-
1
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147(4):728-741. http://www.ncbi.nlm.nih.gov/pubmed/22078875. 10.1016/j.cell.2011.10.026.
-
(2011)
Cell
, vol.147
, Issue.4
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
2
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar B., Sarkar S., Davies J.E., Futter M., Garcia-Arencibia M., Green-Thompson Z.W., Jimenez-Sanchez M., Korolchuk V.I., Lichtenberg M., Luo S., Massey D.C., Menzies F.M., Moreau K., Narayanan U., Renna M., Siddiqi F.H., Underwood B.R., Winslow A.R., Rubinsztein D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews 2010, 90(4):1383-1435. http://www.ncbi.nlm.nih.gov/pubmed/20959619. 10.1152/physrev.00030.2009.
-
(2010)
Physiological Reviews
, vol.90
, Issue.4
, pp. 1383-1435
-
-
Ravikumar, B.1
Sarkar, S.2
Davies, J.E.3
Futter, M.4
Garcia-Arencibia, M.5
Green-Thompson, Z.W.6
Jimenez-Sanchez, M.7
Korolchuk, V.I.8
Lichtenberg, M.9
Luo, S.10
Massey, D.C.11
Menzies, F.M.12
Moreau, K.13
Narayanan, U.14
Renna, M.15
Siddiqi, F.H.16
Underwood, B.R.17
Winslow, A.R.18
Rubinsztein, D.C.19
-
3
-
-
84901833411
-
Autophagy and human disease: emerging themes
-
Schneider J.L., Cuervo A.M. Autophagy and human disease: emerging themes. Current Opinion in Genetics and Development 2014, 26C:16-23. http://www.ncbi.nlm.nih.gov/pubmed/24907664. 10.1016/j.gde.2014.04.003.
-
(2014)
Current Opinion in Genetics and Development
, vol.26 C
, pp. 16-23
-
-
Schneider, J.L.1
Cuervo, A.M.2
-
4
-
-
84879475204
-
Autophagy and mitophagy in cellular damage control
-
Zhang J. Autophagy and mitophagy in cellular damage control. Redox Biology 2013, 1(1):19-23. http://www.ncbi.nlm.nih.gov/pubmed/23946931. 10.1016/j.redox.2012.11.008.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 19-23
-
-
Zhang, J.1
-
5
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature 2011, 469(7330):323-335. http://www.ncbi.nlm.nih.gov/pubmed/21248839. 10.1038/nature09782.
-
(2011)
Nature
, vol.469
, Issue.7330
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
7
-
-
84913554278
-
Mitochondrial dynamics and mitochondrial quality control
-
Ni H.M., Williams J.A., Ding W.X. Mitochondrial dynamics and mitochondrial quality control. Redox Biology 2014, 4C:6-13. http://www.ncbi.nlm.nih.gov/pubmed/25479550. 10.1016/j.redox.2014.11.006.
-
(2014)
Redox Biology
, vol.4 C
, pp. 6-13
-
-
Ni, H.M.1
Williams, J.A.2
Ding, W.X.3
-
8
-
-
84896867224
-
The impact of autophagy on cell death modalities
-
Ryter S.W., Mizumura K., Choi A.M. The impact of autophagy on cell death modalities. International Journal of Cell Biology 2014, 2014:502676. http://www.ncbi.nlm.nih.gov/pubmed/24639873. 10.1155/2014/502676.
-
(2014)
International Journal of Cell Biology
, vol.2014
, pp. 502676
-
-
Ryter, S.W.1
Mizumura, K.2
Choi, A.M.3
-
9
-
-
79955677000
-
Autophagic cell death: Loch Ness monster or endangered species?
-
Shen H.M., Codogno P. Autophagic cell death: Loch Ness monster or endangered species?. Autophagy 2011, 7(5):457-465. http://www.ncbi.nlm.nih.gov/pubmed/21150268. 10.4161/auto.7.5.14226.
-
(2011)
Autophagy
, vol.7
, Issue.5
, pp. 457-465
-
-
Shen, H.M.1
Codogno, P.2
-
10
-
-
42049089700
-
To die or not to die: that is the autophagic question
-
Galluzzi L., Vicencio J.M., Kepp O., Tasdemir E., Maiuri M.C., Kroemer G. To die or not to die: that is the autophagic question. Current Molecular Medicine 2008, 8(2):78-91. http://www.ncbi.nlm.nih.gov/pubmed/18336289. 10.2174/156652408783769616.
-
(2008)
Current Molecular Medicine
, vol.8
, Issue.2
, pp. 78-91
-
-
Galluzzi, L.1
Vicencio, J.M.2
Kepp, O.3
Tasdemir, E.4
Maiuri, M.C.5
Kroemer, G.6
-
11
-
-
84922541234
-
Autosis and autophagic cell death: the dark side of autophagy
-
(Epub ahead of print)
-
Liu Y., Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death & Differentiation 2014, (Epub ahead of print). http://www.ncbi.nlm.nih.gov/pubmed/25257169. 10.1038/cdd.2014.143.
-
(2014)
Cell Death & Differentiation
-
-
Liu, Y.1
Levine, B.2
-
12
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132(1):27-42. http://www.ncbi.nlm.nih.gov/pubmed/18191218. 10.1016/j.cell.2007.12.018.
-
(2008)
Cell
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
13
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery 2012, 11(9):709-730. http://www.ncbi.nlm.nih.gov/pubmed/22935804. 10.1038/nrd3802.
-
(2012)
Nature Reviews Drug Discovery
, vol.11
, Issue.9
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
14
-
-
84873660610
-
Autophagy in human health and disease
-
Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. New England Journal of Medicine 2013, 368(7):651-662. http://www.ncbi.nlm.nih.gov/pubmed/23406030. 10.1056/NEJMra1205406.
-
(2013)
New England Journal of Medicine
, vol.368
, Issue.7
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
15
-
-
84892163616
-
Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease
-
Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biology 2014, 2:82-90. http://www.ncbi.nlm.nih.gov/pubmed/24494187. 10.1016/j.redox.2013.12.013.
-
(2014)
Redox Biology
, vol.2
, pp. 82-90
-
-
Giordano, S.1
Darley-Usmar, V.2
Zhang, J.3
-
16
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane. Nature Cell Biology 2010, 12(9):831-835. http://www.ncbi.nlm.nih.gov/pubmed/20811355. 10.1038/ncb0910-831.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.9
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
17
-
-
84888627184
-
Location and membrane sources for autophagosome formation -from ER-mitochondria contact sites to Golgi-endosome-derived carriers
-
Chan S.N., Tang B.L. Location and membrane sources for autophagosome formation -from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Molecular Membrane Biology 2013, 30(8):394-402. http://www.ncbi.nlm.nih.gov/pubmed/24175710. 10.3109/09687688.2013.850178.
-
(2013)
Molecular Membrane Biology
, vol.30
, Issue.8
, pp. 394-402
-
-
Chan, S.N.1
Tang, B.L.2
-
18
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., Amano A., Yoshimori T. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495(7441):389-393. http://www.ncbi.nlm.nih.gov/pubmed/23455425. 10.1038/nature11910.
-
(2013)
Nature
, vol.495
, Issue.7441
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
Amano, A.11
Yoshimori, T.12
-
19
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biology 2009, 11(12):1433-1437. http://www.ncbi.nlm.nih.gov/pubmed/19898463. 10.1038/ncb1991.
-
(2009)
Nature Cell Biology
, vol.11
, Issue.12
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
20
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Ylä-Anttila P., Vihinen H., Jokitalo E., Eskelinen E.L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5(8):1180-1185. http://www.ncbi.nlm.nih.gov/pubmed/19855179. 10.4161/auto.5.8.10274.
-
(2009)
Autophagy
, vol.5
, Issue.8
, pp. 1180-1185
-
-
Ylä-Anttila, P.1
Vihinen, H.2
Jokitalo, E.3
Eskelinen, E.L.4
-
21
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim P.K., Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141(4):656-667. http://www.ncbi.nlm.nih.gov/pubmed/20478256. 10.1016/j.cell.2010.04.009.
