-
1
-
-
0031176507
-
Scale-sensitive dimensions, uniform convergence, and learnability
-
Alon, N., Ben-David, S., Cesa-Bianchi, N., & Haussler, D. (1997). Scale-sensitive dimension, uniform convergence, and learnability. Journal of the ACM, 44(4), 615-631. (Pubitemid 127617707)
-
(1997)
Journal of the ACM
, vol.44
, Issue.4
, pp. 615-631
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, N.3
Haussler, D.4
-
2
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
PII S0018944898009316
-
Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the weight is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525-536. (Pubitemid 128737620)
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
3
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
4
-
-
26444592981
-
Local rademacher complexities
-
DOI 10.1214/009053605000000282
-
Bartlett, P. L., Bousquet, O., & Mendelson, S. (2005). Local Rademacher complexities. The Annals of Statistics, 33(4), 1497-1537. (Pubitemid 41423979)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
5
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2007). Analysis of representations for domain adaptation. In Advances in neural information processing systems (Vol. 19).
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
6
-
-
0032207223
-
Robust convex optimization
-
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23, 769-805. (Pubitemid 128508557)
-
(1998)
Mathematics of Operations Research
, vol.23
, Issue.4
, pp. 769-805
-
-
Ben-Tal, A.1
Nemirovski, A.2
-
7
-
-
0032664938
-
Robust solutions of uncertain linear programs
-
Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1-13.
-
(1999)
Operations Research Letters
, vol.25
, Issue.1
, pp. 1-13
-
-
Ben-Tal, A.1
Nemirovski, A.2
-
8
-
-
3042762207
-
The price of robustness
-
DOI 10.1287/opre.1030.0065
-
Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53. (Pubitemid 40000812)
-
(2004)
Operations Research
, vol.52
, Issue.1
, pp. 35-53
-
-
Bertsimas, D.1
Sim, M.2
-
9
-
-
84898989574
-
A second order cone programming formulation for classifying missing data
-
L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge: MIT Press
-
Bhattacharyya, C., Pannagadatta, K. S., & Smola, A. J. (2004). A second order cone programming formulation for classifying missing data. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (NIPS17). Cambridge: MIT Press.
-
(2004)
Advances in Neural Information Processing Systems (NIPS17)
-
-
Bhattacharyya, C.1
Pannagadatta, K.S.2
Smola, A.J.3
-
10
-
-
0038368335
-
Stability and generalization
-
DOI 10.1162/153244302760200704
-
Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning Research, 2, 499-526. (Pubitemid 135712570)
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.3
, pp. 499-526
-
-
Bousquet, O.1
Elisseeff, A.2
-
11
-
-
84924053271
-
Theory of classification: A survey of recent advances
-
Bousquet, O., Boucheron, S., & Lugosi, G. (2005). Theory of classification: a survey of recent advances. ESAIM Probability and Statistics, 9, 323-375.
-
(2005)
ESAIM Probability and Statistics
, vol.9
, pp. 323-375
-
-
Bousquet, O.1
Boucheron, S.2
Lugosi, G.3
-
12
-
-
33845251804
-
A gentle introduction to quantile regression for ecologists
-
Cade, B., & Noon, B. (2003). A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment, 1, 412-420.
-
(2003)
Frontiers in Ecology and the Environment
, vol.1
, pp. 412-420
-
-
Cade, B.1
Noon, B.2
-
13
-
-
80053046275
-
Robust optimization and machine learning
-
S. Sra, S. Nowozin, & S. Wright (Eds.). Cambridge: MIT Press
-
Caramanis, C., Mannor, S., & Xu, H. (2011). Robust optimization and machine learning. In S. Sra, S. Nowozin, & S. Wright (Eds.), Optimization for machine learning. Cambridge: MIT Press.
