol.6 , pp. 995-1018
    • Tsuda, K.1    Rätsch, G.2    Warmuth, M.K.3
  • 2
    • 1942516950 scopus 로고    scopus 로고
    • Learning with idealized kernels
    • J. T. Kwok and I. W. Tsang. Learning with idealized kernels. In ICML, 2003.
    • (2003) ICML
    • Kwok, J.T.1    Tsang, I.W.2
  • 4
    • 21844468979 scopus 로고    scopus 로고
    • Learning the kernel with hyperkernels
    • C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyperkernels. JMLR, 6:1043-1071, 2005.
    • (2005) JMLR , vol.6 , pp. 1043-1071
    • Ong, C.S.1    Smola, A.J.2    Williamson, R.C.3
  • 6
    • 84899028404 scopus 로고    scopus 로고
    • Nonparametric transforms of graph kernels for semi-supervised learning
    • Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors
    • Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, and John Lafferty. Nonparametric transforms of graph kernels for semi-supervised learning. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, NIPS, volume 17, pages 1641-1648, 2005.
    • (2005) NIPS , vol.17 , pp. 1641-1648
    • Zhu, X.1    Kandola, J.2    Ghahramani, Z.3    Lafferty, J.4
  • 7
    • 70450161376 scopus 로고    scopus 로고
    • Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers
    • Peter V. Gehler and Sebastian Nowozin. Let the kernel figure it out; principled learning of pre-processing for kernel classifiers. In CVPR, pages 2836-2843, 2009.
    • (2009) CVPR , pp. 2836-2843
    • Gehler, P.V.1    Nowozin, S.2
  • 8
    • 85157968077 scopus 로고    scopus 로고
    • Cross-validation optimization for large scale hierarchical classification kernel methods
    • Matthias Seeger. Cross-validation optimization for large scale hierarchical classification kernel methods. In NIPS, pages 1233-1240, 2006.
    • (2006) NIPS , pp. 1233-1240
    • Seeger, M.1
  • 10
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell. Distance metric learning with application to clustering with side-information. In NIPS, pages 505-512, 2002.
    • (2002) NIPS , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.J.4
  • 11
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2005.
    • (2005) NIPS
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 13
    • 14344262273 scopus 로고    scopus 로고
    • Online and batch learning of pseudo-metrics
    • S. Shalev-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-metrics. In ICML, 2004.
    • (2004) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Ng, A.Y.3
  • 14
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes
    • A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In NIPS, 2005.
    • (2005) NIPS
    • Globerson, A.1    Roweis, S.T.2
  • 16
    • 84860607191 scopus 로고    scopus 로고
    • Convex perturbations for scalable semidefinite programming
    • B. Kulis, S. Sra, and I. S. Dhillon. Convex perturbations for scalable semidefinite programming. In AISTATS, 2009.
    • (2009) AISTATS
    • Kulis, B.1    Sra, S.2    Dhillon, I.S.3
  • 18
    • 77949497295 scopus 로고    scopus 로고
    • On spectral learning
    • Andreas Argyriou, Charles A. Micchelli, and Massimiliano Pontil. On spectral learning. JMLR, 11:935-953, 2010.
    • (2010) JMLR , vol.11 , pp. 935-953
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3
  • 19
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low-rank decomposition for kernel methods
    • F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In ICML, pages 33-40, 2005.
    • (2005) ICML , pp. 33-40
    • Bach, F.R.1    Jordan, M.I.2
  • 20
    • 57249113337 scopus 로고    scopus 로고
    • Colored maximum variance unfolding
    • L. Song, A. Smola, K. M. Borgwardt, and A. Gretton. Colored maximum variance unfolding. In NIPS, pages 1385-1392, 2007.
    • (2007) NIPS , pp. 1385-1392
    • Song, L.1    Smola, A.2    Borgwardt, K.M.3    Gretton, A.4
  • 21
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Y. Song, F. Nie, C. Zhang, and S. Xiang. A unified framework for semi-supervised dimensionality reduction. Pattern Recognition, 41(9):2789-2799, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 22
    • 84860624818 scopus 로고    scopus 로고
    • Kernel dimensionality reduction for supervised learning
    • K. Fukumizu, F. R. Bach, and M. I. Jordan. Kernel dimensionality reduction for supervised learning. In NIPS, 2003.
    • (2003) NIPS
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 23
    • 78650301922 scopus 로고    scopus 로고
    • Discriminative Gaussian process latent variable model for classification
    • R. Urtasun and T. Darrell. Discriminative gaussian process latent variable model for classification. In ICML, pages 927-934, 2007.
    • (2007) ICML , pp. 927-934
    • Urtasun, R.1    Darrell, T.2
  • 25
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-supervised learning. In ICML, pages 824-831, 2005.
    • (2005) ICML , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 26
    • 33749262175 scopus 로고    scopus 로고
    • Learning low-rank kernel matrices
    • Brian Kulis, Mátyás Sustik, and Inderjit S. Dhillon. Learning low-rank kernel matrices. In ICML, pages 505-512, 2006.
    • (2006) ICML , pp. 505-512
    • Kulis, B.1    Sustik, M.2    Dhillon, I.S.3
  • 27
    • 9444220002 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons. In NIPS, 2003.
    • (2003) NIPS
    • Schultz, M.1    Joachims, T.2
  • 28
    • 21844457672 scopus 로고    scopus 로고
    • Learning a mahalanobis metric from equivalence constraints
    • A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis metric from equivalence constraints. JMLR, 6:937-965, 2005.
    • (2005) JMLR , vol.6 , pp. 937-965
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3    Weinshall, D.4
  • 29
    • 51949104743 scopus 로고    scopus 로고
    • Fast image search for learned metrics
    • P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. In CVPR, 2008.
    • (2008) CVPR
    • Jain, P.1    Kulis, B.2    Grauman, K.3
  • 32
    • 34247576789 scopus 로고    scopus 로고
    • The Pyramid Match Kernel: Efficient learning with sets of features
    • April
    • K. Grauman and T. Darrell. The Pyramid Match Kernel: Efficient learning with sets of features. Journal of Machine Learning Research (JMLR), 8:725-760, April 2007.
    • (2007) Journal of Machine Learning Research (JMLR) , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 33
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, pages 2169-2178, 2006.
    • (2006) CVPR , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 34
    • 0035686784 scopus 로고    scopus 로고
    • Geometric blur for template matching
    • A. C. Berg and J. Malik. Geometric blur for template matching. In CVPR, pages 607-614, 2001.
    • (2001) CVPR , pp. 607-614
    • Berg, A.C.1    Malik, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.