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
22
-
-
84897932103
-
Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of Parkin-associated mitophagy
-
Cook K.L., Soto-Pantoja D.R., Abu-Asab M., Clarke P.A., Roberts D.D., Clarke R. Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of Parkin-associated mitophagy. Cell & Bioscience 2014, 4(1):16. http://www.ncbi.nlm.nih.gov/pubmed/24669863. 10.1186/2045-3701-4-16.
-
(2014)
Cell & Bioscience
, vol.4
, Issue.1
, pp. 16
-
-
Cook, K.L.1
Soto-Pantoja, D.R.2
Abu-Asab, M.3
Clarke, P.A.4
Roberts, D.D.5
Clarke, R.6
-
23
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology 2010, 12(8):747-757. http://www.ncbi.nlm.nih.gov/pubmed/20639872. 10.1038/ncb2078.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.8
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
24
-
-
84855645313
-
Mechanisms of autophagosome biogenesis
-
Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis. Current Biology 2012, 22(1):R29-R34. http://www.ncbi.nlm.nih.gov/pubmed/22240478. 10.1016/j.cub.2011.11.034.
-
(2012)
Current Biology
, vol.22
, Issue.1
, pp. R29-R34
-
-
Rubinsztein, D.C.1
Shpilka, T.2
Elazar, Z.3
-
25
-
-
84891747382
-
The machinery of macroautophagy
-
Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy. Cell Research 2014, 24(1):24-41. http://www.ncbi.nlm.nih.gov/pubmed/24366339. 10.1038/cr.2013.168.
-
(2014)
Cell Research
, vol.24
, Issue.1
, pp. 24-41
-
-
Feng, Y.1
He, D.2
Yao, Z.3
Klionsky, D.J.4
-
26
-
-
77951214016
-
Mammalian autophagy: core molecular machinery and signaling regulation
-
Yang Z., Klionsky D.J. Mammalian autophagy: core molecular machinery and signaling regulation. Current Opinion in Cell Biology 2010, 22(2):124-131. http://www.ncbi.nlm.nih.gov/pubmed/20034776. 10.1016/j.ceb.2009.11.014.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
27
-
-
77950501014
-
MTOR regulation of autophagy
-
Jung C.H., Ro S.H., Cao J., Otto N.M., Kim D.H. mTOR regulation of autophagy. FEBS Letters 2010, 584(7):1287-1295. http://www.ncbi.nlm.nih.gov/pubmed/20083114. 10.1016/j.febslet.2010.01.017.
-
(2010)
FEBS Letters
, vol.584
, Issue.7
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.H.2
Cao, J.3
Otto, N.M.4
Kim, D.H.5
-
28
-
-
47049127002
-
Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
-
Wang L., Harris T.E., Lawrence J.C. Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. Journal of Biological Chemistry 2008, 283(23):15619-15627. http://www.ncbi.nlm.nih.gov/pubmed/18372248. 10.1074/jbc.M800723200.
-
(2008)
Journal of Biological Chemistry
, vol.283
, Issue.23
, pp. 15619-15627
-
-
Wang, L.1
Harris, T.E.2
Lawrence, J.C.3
-
29
-
-
84863499345
-
Regulation and function of uncoordinated-51 like kinase proteins
-
Chan E.Y. Regulation and function of uncoordinated-51 like kinase proteins. Antioxidants & Redox Signaling 2012, 17(5):775-785. http://www.ncbi.nlm.nih.gov/pubmed/22074133. 10.1089/ars.2011.4396.
-
(2012)
Antioxidants & Redox Signaling
, vol.17
, Issue.5
, pp. 775-785
-
-
Chan, E.Y.1
-
30
-
-
84873675067
-
The ULK1 complex: sensing nutrient signals for autophagy activation
-
Wong P.M., Puente C., Ganley I.G., Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013, 9(2):124-137. http://www.ncbi.nlm.nih.gov/pubmed/23295650. 10.4161/auto.23323.
-
(2013)
Autophagy
, vol.9
, Issue.2
, pp. 124-137
-
-
Wong, P.M.1
Puente, C.2
Ganley, I.G.3
Jiang, X.4
-
31
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley I.G., Lam, [!(%xInRef|ce:surname)!] du H., Wang J., Ding X., Chen S., Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. Journal of Biological Chemistry 2009, 284(18):12297-12305. http://www.ncbi.nlm.nih.gov/pubmed/19258318. 10.1074/jbc.M900573200.
-
(2009)
Journal of Biological Chemistry
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
32
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., Iemura S., Natsume T., Takehana K., Yamada N., Guan J.L., Oshiro N., Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Molecular Biology of the Cell 2009, 20(7):1981-1991. http://www.ncbi.nlm.nih.gov/pubmed/19211835. 10.1091/mbc.E08-12-1248.
-
(2009)
Molecular Biology of the Cell
, vol.20
, Issue.7
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
Guan, J.L.11
Oshiro, N.12
Mizushima, N.13
-
33
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., Jun C.B., Ro S.H., Kim Y.M., Otto N.M., Cao J., Kundu M., Kim D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular Biology of the Cell 2009, 20(7):1992-2003. http://www.ncbi.nlm.nih.gov/pubmed/19225151. 10.1091/mbc.E08-12-1249.
-
(2009)
Molecular Biology of the Cell
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
34
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
Lee J.W., Park S., Takahashi Y., Wang H.G. The association of AMPK with ULK1 regulates autophagy. PLOS One 2010, 5(11):e15394. http://www.ncbi.nlm.nih.gov/pubmed/21072212. 10.1371/journal.pone.0015394.
-
(2010)
PLOS One
, vol.5
, Issue.11
, pp. e15394
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
Wang, H.G.4
-
35
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 2011, 13(2):132-141. http://www.ncbi.nlm.nih.gov/pubmed/21258367. 10.1038/ncb2152.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
36
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
Mack H.I., Zheng B., Asara J.M., Thomas S.M. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012, 8(8):1197-1214. http://www.ncbi.nlm.nih.gov/pubmed/22932492. 10.4161/auto.20586.
-
(2012)
Autophagy
, vol.8
, Issue.8
, pp. 1197-1214
-
-
Mack, H.I.1
Zheng, B.2
Asara, J.M.3
Thomas, S.M.4
-
37
-
-
77951237303
-
The Beclin 1 interactome
-
He C., Levine B. The Beclin 1 interactome. Current Opinion in Cell Biology 2010, 22(2):140-149. http://www.ncbi.nlm.nih.gov/pubmed/20097051. 10.1016/j.ceb.2010.01.001.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 140-149
-
-
He, C.1
Levine, B.2
-
38
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
Itakura E., Kishi C., Inoue K., Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular Biology of the Cell 2008, 19(12):5360-5372. http://www.ncbi.nlm.nih.gov/pubmed/18843052. 10.1091/mbc.E08-01-0080.
-
(2008)
Molecular Biology of the Cell
, vol.19
, Issue.12
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
39
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell R.C., Tian Y., Yuan H., Park H.W., Chang Y.Y., Kim J., Kim H., Neufeld T.P., Dillin A., Guan K.L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology 2013, 15(7):741-750. http://www.ncbi.nlm.nih.gov/pubmed/23685627. 10.1038/ncb2757.
-
(2013)
Nature Cell Biology
, vol.15
, Issue.7
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
40
-
-
84880343182
-
ULK1 targets Beclin-1 in autophagy
-
Nazarko V.Y., Zhong Q. ULK1 targets Beclin-1 in autophagy. Nature Cell Biology 2013, 15(7):727-728. http://www.ncbi.nlm.nih.gov/pubmed/23817237. 10.1038/ncb2797.
-
(2013)
Nature Cell Biology
, vol.15
, Issue.7
, pp. 727-728
-
-
Nazarko, V.Y.1
Zhong, Q.2
-
41
-
-
84884819157
-
Autophagosome formation -the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage
-
Wirth M., Joachim J., Tooze S.A. Autophagosome formation -the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Seminars in Cancer Biology 2013, 23(5):301-309. http://www.ncbi.nlm.nih.gov/pubmed/23727157. 10.1016/j.semcancer.2013.05.007.