-
(2011)
Optimization for Machine Learning
-
-
Caramanis, C.1
Mannor, S.2
Xu, H.3
-
16
-
-
0018444763
-
Distribution-free inequalities for the deleted and holdout error estimates
-
Devroye, L., & Wagner, T. (1979a). Distribution-free inequalities for the deleted and holdout error estimates. IEEE Transactions of Information Theory, 25(2), 202-207. (Pubitemid 9443301)
-
(1979)
IEEE Trans Inf Theory
, vol.IT-25
, Issue.2
, pp. 202-207
-
-
Devroye, L.P.1
Wagner, T.J.2
-
17
-
-
0018520640
-
Distribution-free performance bounds for potential function rules
-
Devroye, L., & Wagner, T. (1979b). Distribution-free performance bounds for potential function rules. IEEE Transactions of Information Theory, 25(2), 601-604. (Pubitemid 10426456)
-
(1979)
IEEE Transactions on Information Theory
, vol.IT-25
, Issue.5
, pp. 601-604
-
-
Devroye, L.P.1
Wagner, T.J.2
-
20
-
-
0002439508
-
Regularization networks and support vector machines
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.). Cambridge: MIT Press
-
Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 171-203). Cambridge: MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 171-203
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
21
-
-
0037265542
-
Extension of the PAC framework to finite and countable Markov chains
-
Gamarnik, D. (2003). Extension of the PAC framework to finite and countable Markov chains. IEEE Transaction on Information Theory, 49(1), 338-345.
-
(2003)
IEEE Transaction on Information Theory
, vol.49
, Issue.1
, pp. 338-345
-
-
Gamarnik, D.1
-
23
-
-
0037079674
-
Hoeffding's inequality for uniformly ergodic Markov chains
-
Glynn, P. W., & Ormoneit, D. (2002). Hoeffding's inequality for uniformly ergodic Markov chains. Statistics and Probability Letters, 56, 143-146.
-
(2002)
Statistics and Probability Letters
, vol.56
, pp. 143-146
-
-
Glynn, P.W.1
Ormoneit, D.2
-
25
-
-
84855609314
-
On the complexity of linear predictions: Risk bounds, margin bounds, and regularization
-
Kakade, S., Sridharan, K., & Tewari, A. (2009). On the complexity of linear predictions: risk bounds, margin bounds, and regularization. In Advances in neural information processing systems (Vol. 21, pp. 793-800).
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 793-800
-
-
Kakade, S.1
Sridharan, K.2
Tewari, A.3
-
26
-
-
0028460231
-
Efficient distribution-free learning of probabilistic concepts
-
DOI 10.1016/S0022-0000(05)80062-5
-
Kearns, M., & Schapire, R. (1994). Efficient distribution-free learning of probabilistic concepts. Journal of Computer and System Sciences, 48(3), 464-497. (Pubitemid 124013300)
-
(1994)
Journal of Computer and System Sciences
, vol.48
, Issue.3
, pp. 464-497
-
-
Kearns, M.J.1
Schapire, R.E.2
-
27
-
-
75249095624
-
Learning halfspaces with malicious noise
-
Klivans, A., Long, P., & Servedio, R. (2009). Learning halfspaces with malicious noise. Journal of Machine Learning Research, 10, 2715-2740.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2715-2740
-
-
Klivans, A.1
Long, P.2
Servedio, R.3
-
28
-
-
0000273843
-
Regression quantiles
-
Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
-
(1978)
Econometrica
, vol.46
, pp. 33-50
-
-
Koenker, R.1
Bassett, G.2
-
30
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
Koltchinskii, V. (2002). Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory, 47(5), 1902-1914.
-
(2002)
IEEE Transactions on Information Theory
, vol.47
, Issue.5
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
31
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
Koltchinskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics, 30(1), 1-50. (Pubitemid 37095367)
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, D.2
-
32
-
-
0042967740
-
A robust minimax approach to classification
-
Lanckriet, G. R., El Ghaoui, L., Bhattacharyya, C., & Jordan, M. I. (2003). A robust minimax approach to classification. Journal of Machine Learning Research, 3, 555-582.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 555-582
-
-
Lanckriet, G.R.1
El Ghaoui, L.2
Bhattacharyya, C.3
Jordan, M.I.4
-
35
-
-
0001035413
-
On the method of bounded differences
-
McDiarmid, C. (1989). On the method of bounded differences. In Surveys in combinatorics (pp. 148-188).
