메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1139-1147

Semi-supervised sparse metric learning using alternating linearization optimization

Author keywords

Alternating linearization; Metric learning; Semi supervised sparse metric learning; Sparse inverse covariance estimation

Indexed keywords

ALTERNATING LINEARIZATION; CONVENTIONAL METHODS; DATA MINING APPLICATIONS; DATA RELATIONSHIPS; DATA SETS; DISTANCE MEASURE; DISTANCE METRICS; EUCLIDEAN SPACES; EXISTING METHOD; INPUT DATAS; INVERSE COVARIANCE; LABELED DATA; LINEARIZATION METHODS; MACHINE-LEARNING; METRIC LEARNING; PERFORMANCE GAIN; PROXIMITY MEASURE; SEMI-SUPERVISED; UNLABELED DATA;

EID: 77956207894     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835947     Document Type: Conference Paper
Times cited : (60)

References (31)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. E. Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research, 9:485-516, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    D'Aspremont, A.3
  • 2
    • 21844457672 scopus 로고    scopus 로고
    • Learning a mahalanobis metric from equivalence constraints
    • A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis metric from equivalence constraints. JMLR, 6:937-965, 2005.
    • (2005) JMLR , vol.6 , pp. 937-965
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3    Weinshall, D.4
  • 3
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for semi-supervised clustering. In Proc. KDD, 2004.
    • (2004) Proc. KDD
    • Basu, S.1    Bilenko, M.2    Mooney, R.3
  • 4
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • M. Bilenko, S. Basu, and R. Mooney. Integrating constraints and metric learning in semi-supervised clustering. In Proc. ICML, 2004.
    • (2004) Proc. ICML
    • Bilenko, M.1    Basu, S.2    Mooney, R.3
  • 6
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A real-world web image database from national university of singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: A real-world web image database from national university of singapore. In Proc. CIVR, 2009.
    • (2009) Proc. CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 7
    • 65449163521 scopus 로고    scopus 로고
    • Structured metric learning for high dimensional problems
    • J. V. Davis and I. S. Dhillon. Structured metric learning for high dimensional problems. In Proc. KDD, 2008.
    • (2008) Proc. KDD
    • Davis, J.V.1    Dhillon, I.S.2
  • 9
    • 41549108614 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 8(1):1-10, 2007.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 1-10
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes
    • A. Globerson and S. Roweis. Metric learning by collapsing classes. In NIPS 18, 2006.
    • (2006) NIPS 18
    • Globerson, A.1    Roweis, S.2
  • 12
    • 80052408863 scopus 로고    scopus 로고
    • Fast alternating linearization methods for minimizing the sum of two convex functions
    • Preprint available at
    • D. Goldfarb and S. Ma. Fast alternating linearization methods for minimizing the sum of two convex functions. Technical report, Department of IEOR, Columbia University, 2009. Preprint available at http://arxiv.org/abs/ 0912.4571.
    • (2009) Technical Report, Department of IEOR, Columbia University
    • Goldfarb, D.1    Ma, S.2
  • 14
    • 51949106897 scopus 로고    scopus 로고
    • Semi-supervised distance metric learning for collaborative image retrieval
    • S. C. Hoi, W. Liu, and S.-F. Chang. Semi-supervised distance metric learning for collaborative image retrieval. In Proc. CVPR, 2008.
    • (2008) Proc. CVPR
    • Hoi, S.C.1    Liu, W.2    Chang, S.-F.3
  • 15
    • 58149202361 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: A kernel approach. Machine Learning, 74(1):1-22, 2009.
    • (2009) Machine Learning , vol.74 , Issue.1 , pp. 1-22
    • Kulis, B.1    Basu, S.2    Dhillon, I.3    Mooney, R.4
  • 16
    • 78149492457 scopus 로고    scopus 로고
    • Spectral kernel learning for semi-supervised classification
    • W. Liu, B. Qian, J. Cui, and J. Liu. Spectral kernel learning for semi-supervised classification. In Proc. IJCAI, 2009.
    • (2009) Proc. IJCAI
    • Liu, W.1    Qian, B.2    Cui, J.3    Liu, J.4
  • 18
    • 84940744690 scopus 로고    scopus 로고
    • Constrained metric learning via distance gap maximization
    • W. Liu, X. Tian, D. Tao, and J. Liu. Constrained metric learning via distance gap maximization. In Proc. AAAI, 2010.
    • (2010) Proc. AAAI
    • Liu, W.1    Tian, X.2    Tao, D.3    Liu, J.4
  • 19
    • 70450200096 scopus 로고    scopus 로고
    • Smooth optimization approach for sparse covariance selection
    • Z. Lu. Smooth optimization approach for sparse covariance selection. SIAM J. Optim., 19(4):1807-1827, 2009.
    • (2009) SIAM J. Optim. , vol.19 , Issue.4 , pp. 1807-1827
    • Lu, Z.1
  • 20
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization for non-smooth functions
    • Y. E. Nesterov. Smooth minimization for non-smooth functions. Math. Program. Ser. A, 103:127-152, 2005.
    • (2005) Math. Program. Ser. A , vol.103 , pp. 127-152
    • Nesterov, Y.E.1
  • 22
    • 33749562338 scopus 로고    scopus 로고
    • Learning sparse metrics via linear programming
    • R. Rosales and G. Fung. Learning sparse metrics via linear programming. In Proc. KDD, 2006.
    • (2006) Proc. KDD
    • Rosales, R.1    Fung, G.2
  • 24
  • 25
    • 67649934913 scopus 로고    scopus 로고
    • Enhancing semi-supervised clustering: A feature projection perspective
    • W. Tang, H. Xiong, S. Zhong, and J. Wu. Enhancing semi-supervised clustering: A feature projection perspective. In Proc. KDD, 2007.
    • (2007) Proc. KDD
    • Tang, W.1    Xiong, H.2    Zhong, S.3    Wu, J.4
  • 27
    • 77951199511 scopus 로고    scopus 로고
    • Msra-mm: Bridging research and industrial societies for multimedia information retrieval
    • No. MSR-TR-2009-30
    • M. Wang, L. Yang, and X.-S. Hua. Msra-mm: Bridging research and industrial societies for multimedia information retrieval. Technical report, Miscosoft Research Asia, 2009. No. MSR-TR-2009-30.
    • (2009) Technical Report, Miscosoft Research Asia
    • Wang, M.1    Yang, L.2    Hua, X.-S.3
  • 28
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10:207-244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 29
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS 15, 2003.
    • (2003) NIPS 15
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 30
    • 84860633283 scopus 로고    scopus 로고
    • Sparse metric learning via smooth optimization
    • Y. Ying, K. Huang, and C. Campbell. Sparse metric learning via smooth optimization. In NIPS 22, 2010.
    • (2010) NIPS , vol.22
    • Ying, Y.1    Huang, K.2    Campbell, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.