-
(2013)
Seminars in Cancer Biology
, vol.23
, Issue.5
, pp. 301-309
-
-
Wirth, M.1
Joachim, J.2
Tooze, S.A.3
-
42
-
-
84904575441
-
WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
-
Dooley H.C., Razi M., Polson H.E., Girardin S.E., Wilson M.I., Tooze S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Molecular Cell 2014, 55(2):238-252. http://www.ncbi.nlm.nih.gov/pubmed/24954904. 10.1016/j.molcel.2014.05.021.
-
(2014)
Molecular Cell
, vol.55
, Issue.2
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
43
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
Moreau K., Ravikumar B., Renna M., Puri C., Rubinsztein D.C. Autophagosome precursor maturation requires homotypic fusion. Cell 2011, 146(2):303-317. http://www.ncbi.nlm.nih.gov/pubmed/21784250. 10.1016/j.cell.2011.06.023.
-
(2011)
Cell
, vol.146
, Issue.2
, pp. 303-317
-
-
Moreau, K.1
Ravikumar, B.2
Renna, M.3
Puri, C.4
Rubinsztein, D.C.5
-
44
-
-
79960798816
-
SNARE proteins are required for macroautophagy
-
Nair U., Jotwani A., Geng J., Gammoh N., Richerson D., Yen W.L., Griffith J., Nag S., Wang K., Moss T., Baba M., McNew J.A., Jiang X., Reggiori F., Melia T.J., Klionsky D.J. SNARE proteins are required for macroautophagy. Cell 2011, 146(2):290-302. http://www.ncbi.nlm.nih.gov/pubmed/21784249. 10.1016/j.cell.2011.06.022.
-
(2011)
Cell
, vol.146
, Issue.2
, pp. 290-302
-
-
Nair, U.1
Jotwani, A.2
Geng, J.3
Gammoh, N.4
Richerson, D.5
Yen, W.L.6
Griffith, J.7
Nag, S.8
Wang, K.9
Moss, T.10
Baba, M.11
McNew, J.A.12
Jiang, X.13
Reggiori, F.14
Melia, T.J.15
Klionsky, D.J.16
-
45
-
-
84892154950
-
Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy
-
Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays in Biochemistry 2013, 55:39-50. http://www.ncbi.nlm.nih.gov/pubmed/24070470. 10.1042/bse0550039.
-
(2013)
Essays in Biochemistry
, vol.55
, pp. 39-50
-
-
Nakatogawa, H.1
-
46
-
-
3242888703
-
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
-
Kabeya Y., Mizushima N., Yamamoto A., Oshitani-Okamoto S., Ohsumi Y., Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. Journal of Cell Science 2004, 117(13):2805-2812. http://www.ncbi.nlm.nih.gov/pubmed/15169837. 10.1242/jcs.01131.
-
(2004)
Journal of Cell Science
, vol.117
, Issue.13
, pp. 2805-2812
-
-
Kabeya, Y.1
Mizushima, N.2
Yamamoto, A.3
Oshitani-Okamoto, S.4
Ohsumi, Y.5
Yoshimori, T.6
-
47
-
-
84892146575
-
Selective autophagy
-
Svenning S., Johansen T. Selective autophagy. Essays in Biochemistry 2013, 55:79-92. http://www.ncbi.nlm.nih.gov/pubmed/24070473. 10.1042/bse0550079.
-
(2013)
Essays in Biochemistry
, vol.55
, pp. 79-92
-
-
Svenning, S.1
Johansen, T.2
-
48
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz A., Ernst A., Dikic I. Cargo recognition and trafficking in selective autophagy. Nature Cell Biology 2014, 16(6):495-501. http://www.ncbi.nlm.nih.gov/pubmed/24875736. 10.1038/ncb2979.
-
(2014)
Nature Cell Biology
, vol.16
, Issue.6
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
49
-
-
84870980670
-
Ubiquitination and selective autophagy
-
Shaid S., Brandts C.H., Serve H., Dikic I. Ubiquitination and selective autophagy. Cell Death and Differentiation 2013, 20(1):21-30. http://www.ncbi.nlm.nih.gov/pubmed/22722335. 10.1038/cdd.2012.72.
-
(2013)
Cell Death and Differentiation
, vol.20
, Issue.1
, pp. 21-30
-
-
Shaid, S.1
Brandts, C.H.2
Serve, H.3
Dikic, I.4
-
50
-
-
84903555177
-
The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy
-
Lippai M., Low P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. BioMed Research International 2014, 2014:832704. http://www.ncbi.nlm.nih.gov/pubmed/25013806. 10.1155/2014/832704.
-
(2014)
BioMed Research International
, vol.2014
, pp. 832704
-
-
Lippai, M.1
Low, P.2
-
51
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biology 2010, 8(1). http://www.ncbi.nlm.nih.gov/pubmed/20126261. 10.1371/journal.pbio.1000298.
-
(2010)
PLOS Biology
, vol.8
, Issue.1
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
52
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate Parkin
-
Koyano F., Okatsu K., Kosako H., Tamura Y., Go E., Kimura M., Kimura Y., Tsuchiya H., Yoshihara H., Hirokawa T., Endo T., Fon E.A., Trempe J.F., Saeki Y., Tanaka K., Matsuda N. Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature 2014, 510(7503):162-166. http://www.ncbi.nlm.nih.gov/pubmed/24784582. 10.1038/nature13392.
-
(2014)
Nature
, vol.510
, Issue.7503
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
Endo, T.11
Fon, E.A.12
Trempe, J.F.13
Saeki, Y.14
Tanaka, K.15
Matsuda, N.16
-
53
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane L.A., Lazarou M., Fogel A.I., Li Y., Yamano K., Sarraf S.A., Banerjee S., Youle R.J. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. Journal of Cell Biology 2014, 205(2):143-153. http://www.ncbi.nlm.nih.gov/pubmed/24751536. 10.1083/jcb.201402104.
-
(2014)
Journal of Cell Biology
, vol.205
, Issue.2
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
54
-
-
79955949858
-
The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration
-
Yamamoto A., Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiology of Disease 2011, 43(1):17-28. http://www.ncbi.nlm.nih.gov/pubmed/20732422. 10.1016/j.nbd.2010.08.015.
-
(2011)
Neurobiology of Disease
, vol.43
, Issue.1
, pp. 17-28
-
-
Yamamoto, A.1
Simonsen, A.2
-
55
-
-
84890025789
-
Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction
-
Lam H.C., Cloonan S.M., Bhashyam A.R., Haspel J.A., Singh A., Sathirapongsasuti J.F., Cervo M., Yao H., Chung A.L., Mizumura K., An C.H., Shan B., Franks J.M., Haley K.J., Owen C.A., Tesfaigzi Y., Washko G.R., Quackenbush J., Silverman E.K., Rahman I., Kim H.P., Mahmood A., Biswal S.S., Ryter S.W., Choi A.M. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. Journal of Clinical Investigation 2013, 123(12):5212-5230. http://www.ncbi.nlm.nih.gov/pubmed/24200693. 10.1172/JCI69636.
-
(2013)
Journal of Clinical Investigation
, vol.123
, Issue.12
, pp. 5212-5230
-
-
Lam, H.C.1
Cloonan, S.M.2
Bhashyam, A.R.3
Haspel, J.A.4
Singh, A.5
Sathirapongsasuti, J.F.6
Cervo, M.7
Yao, H.8
Chung, A.L.9
Mizumura, K.10
An, C.H.11
Shan, B.12
Franks, J.M.13
Haley, K.J.14
Owen, C.A.15
Tesfaigzi, Y.16
Washko, G.R.17
Quackenbush, J.18
Silverman, E.K.19
Rahman, I.20
Kim, H.P.21
Mahmood, A.22
Biswal, S.S.23
Ryter, S.W.24
Choi, A.M.25
more..
-
56
-
-
84892576077
-
Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease
-
Nakahira K., Cloonan S.M., Mizumura K., Choi A.M., Ryter S.W. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxidants & Redox Signaling 2014, 20(3):474-494. http://www.ncbi.nlm.nih.gov/pubmed/23879400. 10.1089/ars.2013.5373.
