메뉴 건너뛰기




Volumn 86, Issue 3, 2012, Pages 391-423

Robustness and generalization

Author keywords

Generalization; Non IID sample; Quantile loss; Robust

Indexed keywords

FUNDAMENTAL PROPERTIES; GENERALIZATION; GENERALIZATION BOUND; MARKOVIAN; NON-IID SAMPLE; ROBUST; TESTING ERRORS; TESTING SAMPLES; TRAINING ERRORS; TRAINING SAMPLE;

EID: 84867738590     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5268-1     Document Type: Article
Times cited : (410)

References (56)
  • 1
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • Alon, N., Ben-David, S., Cesa-Bianchi, N., & Haussler, D. (1997). Scale-sensitive dimension, uniform convergence, and learnability. Journal of the ACM, 44(4), 615-631. (Pubitemid 127617707)
    • (1997) Journal of the ACM , vol.44 , Issue.4 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • PII S0018944898009316
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the weight is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525-536. (Pubitemid 128737620)
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 3
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 4
    • 26444592981 scopus 로고    scopus 로고
    • Local rademacher complexities
    • DOI 10.1214/009053605000000282
    • Bartlett, P. L., Bousquet, O., & Mendelson, S. (2005). Local Rademacher complexities. The Annals of Statistics, 33(4), 1497-1537. (Pubitemid 41423979)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1497-1537
    • Bartlett, P.L.1    Bousquet, O.2    Mendelson, S.3
  • 7
    • 0032664938 scopus 로고    scopus 로고
    • Robust solutions of uncertain linear programs
    • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1-13.
    • (1999) Operations Research Letters , vol.25 , Issue.1 , pp. 1-13
    • Ben-Tal, A.1    Nemirovski, A.2
  • 8
    • 3042762207 scopus 로고    scopus 로고
    • The price of robustness
    • DOI 10.1287/opre.1030.0065
    • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53. (Pubitemid 40000812)
    • (2004) Operations Research , vol.52 , Issue.1 , pp. 35-53
    • Bertsimas, D.1    Sim, M.2
  • 9
    • 84898989574 scopus 로고    scopus 로고
    • A second order cone programming formulation for classifying missing data
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge: MIT Press
    • Bhattacharyya, C., Pannagadatta, K. S., & Smola, A. J. (2004). A second order cone programming formulation for classifying missing data. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (NIPS17). Cambridge: MIT Press.
    • (2004) Advances in Neural Information Processing Systems (NIPS17)
    • Bhattacharyya, C.1    Pannagadatta, K.S.2    Smola, A.J.3
  • 10
    • 0038368335 scopus 로고    scopus 로고
    • Stability and generalization
    • DOI 10.1162/153244302760200704
    • Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning Research, 2, 499-526. (Pubitemid 135712570)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 499-526
    • Bousquet, O.1    Elisseeff, A.2
  • 12
    • 33845251804 scopus 로고    scopus 로고
    • A gentle introduction to quantile regression for ecologists
    • Cade, B., & Noon, B. (2003). A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment, 1, 412-420.
    • (2003) Frontiers in Ecology and the Environment , vol.1 , pp. 412-420
    • Cade, B.1    Noon, B.2
  • 13
    • 80053046275 scopus 로고    scopus 로고
    • Robust optimization and machine learning
    • S. Sra, S. Nowozin, & S. Wright (Eds.). Cambridge: MIT Press
    • Caramanis, C., Mannor, S., & Xu, H. (2011). Robust optimization and machine learning. In S. Sra, S. Nowozin, & S. Wright (Eds.), Optimization for machine learning. Cambridge: MIT Press.
    • (2011) Optimization for Machine Learning
    • Caramanis, C.1    Mannor, S.2    Xu, H.3
  • 16
    • 0018444763 scopus 로고
    • Distribution-free inequalities for the deleted and holdout error estimates
    • Devroye, L., & Wagner, T. (1979a). Distribution-free inequalities for the deleted and holdout error estimates. IEEE Transactions of Information Theory, 25(2), 202-207. (Pubitemid 9443301)
    • (1979) IEEE Trans Inf Theory , vol.IT-25 , Issue.2 , pp. 202-207
    • Devroye, L.P.1    Wagner, T.J.2
  • 17
    • 0018520640 scopus 로고
    • Distribution-free performance bounds for potential function rules
    • Devroye, L., & Wagner, T. (1979b). Distribution-free performance bounds for potential function rules. IEEE Transactions of Information Theory, 25(2), 601-604. (Pubitemid 10426456)
    • (1979) IEEE Transactions on Information Theory , vol.IT-25 , Issue.5 , pp. 601-604
    • Devroye, L.P.1    Wagner, T.J.2
  • 20
    • 0002439508 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.). Cambridge: MIT Press
    • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 171-203). Cambridge: MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 171-203
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 21
    • 0037265542 scopus 로고    scopus 로고
