메뉴 건너뛰기




Volumn 73, Issue 4-6, 2010, Pages 959-967

A general kernelization framework for learning algorithms based on kernel PCA

Author keywords

Kernel method; Kernel PCA; Learning algorithm; Two stage framework

Indexed keywords

FEATURE SPACE; INNER PRODUCT; KERNEL METHODS; KERNEL PCA; KERNEL PRINCIPAL COMPONENT ANALYSIS; KERNELIZATION; NUMERICAL STABILITIES; SPEED-UPS; TWO STAGE;

EID: 75749153570     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.08.014     Document Type: Article
Times cited : (96)

References (52)
  • 4
    • 54949121310 scopus 로고    scopus 로고
    • Face recognition using spatially constrained earth mover's distance
    • Xu D., Yan S., and Luo J. Face recognition using spatially constrained earth mover's distance. IEEE Transactions on Image Processing 17 11 (2008) 2256-2260
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.11 , pp. 2256-2260
    • Xu, D.1    Yan, S.2    Luo, J.3
  • 6
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G., and Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation 12 10 (2000) 2385-2404
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 8
    • 0038648412 scopus 로고    scopus 로고
    • Appearance models based on kernel canonical correlation analysis
    • Melzer T., Reiter M., and Bischof H. Appearance models based on kernel canonical correlation analysis. Pattern Recognition 36 9 (2003) 1961-1971
    • (2003) Pattern Recognition , vol.36 , Issue.9 , pp. 1961-1971
    • Melzer, T.1    Reiter, M.2    Bischof, H.3
  • 9
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R., and Trejo L.J. Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research 2 (2001) 97-123
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 11
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • Girolami M. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks 13 (2002) 780-784
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 780-784
    • Girolami, M.1
  • 15
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., and Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 5 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 18
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition
    • Yang J., Frangi A.F., Yang J.-Y., Zhang D., and Jin Z. KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Transactions on PAMI 27 2 (2005) 230-244
    • (2005) IEEE Transactions on PAMI , vol.27 , Issue.2 , pp. 230-244
    • Yang, J.1    Frangi, A.F.2    Yang, J.-Y.3    Zhang, D.4    Jin, Z.5
  • 23
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine S., and Scheinberg K. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research 2 (2001) 243-264
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 26
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 27
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., and Kennard R. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12 1 (1970) 55-67
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 28
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 30
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA based face recognition system which can solve the small sample size problem
    • Chen L., Liao H., Ko M., Lin J., and Yu G. A new LDA based face recognition system which can solve the small sample size problem. Pattern Recognition 33 10 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1713-1726
    • Chen, L.1    Liao, H.2    Ko, M.3    Lin, J.4    Yu, G.5
  • 31
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data with application to face recognition
    • Yu H., and Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition 34 (2001) 2067-2070
    • (2001) Pattern Recognition , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 33
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H., Jiang T., and Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks 17 (2006) 1045-9227
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 1045-9227
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 36
    • 67649880294 scopus 로고    scopus 로고
    • Semi-supervised bilinear subspace learning
    • Xu D., and Yan S. Semi-supervised bilinear subspace learning. IEEE Transactions on Image Processing 18 7 (2009) 1671-1676
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.7 , pp. 1671-1676
    • Xu, D.1    Yan, S.2
  • 39
    • 13844299267 scopus 로고    scopus 로고
    • Foley-Sammon optimal discriminant vectors using kernel approach
    • Zheng W., Zhao L., and Zou C. Foley-Sammon optimal discriminant vectors using kernel approach. IEEE Transactions on Neural Networks 16 (2005) 1-9
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 1-9
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 40
    • 33746916014 scopus 로고    scopus 로고
    • Face recognition using kernel scatter-difference-based discriminant analysis
    • Liu Q., Tang X., Lu H., and Ma S. Face recognition using kernel scatter-difference-based discriminant analysis. IEEE Transactions on Neural Networks 17 (2006) 1081-1085
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 1081-1085
    • Liu, Q.1    Tang, X.2    Lu, H.3    Ma, S.4
  • 41
    • 0346034995 scopus 로고    scopus 로고
    • A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition
    • Guo Y.-F., Li S.-J., Yang J.-Y., Shu T.-T., and Wu L.-D. A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition. Pattern Recognition Letter 24 1-3 (2003) 147-158
    • (2003) Pattern Recognition Letter , vol.24 , Issue.1-3 , pp. 147-158
    • Guo, Y.-F.1    Li, S.-J.2    Yang, J.-Y.3    Shu, T.-T.4    Wu, L.-D.5
  • 42
    • 84880862081 scopus 로고    scopus 로고
    • F. Nie, S. Xiang, C. Zhang, Neighborhood minmax projections, in: IJCAI, 2007, pp. 993-998.
    • F. Nie, S. Xiang, C. Zhang, Neighborhood minmax projections, in: IJCAI, 2007, pp. 993-998.
  • 43
    • 35148823228 scopus 로고    scopus 로고
    • H. Wang, S. Yan, D. Xu, X. Tang, T.S. Huang, Trace ratio vs. ratio trace for dimensionality reduction, in: CVPR, 2007.
    • H. Wang, S. Yan, D. Xu, X. Tang, T.S. Huang, Trace ratio vs. ratio trace for dimensionality reduction, in: CVPR, 2007.
  • 45
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling H. Relations between two sets of variates. Biometrika 28 (1936) 312-377
    • (1936) Biometrika , vol.28 , pp. 312-377
    • Hotelling, H.1
  • 46
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses
    • Wold S., Ruhe A., Wold H., and Dunn W.J. The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses. SIAM Journal of Scientific and Statistical Computations 5 (1984) 735-743
    • (1984) SIAM Journal of Scientific and Statistical Computations , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, W.J.4
  • 49
    • 75749111733 scopus 로고    scopus 로고
    • A. Asuncion, D. Newman, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, 2007 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • A. Asuncion, D. Newman, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, 2007 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
  • 51
    • 0001576029 scopus 로고    scopus 로고
    • Characterizing virtual eigensignatures for general purpose face recognition. in face recognition: from theory to applications, NATO ASI Series F
    • Graham D.B., and Allinson N.M. Characterizing virtual eigensignatures for general purpose face recognition. in face recognition: from theory to applications, NATO ASI Series F. Computer and Systems Sciences 163 (1998) 446-456
    • (1998) Computer and Systems Sciences , vol.163 , pp. 446-456
    • Graham, D.B.1    Allinson, N.M.2
  • 52
    • 0003840341 scopus 로고    scopus 로고
    • Columbia object image library (COIL-20)
    • Technical Report CUCS-005-96, Columbia University
    • S.A. Nene, S.K. Nayar, H. Murase, Columbia object image library (COIL-20), Technical Report CUCS-005-96, Columbia University, 1996.
    • (1996)
    • Nene, S.A.1    Nayar, S.K.2    Murase, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.