-
(2014)
Antioxidants & Redox Signaling
, vol.20
, Issue.3
, pp. 474-494
-
-
Nakahira, K.1
Cloonan, S.M.2
Mizumura, K.3
Choi, A.M.4
Ryter, S.W.5
-
57
-
-
36749010860
-
Biochemistry of oxidative stress
-
Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions 2007, 35(5):1147-1150. http://www.ncbi.nlm.nih.gov/pubmed/17956298. 10.1042/BST0351147.
-
(2007)
Biochemical Society Transactions
, vol.35
, Issue.5
, pp. 1147-1150
-
-
Halliwell, B.1
-
58
-
-
0036086130
-
Free radicals in the physiological control of cell function
-
Dröge W. Free radicals in the physiological control of cell function. Physiological Reviews 2002, 82(1):47-95. http://www.ncbi.nlm.nih.gov/pubmed/11773609. 10.1152/physrev.00018.2001.
-
(2002)
Physiological Reviews
, vol.82
, Issue.1
, pp. 47-95
-
-
Dröge, W.1
-
60
-
-
60749108379
-
Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment
-
Azad M.B., Chen Y., Gibson S.B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxidants & Redox Signaling 2009, 11(4):777-790. http://www.ncbi.nlm.nih.gov/pubmed/18828708. 10.1089/ARS.2008.2270.
-
(2009)
Antioxidants & Redox Signaling
, vol.11
, Issue.4
, pp. 777-790
-
-
Azad, M.B.1
Chen, Y.2
Gibson, S.B.3
-
61
-
-
38349043984
-
Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species
-
Chen Y., McMillan-Ward E., Kong J., Israels S.J., Gibson S.B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Journal of Cell Science 2007, 120(23):4155-4166. http://www.ncbi.nlm.nih.gov/pubmed/18032788. 10.1242/jcs.011163.
-
(2007)
Journal of Cell Science
, vol.120
, Issue.23
, pp. 4155-4166
-
-
Chen, Y.1
McMillan-Ward, E.2
Kong, J.3
Israels, S.J.4
Gibson, S.B.5
-
62
-
-
37349067228
-
Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells
-
Chen Y., McMillan-Ward E., Kong J., Israels S.J., Gibson S.B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death and Differentiation 2008, 15(1):171-182. http://www.ncbi.nlm.nih.gov/pubmed/17917680. 10.1038/sj.cdd.4402233.
-
(2008)
Cell Death and Differentiation
, vol.15
, Issue.1
, pp. 171-182
-
-
Chen, Y.1
McMillan-Ward, E.2
Kong, J.3
Israels, S.J.4
Gibson, S.B.5
-
63
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen Y., Azad M.B., Gibson S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation 2009, 16(7):1040-1052. http://www.ncbi.nlm.nih.gov/pubmed/19407826. 10.1038/cdd.2009.49.
-
(2009)
Cell Death and Differentiation
, vol.16
, Issue.7
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
64
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO Journal 2007, 26(7):1749-1760. http://www.ncbi.nlm.nih.gov/pubmed/17347651. 10.1038/sj.emboj.7601623.
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
65
-
-
84859383698
-
Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death
-
Tanaka A., Jin Y., Lee S.J., Zhang M., Kim H.P., Stolz D.B., Ryter S.W., Choi A.M. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 2012, 46(4):507-514. http://www.ncbi.nlm.nih.gov/pubmed/22095627. 10.1165/rcmb.2009-0415OC.
-
(2012)
American Journal of Respiratory Cell and Molecular Biology
, vol.46
, Issue.4
, pp. 507-514
-
-
Tanaka, A.1
Jin, Y.2
Lee, S.J.3
Zhang, M.4
Kim, H.P.5
Stolz, D.B.6
Ryter, S.W.7
Choi, A.M.8
-
66
-
-
79952217657
-
Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension
-
Lee S.J., Smith A., Guo L., Alastalo T.P., Li M., Sawada H., Liu X., Chen Z.H., Ifedigbo E., Jin Y., Feghali-Bostwick C., Ryter S.W., Kim H.P., Rabinovitch M., Choi A.M. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology 2011, 183(5):649-658. http://www.ncbi.nlm.nih.gov/pubmed/20889906. 10.1164/rccm.201005-0746OC.
-
(2011)
American Journal of Respiratory Cell and Molecular Biology
, vol.183
, Issue.5
, pp. 649-658
-
-
Lee, S.J.1
Smith, A.2
Guo, L.3
Alastalo, T.P.4
Li, M.5
Sawada, H.6
Liu, X.7
Chen, Z.H.8
Ifedigbo, E.9
Jin, Y.10
Feghali-Bostwick, C.11
Ryter, S.W.12
Kim, H.P.13
Rabinovitch, M.14
Choi, A.M.15
-
67
-
-
84878544117
-
Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes
-
Zhao Y., Zhang C.F., Rossiter H., Eckhart L., König U., Karner S., Mildner M., Bochkov V.N., Tschachler E., Gruber F. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. Journal of Investigative Dermatology 2013, 133(6):1629-1637. http://www.ncbi.nlm.nih.gov/pubmed/23340736. 10.1038/jid.2013.26.
-
(2013)
Journal of Investigative Dermatology
, vol.133
, Issue.6
, pp. 1629-1637
-
-
Zhao, Y.1
Zhang, C.F.2
Rossiter, H.3
Eckhart, L.4
König, U.5
Karner, S.6
Mildner, M.7
Bochkov, V.N.8
Tschachler, E.9
Gruber, F.10
-
68
-
-
84867724832
-
Mitochondria and mitophagy: the yin and yang of cell death control
-
Kubli D.A., Gustafsson Å.B. Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research 2012, 111(9):1208-1221. http://www.ncbi.nlm.nih.gov/pubmed/23065344. 10.1161/CIRCRESAHA.112.265819.
-
(2012)
Circulation Research
, vol.111
, Issue.9
, pp. 1208-1221
-
-
Kubli, D.A.1
Gustafsson, Å.B.2
-
69
-
-
77954599053
-
P62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
-
Jain A., Lamark T., Sjøttem E., Larsen K.B., Awuh J.A., Øvervatn A., McMahon M., Hayes J.D., Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. Journal of Biological Chemistry 2010, 285(29):22576-22591. http://www.ncbi.nlm.nih.gov/pubmed/20452972. 10.1074/jbc.M110.118976.
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.29
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjøttem, E.3
Larsen, K.B.4
Awuh, J.A.5
Øvervatn, A.6
McMahon, M.7
Hayes, J.D.8
Johansen, T.9
-
70
-
-
15244356847
-
Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice
-
Rangasamy T., Cho C.Y., Thimmulappa R.K., Zhen L., Srisuma S.S., Kensler T.W., Yamamoto M., Petrache I., Tuder R.M., Biswal S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. Journal of Clinical Investigation 2004, 114(9):1248-1259. http://www.ncbi.nlm.nih.gov/pubmed/15520857. 10.1172/JCI21146.
-
(2004)
Journal of Clinical Investigation
, vol.114
, Issue.9
, pp. 1248-1259
-
-
Rangasamy, T.1
Cho, C.Y.2
Thimmulappa, R.K.3
Zhen, L.4
Srisuma, S.S.5
Kensler, T.W.6
Yamamoto, M.7
Petrache, I.8
Tuder, R.M.9
Biswal, S.10
-
71
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 2010, 12(3):213-223. http://www.ncbi.nlm.nih.gov/pubmed/20173742. 10.1038/ncb2021.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
72
-
-
84865287281
-
Keap1 degradation by autophagy for the maintenance of redox homeostasis
-
Taguchi K., Fujikawa N., Komatsu M., Ishii T., Unno M., Akaike T., Motohashi H., Yamamoto M. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America 2012, 109(34):13561-13566. http://www.ncbi.nlm.nih.gov/pubmed/22872865. 10.1073/pnas.1121572109.
-
(2012)
Proceedings of the National Academy of Sciences of the United States of America
, vol.109
, Issue.34
, pp. 13561-13566
-
-
Taguchi, K.1
Fujikawa, N.2
Komatsu, M.3
Ishii, T.4
Unno, M.5
Akaike, T.6
Motohashi, H.7
Yamamoto, M.8
-
73
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., Fitzgerald K.A., Ryter S.W., Choi A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 2011, 12(3):222-230. http://www.ncbi.nlm.nih.gov/pubmed/21151103. 10.1038/ni.1980.
