-
1
-
-
0031119485
-
The hardness of approximate optima in lattices, codes, and systems of linear equations
-
Arora, S., Babai, L., Stern, J., & Sweedyk, Z. (1997). The hardness of approximate optima in lattices, codes, and systems of linear equations. Journal of Computer and System Sciences, 54, 317-331.
-
(1997)
Journal of Computer and System Sciences
, vol.54
, pp. 317-331
-
-
Arora, S.1
Babai, L.2
Stern, J.3
Sweedyk, Z.4
-
3
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Bartlett, P. L., & Mendelson, S. (2003). Rademacher and gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res., 3, 463-482.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
4
-
-
0042967747
-
Limitations of learning via embeddings in euclidean half-spaces
-
Ben-David, S., Eiron, N., & Simon, H.-U. (2003). Limitations of learning via embeddings in euclidean half-spaces. The Journal of Machine Learning Research, 3, 441-461.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 441-461
-
-
Ben-David, S.1
Eiron, N.2
Simon, H.-U.3
-
6
-
-
0001907967
-
Support vector machines: Hype or hallelujah?
-
Bennett, K. P., & Campbell, C. (2000). Support vector machines: hype or hallelujah? SIGKDD Explor. Newsl., 2, 1-13.
-
(2000)
SIGKDD Explor. Newsl.
, vol.2
, pp. 1-13
-
-
Bennett, K.P.1
Campbell, C.2
-
7
-
-
0028062299
-
Weakly learning DNF and characterizing statistical query learning using fourier analysis
-
Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., & Rudich, S. (1994). Weakly learning DNF and characterizing statistical query learning using fourier analysis. Proceedings of the 26th Annual ACM Symposium on Theory of Computing (pp. 253-262).
-
(1994)
Proceedings of the 26th Annual ACM Symposium on Theory of Computing
, pp. 253-262
-
-
Blum, A.1
Furst, M.2
Jackson, J.3
Kearns, M.4
Mansour, Y.5
Rudich, S.6
-
9
-
-
34547698378
-
New results for learning noisy parities and halfspaces
-
Feldman, V., Gopalan, P., Khot, S., & Ponnuswami, A. (2006). New results for learning noisy parities and halfspaces. 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (pp. 563-574).
-
(2006)
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 563-574
-
-
Feldman, V.1
Gopalan, P.2
Khot, S.3
Ponnuswami, A.4
-
10
-
-
29144487028
-
On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes
-
Forster, J., & Simon, H.-U. (2006). On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes. Theoretical Computer Science, 350, 40-48.
-
(2006)
Theoretical Computer Science
, vol.350
, pp. 40-48
-
-
Forster, J.1
Simon, H.-U.2
-
11
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Comput., 10, 1455-1480.
-
(1998)
Neural Comput.
, vol.10
, pp. 1455-1480
-
-
Girosi, F.1
-
13
-
-
0036643063
-
Structural modelling with sparse kernels
-
Gunn, S. R., & Kandola, J. S. (2002). Structural modelling with sparse kernels. Mach. Learn., 48, 137-163.
-
(2002)
Mach. Learn.
, vol.48
, pp. 137-163
-
-
Gunn, S.R.1
Kandola, J.S.2
-
16
-
-
0024771052
-
Constant depth circuits, fourier transform, and learnability
-
Research Triangle Park, North Carolina
-
Linial, N., Mansour, Y., & Nisan, N. (1989). Constant depth circuits, fourier transform, and learnability. Proceedings of the Thirtieth Annual Symposium on Foundations of Computer Science (pp. 574-579). Research Triangle Park, North Carolina.
-
(1989)
Proceedings of the Thirtieth Annual Symposium on Foundations of Computer Science
, pp. 574-579
-
-
Linial, N.1
Mansour, Y.2
Nisan, N.3
-
20
-
-
34548084959
-
The discipline of machine learning
-
Mitchell, T. (2006). The discipline of machine learning. CMU-ML-06 108.
-
(2006)
CMU-ML-06
, vol.108
-
-
Mitchell, T.1
-
21
-
-
0001562735
-
Reducing the run-time complexity in support vector machines
-
Cambridge, MA, USA: MIT Press
-
Osuna, E. E., & Girosi, F. (1999). Reducing the run-time complexity in support vector machines. In Advances in kernel methods: support vector learning, 271-283. Cambridge, MA, USA: MIT Press.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 271-283
-
-
Osuna, E.E.1
Girosi, F.2
-
23
-
-
0003408420
-
-
MIT University Press, Cambridge
-
Scholkopf, B., & Smola, A. J. (2002). Learning with kernels. support vector machines, regularization, optimization, and beyond. MIT University Press, Cambridge.
-
(2002)
Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
28
-
-
84897581768
-
How good is a kernel as a similarity function
-
Srebro, N. (2007). How Good is a Kernel as a Similarity Function. COLT.
-
(2007)
COLT
-
-
Srebro, N.1
-
29
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res., 1, 211-244.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
30
-
-
0036643065
-
Kernel matching pursuit
-
Vincent, P., & Bengio, Y. (2002). Kernel matching pursuit. Mach. Learn., 48, 165-187.
-
(2002)
Mach. Learn.
, vol.48
, pp. 165-187
-
-
Vincent, P.1
Bengio, Y.2
-
32
-
-
0347067948
-
Covering number bounds of certain regularized linear function classes
-
Zhang, T. (2002). Covering number bounds of certain regularized linear function classes. J. Mach. Learn. Res., 2, 527-550.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 527-550
-
-
Zhang, T.1
|