    • Extension of the PAC framework to finite and countable Markov chains
    • Gamarnik, D. (2003). Extension of the PAC framework to finite and countable Markov chains. IEEE Transaction on Information Theory, 49(1), 338-345.
    • (2003) IEEE Transaction on Information Theory , vol.49 , Issue.1 , pp. 338-345
    • Gamarnik, D.1
  • 23
    • 0037079674 scopus 로고    scopus 로고
    • Hoeffding's inequality for uniformly ergodic Markov chains
    • Glynn, P. W., & Ormoneit, D. (2002). Hoeffding's inequality for uniformly ergodic Markov chains. Statistics and Probability Letters, 56, 143-146.
    • (2002) Statistics and Probability Letters , vol.56 , pp. 143-146
    • Glynn, P.W.1    Ormoneit, D.2
  • 25
    • 84855609314 scopus 로고    scopus 로고
    • On the complexity of linear predictions: Risk bounds, margin bounds, and regularization
    • Kakade, S., Sridharan, K., & Tewari, A. (2009). On the complexity of linear predictions: risk bounds, margin bounds, and regularization. In Advances in neural information processing systems (Vol. 21, pp. 793-800).
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 793-800
    • Kakade, S.1    Sridharan, K.2    Tewari, A.3
  • 26
    • 0028460231 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • DOI 10.1016/S0022-0000(05)80062-5
    • Kearns, M., & Schapire, R. (1994). Efficient distribution-free learning of probabilistic concepts. Journal of Computer and System Sciences, 48(3), 464-497. (Pubitemid 124013300)
    • (1994) Journal of Computer and System Sciences , vol.48 , Issue.3 , pp. 464-497
    • Kearns, M.J.1    Schapire, R.E.2
  • 28
    • 0000273843 scopus 로고
    • Regression quantiles
    • Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
    • (1978) Econometrica , vol.46 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 30
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • Koltchinskii, V. (2002). Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory, 47(5), 1902-1914.
    • (2002) IEEE Transactions on Information Theory , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 31
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Koltchinskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics, 30(1), 1-50. (Pubitemid 37095367)
    • (2002) Annals of Statistics , vol.30 , Issue.1 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 33
  • 35
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • McDiarmid, C. (1989). On the method of bounded differences. In Surveys in combinatorics (pp. 148-188).
    • (1989) Surveys in Combinatorics , pp. 148-188
    • McDiarmid, C.1
  • 37
    • 33745655665 scopus 로고    scopus 로고
    • Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    • DOI 10.1007/s10444-004-7634-z
    • Mukherjee, S., Niyogi, P., Poggio, T., & Rifkin, R. (2006). Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Advances in Computational Mathematics, 25(1-3), 161-193. (Pubitemid 43974373)
    • (2006) Advances in Computational Mathematics , vol.25 , Issue.1-3 , pp. 161-193
    • Mukherjee, S.1    Niyogi, P.2    Poggio, T.3    Rifkin, R.4
  • 38
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • DOI 10.1038/nature02341
    • Poggio, T., Rifkin, R., Mukherjee, S., & Niyogi, P. (2004). General conditions for predictivity in learning theory. Nature, 428(6981), 419-422. (Pubitemid 38419686)
    • (2004) Nature , vol.428 , Issue.6981 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 42
    • 33745800909 scopus 로고    scopus 로고
    • Second order cone programming approaches for handling missing and uncertain data
    • Shivaswamy, P. K., Bhattacharyya, C., & Smola, A. J. (2006). Second order cone programming approaches for handling missing and uncertain data. Journal of Machine Learning Research, 7, 1283-1314. (Pubitemid 44024599)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1283-1314
    • Shivaswamy, P.K.1    Bhattacharyya, C.2    Smola, A.J.3
  • 43
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel classifiers
    • Steinwart, I. (2006). Consistency of support vector machines and other regularized kernel classifiers. IEEE Transactions on Information Theory, 51(1), 128-142.
    • (2006) IEEE Transactions on Information Theory , vol.51 , Issue.1 , pp. 128-142
    • Steinwart, I.1
  • 48
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • Vapnik, V. N., & Chervonenkis, A. (1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3), 260-284.
    • (1991) Pattern Recognition and Image Analysis , vol.1 , Issue.3 , pp. 260-284
    • Vapnik, V.N.1    Chervonenkis, A.2
  • 56
    • 67349220691 scopus 로고    scopus 로고
    • The generalization performance of ERM algorithm with strongly mixing observations
    • Zou, B., Li, L. Q., & Xu, Z. B. (2009). The generalization performance of ERM algorithm with strongly mixing observations. Machine Learning, 75, 275-295.
    • (2009) Machine Learning , vol.75 , pp. 275-295
    • Zou, B.1    Li, L.Q.2    Xu, Z.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.