-
(2011)
Nature Immunology
, vol.12
, Issue.3
, pp. 222-230
-
-
Nakahira, K.1
Haspel, J.A.2
Rathinam, V.A.3
Lee, S.J.4
Dolinay, T.5
Lam, H.C.6
Englert, J.A.7
Rabinovitch, M.8
Cernadas, M.9
Kim, H.P.10
Fitzgerald, K.A.11
Ryter, S.W.12
Choi, A.M.13
-
74
-
-
77950362382
-
The inflammasomes
-
Schroder K., Tschopp J. The inflammasomes. Cell 2010, 140(6):821-832. http://www.ncbi.nlm.nih.gov/pubmed/20303873. 10.1016/j.cell.2010.01.040.
-
(2010)
Cell
, vol.140
, Issue.6
, pp. 821-832
-
-
Schroder, K.1
Tschopp, J.2
-
75
-
-
78651393239
-
A role for mitochondria in NLRP3 inflammasome activation
-
Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469(7329):221-225. http://www.ncbi.nlm.nih.gov/pubmed/21124315. 10.1038/nature09663.
-
(2011)
Nature
, vol.469
, Issue.7329
, pp. 221-225
-
-
Zhou, R.1
Yazdi, A.S.2
Menu, P.3
Tschopp, J.4
-
76
-
-
84913529685
-
Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity
-
Yang S., Xia C., Li S., Du L., Zhang L., Zhou R. Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biology 2014, 3:63-71. http://www.ncbi.nlm.nih.gov/pubmed/25462067. 10.1016/j.redox.2014.04.001.
-
(2014)
Redox Biology
, vol.3
, pp. 63-71
-
-
Yang, S.1
Xia, C.2
Li, S.3
Du, L.4
Zhang, L.5
Zhou, R.6
-
77
-
-
84908158678
-
MTOR and autophagy in regulation of acute lung injury: a review and perspective
-
(Epub ahead of print)
-
Hu Y., Liu J., Wu Y.F., Lou J., Mao Y.Y., Shen H.H., Chen Z.H. mTOR and autophagy in regulation of acute lung injury: a review and perspective. Microbes and Infection 2014, 16(9):727-734. (Epub ahead of print). 10.1016/j.micinf.2014.07.005.
-
(2014)
Microbes and Infection
, vol.16
, Issue.9
, pp. 727-734
-
-
Hu, Y.1
Liu, J.2
Wu, Y.F.3
Lou, J.4
Mao, Y.Y.5
Shen, H.H.6
Chen, Z.H.7
-
78
-
-
0022559220
-
Morphologic changes in pulmonary oxygen toxicity
-
Crapo J.D. Morphologic changes in pulmonary oxygen toxicity. Annual Review of Physiology 1986, 48:721-731. http://www.ncbi.nlm.nih.gov/pubmed/3518622. 10.1146/annurev.ph.48.030186.003445.
-
(1986)
Annual Review of Physiology
, vol.48
, pp. 721-731
-
-
Crapo, J.D.1
-
79
-
-
84892592782
-
Carbon monoxide confers protection in sepsis by enhancing beclin 1-dependent autophagy and phagocytosis
-
Lee S., Lee S.J., Coronata A.A., Fredenburgh L.E., Chung S.W., Perrella M.A., Nakahira K., Ryter S.W., Choi A.M. Carbon monoxide confers protection in sepsis by enhancing beclin 1-dependent autophagy and phagocytosis. Antioxidants & Redox Signaling 2014, 20:432-442. http://www.ncbi.nlm.nih.gov/pubmed/23971531. 10.1089/ars.2013.5368.
-
(2014)
Antioxidants & Redox Signaling
, vol.20
, pp. 432-442
-
-
Lee, S.1
Lee, S.J.2
Coronata, A.A.3
Fredenburgh, L.E.4
Chung, S.W.5
Perrella, M.A.6
Nakahira, K.7
Ryter, S.W.8
Choi, A.M.9
-
80
-
-
84917743297
-
Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis
-
[Epub ahead of print]
-
Chang A.L., Ulrich A., Suliman H.B., Piantadosi C.A. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radical Biology and Medicine 2015, [Epub ahead of print]. 10.1016/j.freeradbiomed.2014.10.582.
-
(2015)
Free Radical Biology and Medicine
-
-
Chang, A.L.1
Ulrich, A.2
Suliman, H.B.3
Piantadosi, C.A.4
-
81
-
-
8344247016
-
Autophagy defends cells against invading group A Streptococcus
-
Nakagawa I., Amano A., Mizushima N., Yamamoto A., Yamaguchi H., Kamimoto T., Nara A., Funao J., Nakata M., Tsuda K., Hamada S., Yoshimori T. Autophagy defends cells against invading group A Streptococcus. Science 2004, 306(5698):1037-1040. http://www.ncbi.nlm.nih.gov/pubmed/15528445. 10.1126/science.1103966.
-
(2004)
Science
, vol.306
, Issue.5698
, pp. 1037-1040
-
-
Nakagawa, I.1
Amano, A.2
Mizushima, N.3
Yamamoto, A.4
Yamaguchi, H.5
Kamimoto, T.6
Nara, A.7
Funao, J.8
Nakata, M.9
Tsuda, K.10
Hamada, S.11
Yoshimori, T.12
-
82
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez M.G., Master S.S., Singh S.B., Taylor G.A., Colombo M.I., Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119(6):753-766. http://www.ncbi.nlm.nih.gov/pubmed/15607973. 10.1016/j.cell.2004.11.038.
-
(2004)
Cell
, vol.119
, Issue.6
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
83
-
-
64749091309
-
Antimicrobial mechanisms of phagocytes and bacterial evasion strategies
-
Flannagan R.S., Cosío G., Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nature Reviews Microbiology 2009, 7(5):355-366. http://www.ncbi.nlm.nih.gov/pubmed/19369951. 10.1038/nrmicro2128.
-
(2009)
Nature Reviews Microbiology
, vol.7
, Issue.5
, pp. 355-366
-
-
Flannagan, R.S.1
Cosío, G.2
Grinstein, S.3
-
84
-
-
80052679702
-
Tuberculosis: new aspects of an old disease
-
Jordao L., Vieira O.V. Tuberculosis: new aspects of an old disease. International Journal of Cell Biology 2011, 2011:403623. http://www.ncbi.nlm.nih.gov/pubmed/21760796. 10.1155/2011/403623.
-
(2011)
International Journal of Cell Biology
, vol.2011
, pp. 403623
-
-
Jordao, L.1
Vieira, O.V.2
-
85
-
-
8444225798
-
Cell biology of Mycobacterium tuberculosis phagosome
-
Vergne I., Chua J., Singh S.B., Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annual Review of Cell and Developmental Biology 2004, 20:367-394. http://www.ncbi.nlm.nih.gov/pubmed/15473845. 10.1146/annurev.cellbio.20.010403.114015.
-
(2004)
Annual Review of Cell and Developmental Biology
, vol.20
, pp. 367-394
-
-
Vergne, I.1
Chua, J.2
Singh, S.B.3
Deretic, V.4
-
86
-
-
52549123569
-
Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence
-
Gan H., Lee J., Ren F., Chen M., Kornfeld H., Remold H.G. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nature Immunology 2008, 9(10):1189-1197. http://www.ncbi.nlm.nih.gov/pubmed/18794848. 10.1038/ni.1654.
-
(2008)
Nature Immunology
, vol.9
, Issue.10
, pp. 1189-1197
-
-
Gan, H.1
Lee, J.2
Ren, F.3
Chen, M.4
Kornfeld, H.5
Remold, H.G.6
-
87
-
-
75649145030
-
Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy
-
Deretic V., Delgado M., Vergne I., Master S., De Haro S., Ponpuak M., Singh S. Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Current Topics in Microbiology and Immunology 2009, 335:169-188. http://www.ncbi.nlm.nih.gov/pubmed/19802565. 10.1007/978-3-642-00302-8_8.
