메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Domain adaptation: Learning bounds and algorithms

Author keywords

[No Author keywords available]

Indexed keywords

DOMAIN ADAPTATION; FINITE SAMPLES; GENERALIZATION BOUND; KERNEL RIDGE REGRESSIONS; LOSS FUNCTIONS; MINIMIZATION ALGORITHMS; RADEMACHER COMPLEXITY; TEST DATA;

EID: 84898072330     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (783)

References (35)
  • 1
    • 0003169116 scopus 로고
    • Interior point methods in semidefinite programming with applications to combinatorial optimization
    • Alizadeh, F. (1995). Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization, 5, 13-51.
    • (1995) SIAM Journal on Optimization , vol.5 , pp. 13-51
    • Alizadeh, F.1
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 2002
    • Bartlett, P.L.1    Mendelson, S.2
  • 5
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • Blitzer, J., Dredze, M., & Pereira, F (2007). Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. ACL 2007.
    • (2007) ACL 2007
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 6
    • 0038368335 scopus 로고    scopus 로고
    • Stability and generalization
    • Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. JMLR, 2, 499-526.
    • (2002) JMLR , vol.2 , pp. 499-526
    • Bousquet, O.1    Elisseeff, A.2
  • 8
    • 33746536145 scopus 로고    scopus 로고
    • Adaptation of maximum entropy capitalizer: Little data can help a lot
    • Chelba, C, & Acero, A. (2006). Adaptation of maximum entropy capitalizer: Little data can help a lot. Computer Speech & Language, 20, 382-399.
    • (2006) Computer Speech & Language , vol.20 , pp. 382-399
    • Chelba, C.1    Acero, A.2
  • 14
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • Elkan, C. (2001). The foundations of cost-sensitive learning. IJCAI (pp. 973-978).
    • (2001) IJCAI , pp. 973-978
    • Elkan, C.1
  • 15
    • 84898070240 scopus 로고
    • On minimizing the maximum eigenvalue of a symmetric matrix
    • Fletcher, R. (1985). On minimizing the maximum eigenvalue of a symmetric matrix. SIAMJ. Control and Optimization, 23, 493-513.
    • (1985) SIAMJ. Control and Optimization , vol.23 , pp. 493-513
    • Fletcher, R.1
  • 16
    • 0028419019 scopus 로고
    • Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
    • Gauvain, J.-L., & Chin-Hui (1994). Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains. IEEE Transactions on Speech and Audio Processing, 2, 291-298.
    • (1994) IEEE Transactions on Speech and Audio Processing , vol.2 , pp. 291-298
    • Gauvain, J.-L.1    Chin-Hui2
  • 18
    • 0027656654 scopus 로고
    • An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices
    • Jarre, F (1993). An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAMJ. Control Optim., 31, 1360-1377.
    • (1993) SIAMJ. Control Optim. , vol.31 , pp. 1360-1377
    • Jarre, F.1
  • 20
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in NLP
    • Association for Computational Linguistics
    • Jiang, J., & Zhai, C. (2007). Instance Weighting for Domain Adaptation in NLP. Proceedings of ACL 2007 (pp. 264-271). Association for Computational Linguistics.
    • (2007) Proceedings of ACL , vol.2007 , pp. 264-271
    • Jiang, J.1    Zhai, C.2
  • 21
    • 0035521421 scopus 로고    scopus 로고
    • A min-max-sum resource allocation problem and its application
    • Karabati, S., Kouvelis, P., & Yu, G. (2001). A min-max-sum resource allocation problem and its application. Operations Research, 49, 913-922.
    • (2001) Operations Research , vol.49 , pp. 913-922
    • Karabati, S.1    Kouvelis, P.2    Yu, G.3
  • 23
    • 0001166808 scopus 로고    scopus 로고
    • Rademacher processes and bounding the risk of function learning
    • preprint
    • Koltchinskii, V., & Panchenko, D. (2000). Rademacher processes and bounding the risk of function learning. In High dimensional probability ii, 443-459. preprint.
    • (2000) High Dimensional Probability , vol.2 , pp. 443-459
    • Koltchinskii, V.1    Panchenko, D.2
  • 25
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models
    • Legetter, C. J., & Woodland, P. C. (1995). Maximum likelihood linear regression for speaker adaptation of continuous density hidden markov models. Computer Speech and Language, 171-185.
    • (1995) Computer Speech and Language , pp. 171-185
    • Legetter, C.J.1    Woodland, P.C.2
  • 27
    • 0036603236 scopus 로고    scopus 로고
    • Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class
    • Martínez, A. M. (2002). Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell., 24, 748-763.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 748-763
    • Martínez, A.M.1
  • 28
    • 0040223408 scopus 로고
    • Interior point polynomial methods in convex programming: Theory and applications
    • Nesterov, Y., & Nemirovsky, A. (1994). Interior point polynomial methods in convex programming: Theory and applications. SIAM.
    • (1994) SIAM
    • Nesterov, Y.1    Nemirovsky, A.2
  • 29
    • 0001110772 scopus 로고
    • On minimizing the maximum eigenvalue of a symmetric matrix
    • Overton, M. L. (1988). On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J. Matrix Anal. Appl., 9, 256-268.
    • (1988) SIAM J. Matrix Anal. Appl. , vol.9 , pp. 256-268
    • Overton, M.L.1
  • 31
    • 84862293242 scopus 로고    scopus 로고
    • Supervised and unsu-pervised PCFG adaptation to novel domains
    • Roark, B., & Bacchiani, M. (2003). Supervised and unsu-pervised PCFG adaptation to novel domains. Proceedings of HLT-NAACL.
    • (2003) Proceedings of HLT-NAACL
    • Roark, B.1    Bacchiani, M.2
  • 32
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modeling
    • Rosenfeld, R. (1996). A Maximum Entropy Approach to Adaptive Statistical Language Modeling. Computer Speech and Language, 10, 187-228.
    • (1996) Computer Speech and Language , vol.10 , pp. 187-228
    • Rosenfeld, R.1
  • 33
    • 70450199207 scopus 로고    scopus 로고
    • Ridge regression learning algorithm in dual variables
    • Saunders, C., Gammerman, A., & Vovk, V. (1998). Ridge Regression Learning Algorithm in Dual Variables. ICML (pp. 515-521).
    • (1998) ICML , pp. 515-521
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.