-
(1989)
Surveys in Combinatorics
, pp. 148-188
-
-
McDiarmid, C.1
-
37
-
-
33745655665
-
Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
-
DOI 10.1007/s10444-004-7634-z
-
Mukherjee, S., Niyogi, P., Poggio, T., & Rifkin, R. (2006). Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Advances in Computational Mathematics, 25(1-3), 161-193. (Pubitemid 43974373)
-
(2006)
Advances in Computational Mathematics
, vol.25
, Issue.1-3
, pp. 161-193
-
-
Mukherjee, S.1
Niyogi, P.2
Poggio, T.3
Rifkin, R.4
-
38
-
-
1842420581
-
General conditions for predictivity in learning theory
-
DOI 10.1038/nature02341
-
Poggio, T., Rifkin, R., Mukherjee, S., & Niyogi, P. (2004). General conditions for predictivity in learning theory. Nature, 428(6981), 419-422. (Pubitemid 38419686)
-
(2004)
Nature
, vol.428
, Issue.6981
, pp. 419-422
-
-
Poggio, T.1
Rifkin, R.2
Mukherjee, S.3
Niyogi, P.4
-
41
-
-
84898079331
-
Learnability and stability in the general learning setting
-
Shalev-Shwartz, S., Shamir, O., Srebro, N., & Sridharan, K. (2009). Learnability and stability in the general learning setting. In Proceedings of 22nd annual conference of learning theory.
-
(2009)
Proceedings of 22nd Annual Conference of Learning Theory
-
-
Shalev-Shwartz, S.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
42
-
-
33745800909
-
Second order cone programming approaches for handling missing and uncertain data
-
Shivaswamy, P. K., Bhattacharyya, C., & Smola, A. J. (2006). Second order cone programming approaches for handling missing and uncertain data. Journal of Machine Learning Research, 7, 1283-1314. (Pubitemid 44024599)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1283-1314
-
-
Shivaswamy, P.K.1
Bhattacharyya, C.2
Smola, A.J.3
-
43
-
-
12444265838
-
Consistency of support vector machines and other regularized kernel classifiers
-
Steinwart, I. (2006). Consistency of support vector machines and other regularized kernel classifiers. IEEE Transactions on Information Theory, 51(1), 128-142.
-
(2006)
IEEE Transactions on Information Theory
, vol.51
, Issue.1
, pp. 128-142
-
-
Steinwart, I.1
-
48
-
-
0000864140
-
The necessary and sufficient conditions for consistency in the empirical risk minimization method
-
Vapnik, V. N., & Chervonenkis, A. (1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3), 260-284.
-
(1991)
Pattern Recognition and Image Analysis
, vol.1
, Issue.3
, pp. 260-284
-
-
Vapnik, V.N.1
Chervonenkis, A.2
-
50
-
-
68949157380
-
Robustness and regularization of support vector machines
-
Xu, H., Caramanis, C., & Mannor, S. (2009a). Robustness and regularization of support vector machines. Journal of Machine Learning Research, 10, 1485-1510.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1485-1510
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
51
-
-
77950794341
-
Risk sensitive robust support vector machines
-
Xu, H., Caramanis, C., Mannor, S., & Yun, S. (2009b). Risk sensitive robust support vector machines. In Proceedings of the forty-eighth IEEE conference on decision and control (pp. 4655-4661).
-
(2009)
Proceedings of the Forty-eighth IEEE Conference on Decision and Control
, pp. 4655-4661
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
Yun, S.4
-
53
-
-
77953729917
-
Robust regression and lasso
-
Xu, H., Caramanis, C.,&Mannor, S. (2010b). Robust regression and lasso. IEEE Transactions on Information Theory, 56(7), 3561-3574.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.7
, pp. 3561-3574
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
54
-
-
85162022489
-
Relaxed clipping: A global training method for robust regression and classification
-
Yu, Y., Yang, M., Xu, L., White, M., & Schuurmans, D. (2011). Relaxed clipping: a global training method for robust regression and classification. In Advances in neural information processing systems (Vol. 23).
-
(2011)
Advances in Neural Information Processing Systems
, vol.23
-
-
Yu, Y.1
Yang, M.2
Xu, L.3
White, M.4
Schuurmans, D.5
-
56
-
-
67349220691
-
The generalization performance of ERM algorithm with strongly mixing observations
-
Zou, B., Li, L. Q., & Xu, Z. B. (2009). The generalization performance of ERM algorithm with strongly mixing observations. Machine Learning, 75, 275-295.
-
(2009)
Machine Learning
, vol.75
, pp. 275-295
-
-
Zou, B.1
Li, L.Q.2
Xu, Z.B.3
|