-
(2009)
Current Topics in Microbiology and Immunology
, vol.335
, pp. 169-188
-
-
Deretic, V.1
Delgado, M.2
Vergne, I.3
Master, S.4
De Haro, S.5
Ponpuak, M.6
Singh, S.7
-
88
-
-
62049084947
-
Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells
-
Jagannath C., Lindsey D.R., Dhandayuthapani S., Xu Y., Hunter R.L., Eissa N.T. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nature Medicine 2009, 15(3):267-276. http://www.ncbi.nlm.nih.gov/pubmed/19252503. 10.1038/nm.1928.
-
(2009)
Nature Medicine
, vol.15
, Issue.3
, pp. 267-276
-
-
Jagannath, C.1
Lindsey, D.R.2
Dhandayuthapani, S.3
Xu, Y.4
Hunter, R.L.5
Eissa, N.T.6
-
89
-
-
84863671626
-
Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis
-
Lam K.K., Zheng X., Forestieri R., Balgi A.D., Nodwell M., Vollett S., Anderson H.J., Andersen R.J., Av-Gay Y., Roberge M. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLOS Pathogens 2012, 8(5). http://www.ncbi.nlm.nih.gov/pubmed/22589723. 10.1371/journal.ppat.1002691.
-
(2012)
PLOS Pathogens
, vol.8
, Issue.5
-
-
Lam, K.K.1
Zheng, X.2
Forestieri, R.3
Balgi, A.D.4
Nodwell, M.5
Vollett, S.6
Anderson, H.J.7
Andersen, R.J.8
Av-Gay, Y.9
Roberge, M.10
-
90
-
-
35848965721
-
Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages
-
Floto R.A., Sarkar S., Perlstein E.O., Kampmann B., Schreiber S.L., Rubinsztein D.C. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages. Autophagy 2007, 3(6):620-662. http://www.ncbi.nlm.nih.gov/pubmed/17786022. 10.4161/auto.4898.
-
(2007)
Autophagy
, vol.3
, Issue.6
, pp. 620-662
-
-
Floto, R.A.1
Sarkar, S.2
Perlstein, E.O.3
Kampmann, B.4
Schreiber, S.L.5
Rubinsztein, D.C.6
-
91
-
-
77949997805
-
Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties
-
Ponpuak M., Davis A.S., Roberts E.A., Delgado M.A., Dinkins C., Zhao Z., Virgin H.W., Kyei G.B., Johansen T., Vergne I., Deretic V. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 2010, 32(3):329-341. http://www.ncbi.nlm.nih.gov/pubmed/20206555. 10.1016/j.immuni.2010.02.009.
-
(2010)
Immunity
, vol.32
, Issue.3
, pp. 329-341
-
-
Ponpuak, M.1
Davis, A.S.2
Roberts, E.A.3
Delgado, M.A.4
Dinkins, C.5
Zhao, Z.6
Virgin, H.W.7
Kyei, G.B.8
Johansen, T.9
Vergne, I.10
Deretic, V.11
-
92
-
-
34250802980
-
Lysosomal killing of mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy
-
Alonso S., Pethe K., Russell D.G., Purdy G.E. Lysosomal killing of mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(14):6031-6036. http://www.ncbi.nlm.nih.gov/pubmed/17389386. 10.1073/pnas.0700036104.
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.14
, pp. 6031-6036
-
-
Alonso, S.1
Pethe, K.2
Russell, D.G.3
Purdy, G.E.4
-
93
-
-
33748506089
-
Human IRGM induces autophagy to eliminate intracellular mycobacteria
-
Singh S.B., Davis A.S., Taylor G.A., Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006, 313(5792):1438-1441. http://www.ncbi.nlm.nih.gov/pubmed/16888103. 10.1126/science.1129577.
-
(2006)
Science
, vol.313
, Issue.5792
, pp. 1438-1441
-
-
Singh, S.B.1
Davis, A.S.2
Taylor, G.A.3
Deretic, V.4
-
94
-
-
0142240338
-
Immune control of tuberculosis by IFN-gamma-inducible LRG-47
-
MacMicking J.D., Taylor G.A., McKinney J.D. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 2003, 302(5645):654-659. http://www.ncbi.nlm.nih.gov/pubmed/14576437. 10.1126/science.1088063.
-
(2003)
Science
, vol.302
, Issue.5645
, pp. 654-659
-
-
MacMicking, J.D.1
Taylor, G.A.2
McKinney, J.D.3
-
95
-
-
77956482589
-
Identification of a novel IRGM promoter single nucleotide polymorphism associated with tuberculosis
-
Che N., Li S., Gao T., Zhang Z., Han Y., Zhang X., Sun Y., Liu Y., Sun Z., Zhang J., Ren W., Tian M., Li Y., Li W., Cheng J., Li C. Identification of a novel IRGM promoter single nucleotide polymorphism associated with tuberculosis. Clinica Chimica Acta 2010, 411(21-22):1645-1649. http://www.ncbi.nlm.nih.gov/pubmed/20547146. 10.1016/j.cca.2010.06.009.
-
(2010)
Clinica Chimica Acta
, vol.411
, Issue.21-22
, pp. 1645-1649
-
-
Che, N.1
Li, S.2
Gao, T.3
Zhang, Z.4
Han, Y.5
Zhang, X.6
Sun, Y.7
Liu, Y.8
Sun, Z.9
Zhang, J.10
Ren, W.11
Tian, M.12
Li, Y.13
Li, W.14
Cheng, J.15
Li, C.16
-
96
-
-
84865220380
-
Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
-
Watson R.O., Manzanillo P.S., Cox J.S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 2012, 150(4):803-815. http://www.ncbi.nlm.nih.gov/pubmed/22901810. 10.1016/j.cell.2012.06.040.
-
(2012)
Cell
, vol.150
, Issue.4
, pp. 803-815
-
-
Watson, R.O.1
Manzanillo, P.S.2
Cox, J.S.3
-
97
-
-
77954187960
-
Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila
-
Tung S.M., Unal C., Ley A., Peña C., Tunggal B., Noegel A.A., Krut O., Steinert M., Eichinger L. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cellular Microbiology 2010, 12(6):765-780. http://www.ncbi.nlm.nih.gov/pubmed/20070309. 10.1111/j.1462-5822.2010.01432.x.
-
(2010)
Cellular Microbiology
, vol.12
, Issue.6
, pp. 765-780
-
-
Tung, S.M.1
Unal, C.2
Ley, A.3
Peña, C.4
Tunggal, B.5
Noegel, A.A.6
Krut, O.7
Steinert, M.8
Eichinger, L.9
-
98
-
-
84906905024
-
Atg7 deficiency impairs host defense against Klebsiella pneumoniae by impacting bacterial clearance, survival and inflammatory responses in mice
-
Ye Y., Li X., Wang W., Ouedraogo K.C., Li Y., Gan C., Tan S., Zhou X., Wu M. Atg7 deficiency impairs host defense against Klebsiella pneumoniae by impacting bacterial clearance, survival and inflammatory responses in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology 2014, 307(5):L355-L363. http://www.ncbi.nlm.nih.gov/pubmed/24993132. 10.1152/ajplung.00046.2014.
-
(2014)
American Journal of Physiology - Lung Cellular and Molecular Physiology
, vol.307
, Issue.5
, pp. L355-L363
-
-
Ye, Y.1
Li, X.2
Wang, W.3
Ouedraogo, K.C.4
Li, Y.5
Gan, C.6
Tan, S.7
Zhou, X.8
Wu, M.9
-
99
-
-
84899553077
-
The regulation of autophagy by influenza A virus
-
Zhang R., Chi X., Wang S., Qi B., Yu X., Chen J.L. The regulation of autophagy by influenza A virus. BioMed Research International 2014, 2014:498083. http://www.ncbi.nlm.nih.gov/pubmed/24779013. 10.1155/2014/498083.Epub.
-
(2014)
BioMed Research International
, vol.2014
, pp. 498083
-
-
Zhang, R.1
Chi, X.2
Wang, S.3
Qi, B.4
Yu, X.5
Chen, J.L.6
-
100
-
-
72649105081
-
Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes
-
Gannagé M., Dormann D., Albrecht R., Dengjel J., Torossi T., Rämer P.C., Lee M., Strowig T., Arrey F., Conenello G., Pypaert M., Andersen J., García-Sastre A., Münz C. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host and Microbe 2009, 6(4):367-380. http://www.ncbi.nlm.nih.gov/pubmed/19837376. 10.1016/j.chom.2009.09.005.
