메뉴 건너뛰기




Volumn , Issue , 2004, Pages 109-117

Regularized multi-task learning

Author keywords

Kernel Methods; Multi Task Learning; Regularization; Support Vector Machines

Indexed keywords

INFORMATION THEORY; LEARNING ALGORITHMS; MATHEMATICAL MODELS; MULTITASKING; OPTIMIZATION; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING; VECTORS;

EID: 12244250351     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014067     Document Type: Conference Paper
Times cited : (1469)

References (26)
  • 1
    • 0347192053 scopus 로고    scopus 로고
    • Marketing models of consumer heterogeneity
    • G.M. Allenby and P.E. Rossi. Marketing Models of Consumer Heterogeneity. Journal of Econometrics, 89, p. 57-78, 1999.
    • (1999) Journal of Econometrics , vol.89 , pp. 57-78
    • Allenby, G.M.1    Rossi, P.E.2
  • 2
    • 0032220720 scopus 로고    scopus 로고
    • A hierarchical bayes model of primary and secondary demand
    • N. Arora G.M Allenby, and J. Ginter. A Hierarchical Bayes Model of Primary and Secondary Demand. Marketing Science, 17,1, p. 29-44, 1998
    • (1998) Marketing Science , vol.17 , Issue.1 , pp. 29-44
    • Arora, N.1    Allenby, G.M.2    Ginter, J.3
  • 3
    • 0035538552 scopus 로고    scopus 로고
    • Improving parameter estimates and model prediction by aggregate customization in choice experiments
    • September
    • N. Arora and J. Huber. Improving parameter estimates and model prediction by aggregate customization in choice experiments. Journal of Consumer Research, Vol. 28, September 2001.
    • (2001) Journal of Consumer Research , vol.28
    • Arora, N.1    Huber, J.2
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multi-task learning
    • B. Bakker and T. Heskes. Task clustering and gating for Bayesian multi-task learning. Journal of Machine Learning Research, 4: 83-99, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 5
    • 0031187873 scopus 로고    scopus 로고
    • A bayesian/information theoretic model of learning to learn via multiple task sampling
    • J. Baxter. A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling. Machine Learning, 28, pp. 7-39, 1997.
    • (1997) Machine Learning , vol.28 , pp. 7-39
    • Baxter, J.1
  • 10
    • 0002799895 scopus 로고
    • Adaptive multivariate ridge regression
    • P.J. Brown and J.V. Zidek. Adaptive Multivariate Ridge Regression. The Annals of Statistics, Vol. 8, No. 1, p. 64-74, 1980.
    • (1980) The Annals of Statistics , vol.8 , Issue.1 , pp. 64-74
    • Brown, P.J.1    Zidek, J.V.2
  • 11
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • R. Caruana. Multi-Task Learning. Machine Learning, 28, p. 41-75, 1997.
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 15
    • 0005274268 scopus 로고    scopus 로고
    • Empirical Bayes for learning to learn
    • ed. Langley, P.
    • T. Heskes. Empirical Bayes for learning to learn. Proceedings of ICML-2000, ed. Langley, P., pp. 367-374, 2000.
    • (2000) Proceedings of ICML-2000 , pp. 367-374
    • Heskes, T.1
  • 16
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M.I. Jordan and R.A. Jacobs. Hierarchical Mixtures of Experts and the EM Algorithm. Neural Computation, 1993.
    • (1993) Neural Computation
    • Jordan, M.I.1    Jacobs, R.A.2
  • 17
    • 0036592275 scopus 로고    scopus 로고
    • Modeling consumer demand for variety
    • Summer
    • J. Kim, G.M. Allenby, and P.E. Rossi. Modeling Consumer Demand for Variety. Marketing Science, Vol. 21, No. 3, pp. 229-250, Summer 2002.
    • (2002) Marketing Science , vol.21 , Issue.3 , pp. 229-250
    • Kim, J.1    Allenby, G.M.2    Rossi, P.E.3
  • 18
    • 12244259530 scopus 로고    scopus 로고
    • A framework for genomic data fusion and its application to membrane protein prediction
    • Division of Computer Science, University of California, Berkeley
    • G.R.G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan, and W.S. Noble. A framework for genomic data fusion and its application to membrane protein prediction. Technical Report CSD-03-1273, Division of Computer Science, University of California, Berkeley, 2003.
    • (2003) Technical Report , vol.CSD-03-1273
    • Lanckriet, G.R.G.1    De Bie, T.2    Cristianini, N.3    Jordan, M.I.4    Noble, W.S.5
  • 20
    • 14544276091 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Dept of Computer Science, UCL, July
    • C.A. Micchelli and M. Pontil. On Learning Vector-Valued Functions. Research Note RN/03/08, Dept of Computer Science, UCL, July 2003.
    • (2003) Research Note , vol.RN-03-08
    • Micchelli, C.A.1    Pontil, M.2
  • 21
    • 0030491431 scopus 로고    scopus 로고
    • The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness
    • D.L. Silver and R.E Mercer. The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness. Connection Science, 8, p. 277-294, 1996.
    • (1996) Connection Science , vol.8 , pp. 277-294
    • Silver, D.L.1    Mercer, R.E.2
  • 22
  • 24
    • 4243715460 scopus 로고    scopus 로고
    • Fast polyhedral adaptive conjoint estimation
    • MIT Sloan School of Management
    • O. Toubia, D.I. Simester, J.R. Hauser, and E. Dahan. Fast Polyhedral Adaptive Conjoint Estimation. Working paper, MIT Sloan School of Management, 2001.
    • (2001) Working Paper
    • Toubia, O.1    Simester, D.I.2    Hauser, J.R.3    Dahan, E.4
  • 26
    • 0003466536 scopus 로고
    • Series in Applied Mathematics, SIAM, Philadelphia
    • G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
    • (1990) Splines Models for Observational Data , vol.59
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.