-
(2009)
Cell Host and Microbe
, vol.6
, Issue.4
, pp. 367-380
-
-
Gannagé, M.1
Dormann, D.2
Albrecht, R.3
Dengjel, J.4
Torossi, T.5
Rämer, P.C.6
Lee, M.7
Strowig, T.8
Arrey, F.9
Conenello, G.10
Pypaert, M.11
Andersen, J.12
García-Sastre, A.13
Münz, C.14
-
101
-
-
84902954600
-
Essential role for autophagy in the maintenance of immunological memory against influenza infection
-
Chen M., Hong M.J., Sun H., Wang L., Shi X., Gilbert B.E., Corry D.B., Kheradmand F., Wang J. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nature Medicine 2014, 20(5):503-510. http://www.ncbi.nlm.nih.gov/pubmed/24747745. 10.1038/nm.3521.
-
(2014)
Nature Medicine
, vol.20
, Issue.5
, pp. 503-510
-
-
Chen, M.1
Hong, M.J.2
Sun, H.3
Wang, L.4
Shi, X.5
Gilbert, B.E.6
Corry, D.B.7
Kheradmand, F.8
Wang, J.9
-
102
-
-
5344233478
-
Pulmonary arterial hypertension
-
Farber H.W., Loscalzo J. Pulmonary arterial hypertension. New England Journal of Medicine 2004, 351(16):1655-1665. http://www.ncbi.nlm.nih.gov/pubmed/15483284. 10.1056/NEJMra035488.
-
(2004)
New England Journal of Medicine
, vol.351
, Issue.16
, pp. 1655-1665
-
-
Farber, H.W.1
Loscalzo, J.2
-
103
-
-
84872082742
-
Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension
-
Dromparis P., Paulin R., Stenson T.H., Haromy A., Sutendra G., Michelakis E.D. Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 2013, 127(1):115-125. http://www.ncbi.nlm.nih.gov/pubmed/23149668. 10.1161/CIRCULATIONAHA.112.133413.
-
(2013)
Circulation
, vol.127
, Issue.1
, pp. 115-125
-
-
Dromparis, P.1
Paulin, R.2
Stenson, T.H.3
Haromy, A.4
Sutendra, G.5
Michelakis, E.D.6
-
104
-
-
80051625243
-
Oxygen sensing, homeostasis, and disease
-
Semenza G.L. Oxygen sensing, homeostasis, and disease. New England Journal of Medicine 2011, 365(6):537-547. http://www.ncbi.nlm.nih.gov/pubmed/21830968. 10.1056/NEJMra1011165.
-
(2011)
New England Journal of Medicine
, vol.365
, Issue.6
, pp. 537-547
-
-
Semenza, G.L.1
-
105
-
-
33749345684
-
Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms
-
Stenmark K.R., Fagan K.A., Frid M.G. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circulation Research 2006, 99(7):675-691. http://www.ncbi.nlm.nih.gov/pubmed/17008597. 10.1161/01.RES.0000243584.45145.3f.
-
(2006)
Circulation Research
, vol.99
, Issue.7
, pp. 675-691
-
-
Stenmark, K.R.1
Fagan, K.A.2
Frid, M.G.3
-
106
-
-
79957913545
-
MTOR is required for pulmonary arterial vascular smooth muscle cell proliferation under chronic hypoxia
-
Krymskaya V.P., Snow J., Cesarone G., Khavin I., Goncharov D.A., Lim P.N., Veasey S.C., Ihida-Stansbury K., Jones P.L., Goncharova E.A. mTOR is required for pulmonary arterial vascular smooth muscle cell proliferation under chronic hypoxia. FASEB Journal 2011, 25(6):1922-1933. http://www.ncbi.nlm.nih.gov/pubmed/21368105. 10.1096/fj.10-175018.
-
(2011)
FASEB Journal
, vol.25
, Issue.6
, pp. 1922-1933
-
-
Krymskaya, V.P.1
Snow, J.2
Cesarone, G.3
Khavin, I.4
Goncharov, D.A.5
Lim, P.N.6
Veasey, S.C.7
Ihida-Stansbury, K.8
Jones, P.L.9
Goncharova, E.A.10
-
107
-
-
84906667178
-
MTORC1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch3
-
Wang W., Liu J., Ma A., Miao R., Jin Y., Zhang H., Xu K., Wang C., Wang J. mTORC1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch3. Journal of Cellular Physiology 2014, 229(12):2117-2125. http://www.ncbi.nlm.nih.gov/pubmed/24825564. 10.1002/jcp.24670.
-
(2014)
Journal of Cellular Physiology
, vol.229
, Issue.12
, pp. 2117-2125
-
-
Wang, W.1
Liu, J.2
Ma, A.3
Miao, R.4
Jin, Y.5
Zhang, H.6
Xu, K.7
Wang, C.8
Wang, J.9
-
108
-
-
84859447737
-
Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension
-
Teng R.J., Du J., Welak S., Guan T., Eis A., Shi Y., Konduri G.G. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology 2012, 302(7):L651-L663. http://www.ncbi.nlm.nih.gov/pubmed/22245997. 10.1152/ajplung.00177.2011.
-
(2012)
American Journal of Physiology - Lung Cellular and Molecular Physiology
, vol.302
, Issue.7
, pp. L651-L663
-
-
Teng, R.J.1
Du, J.2
Welak, S.3
Guan, T.4
Eis, A.5
Shi, Y.6
Konduri, G.G.7
-
109
-
-
79961102995
-
Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis
-
Lee S.J., Kim H.P., Jin Y., Choi A.M., Ryter S.W. Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy 2011, 7(8):829-839. http://www.ncbi.nlm.nih.gov/pubmed/21685724.
-
(2011)
Autophagy
, vol.7
, Issue.8
, pp. 829-839
-
-
Lee, S.J.1
Kim, H.P.2
Jin, Y.3
Choi, A.M.4
Ryter, S.W.5
-
110
-
-
84876367698
-
Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation
-
Long L., Yang X., Southwood M., Lu J., Marciniak S.J., Dunmore B.J., Morrell N.W. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circulation Research 2013, 112(8):1159-1170. http://www.ncbi.nlm.nih.gov/pubmed/23446737. 10.1161/CIRCRESAHA.111.300483.
-
(2013)
Circulation Research
, vol.112
, Issue.8
, pp. 1159-1170
-
-
Long, L.1
Yang, X.2
Southwood, M.3
Lu, J.4
Marciniak, S.J.5
Dunmore, B.J.6
Morrell, N.W.7
-
111
-
-
84866095437
-
LC3 as a potential therapeutic target in hypoxia-induced pulmonary hypertension
-
Lahm T., Petrache I. LC3 as a potential therapeutic target in hypoxia-induced pulmonary hypertension. Autophagy 2012, 8(7):1146-1147. http://www.ncbi.nlm.nih.gov/pubmed/22627195. 10.4161/auto.20520.
-
(2012)
Autophagy
, vol.8
, Issue.7
, pp. 1146-1147
-
-
Lahm, T.1
Petrache, I.2
-
112
-
-
84877121075
-
MTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects
-
Goncharova E.A. mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB Journal 2013, 27(5):1796-1807. http://www.ncbi.nlm.nih.gov/pubmed/23355268. 10.1096/fj.12-222224.
-
(2013)
FASEB Journal
, vol.27
, Issue.5
, pp. 1796-1807
-
-
Goncharova, E.A.1
-
113
-
-
84877030807
-
Oxidative stress and pulmonary fibrosis
-
Cheresh P., Kim S.J., Tulasiram S., Kamp D.W. Oxidative stress and pulmonary fibrosis. Biochimica et Biophysica Acta 2013, 1832:1028-1040. http://www.ncbi.nlm.nih.gov/pubmed/23219955. 10.1016/j.bbadis.2012.11.021.
-
(2013)
Biochimica et Biophysica Acta
, vol.1832
, pp. 1028-1040
-
-
Cheresh, P.1
Kim, S.J.2
Tulasiram, S.3
Kamp, D.W.4
-
114
-
-
84871913289
-
Insufficient autophagy in idiopathic pulmonary fibrosis
-
Araya J., Kojima J., Takasaka N., Ito S., Fujii S., Hara H., Yanagisawa H., Kobayashi K., Tsurushige C., Kawaishi M., Kamiya N., Hirano J., Odaka M., Morikawa T., Nishimura S.L., Kawabata Y., Hano H., Nakayama K., Kuwano K. Insufficient autophagy in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology 2013, 304(1):L56-L69. http://www.ncbi.nlm.nih.gov/pubmed/23087019. 10.1152/ajplung.00213.2012.
-
(2013)
American Journal of Physiology - Lung Cellular and Molecular Physiology
, vol.304
, Issue.1
, pp. L56-L69
-
-
Araya, J.1
Kojima, J.2
Takasaka, N.3
Ito, S.4
Fujii, S.5
Hara, H.6
Yanagisawa, H.7
Kobayashi, K.8
Tsurushige, C.9
Kawaishi, M.10
Kamiya, N.11
Hirano, J.12
Odaka, M.13
Morikawa, T.14
Nishimura, S.L.15
Kawabata, Y.16
Hano, H.17
Nakayama, K.18
Kuwano, K.19
-
115
-
-
84864022325
-
Autophagy in idiopathic pulmonary fibrosis
-
Patel A.S., Lin L., Geyer A., Haspel J.A., An C.H., Cao J., Rosas I.O., Morse D. Autophagy in idiopathic pulmonary fibrosis. PLOS One 2012, 7(7):e41394. http://www.ncbi.nlm.nih.gov/pubmed/22815997. 10.1371/journal.pone.0041394.
-
(2012)
PLOS One
, vol.7
, Issue.7
, pp. e41394
-
-
Patel, A.S.1
Lin, L.2
Geyer, A.3
Haspel, J.A.4
An, C.H.5
Cao, J.6
Rosas, I.O.7
Morse, D.8
-
116
-
-
80053070208
-
Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms
-
Mi S., Li Z., Yang H.Z., Liu H., Wang J.P., Ma Y.G., Wang X.X., Liu H.Z., Sun W., Hu Z.W. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. Journal ofImmunology 2011, 187(6):3003-3014. http://www.ncbi.nlm.nih.gov/pubmed/21841134. 10.4049/jimmunol.1004081.
-
(2011)
Journal ofImmunology
, vol.187
, Issue.6
, pp. 3003-3014
-
-
Mi, S.1
Li, Z.2
Yang, H.Z.3
Liu, H.4
Wang, J.P.5
Ma, Y.G.6
Wang, X.X.7
Liu, H.Z.8
Sun, W.9
Hu, Z.W.10
-
117
-
-
0024453308
-
Identification of the cystic fibrosis gene: chromosome walking and jumping
-
Rommens J.M., Iannuzzi M.C., Kerem B., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989, 245(4922):1059-1065. http://www.ncbi.nlm.nih.gov/pubmed/2772657. 10.1126/science.2772657.
-
(1989)
Science
, vol.245
, Issue.4922
, pp. 1059-1065
-
-
Rommens, J.M.1
Iannuzzi, M.C.2
Kerem, B.3
Drumm, M.L.4
Melmer, G.5
Dean, M.6
Rozmahel, R.7
Cole, J.L.8
Kennedy, D.9
Hidaka, N.10
-
118
-
-
0035947372
-
Impairment of the ubiquitin-proteasome system by protein aggregation
-
Bence N.F., Sampat R.M., Kopito R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001, 292(5521):1552-1555. http://www.ncbi.nlm.nih.gov/pubmed/11375494. 10.1126/science.292.5521.1552.
-
(2001)
Science
, vol.292
, Issue.5521
, pp. 1552-1555
-
-
Bence, N.F.1
Sampat, R.M.2
Kopito, R.R.3
-
119
-
-
84872735966
-
Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells
-
Mayer M.L., Blohmke C.J., Falsafi R., Fjell C.D., Madera L., Turvey S.E., Hancock R.E. Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells. Journal of Immunology 2013, 190(3):1227-1238. http://www.ncbi.nlm.nih.gov/pubmed/23264659. 10.4049/jimmunol.1201404.
-
(2013)
Journal of Immunology
, vol.190
, Issue.3
, pp. 1227-1238
-
-
Mayer, M.L.1
Blohmke, C.J.2
Falsafi, R.3
Fjell, C.D.4
Madera, L.5
Turvey, S.E.6
Hancock, R.E.7
-
120
-
-
77956396747
-
Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition
-
Luciani A., Villella V.R., Esposito S., Brunetti-Pierri N., Medina D., Settembre C., Gavina M., Pulze L., Giardino I., Pettoello-Mantovani M., D'Apolito M., Guido S., Masliah E., Spencer B., Quaratino S., Raia V., Ballabio A., Maiuri L. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nature Cell Biology 2010, 12(9):863-875. http://www.ncbi.nlm.nih.gov/pubmed/20711182. 10.1038/ncb2090.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.9
, pp. 863-875
-
-
Luciani, A.1
Villella, V.R.2
Esposito, S.3
Brunetti-Pierri, N.4
Medina, D.5
Settembre, C.6
Gavina, M.7
Pulze, L.8
Giardino, I.9
Pettoello-Mantovani, M.10
D'Apolito, M.11
Guido, S.12
Masliah, E.13
Spencer, B.14
Quaratino, S.15
Raia, V.16
Ballabio, A.17
Maiuri, L.18
-
121
-
-
84919764939
-
Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation
-
(Epub ahead of print)
-
Stefano D.D., Villella V.R., Esposito S., Tosco A., Sepe A., De Gregorio F., Salvadori L., Grassia R., Leone C.A., De Rosa G., Maiuri M.C., Pettoello-Mantovani M., Guido S., Bossi A., Zolin A., Venerando A., Pinna L.A., Mehta A., Bona G., Kroemer G., Maiuri L., Raia V. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 2014, 10:2053-2074. (Epub ahead of print). http://www.ncbi.nlm.nih.gov/pubmed/25350163. 10.4161/15548627.2014.973737.
-
(2014)
Autophagy
, vol.10
, pp. 2053-2074
-
-
Stefano, D.D.1
Villella, V.R.2
Esposito, S.3
Tosco, A.4
Sepe, A.5
De Gregorio, F.6
Salvadori, L.7
Grassia, R.8
Leone, C.A.9
De Rosa, G.10
Maiuri, M.C.11
Pettoello-Mantovani, M.12
Guido, S.13
Bossi, A.14
Zolin, A.15
Venerando, A.16
Pinna, L.A.17
Mehta, A.18
Bona, G.19
Kroemer, G.20
Maiuri, L.21
Raia, V.22
more..
-
122
-
-
80655134731
-
Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis
-
Abdulrahman B.A., Khweek A.A., Akhter A., Caution K., Kotrange S., Abdelaziz D.H., Newland C., Rosales-Reyes R., Kopp B., McCoy K., Montione R., Schlesinger L.S., Gavrilin M.A., Wewers M.D., Valvano M.A., Amer A.O. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 2011, 7(11):1359-1370. http://www.ncbi.nlm.nih.gov/pubmed/21997369. 10.4161/auto.7.11.17660.
-
(2011)
Autophagy
, vol.7
, Issue.11
, pp. 1359-1370
-
-
Abdulrahman, B.A.1
Khweek, A.A.2
Akhter, A.3
Caution, K.4
Kotrange, S.5
Abdelaziz, D.H.6
Newland, C.7
Rosales-Reyes, R.8
Kopp, B.9
McCoy, K.10
Montione, R.11
Schlesinger, L.S.12
Gavrilin, M.A.13
Wewers, M.D.14
Valvano, M.A.15
Amer, A.O.16
-
123
-
-
84883174355
-
Autophagy enhances bacterial clearance during P. aeruginosa lung infection
-
Junkins R.D., Shen A., Rosen K., McCormick C., Lin T.J. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLOS One 2013, 8(8):e72263. http://www.ncbi.nlm.nih.gov/pubmed/24015228. 10.1371/journal.pone.0072263.
-
(2013)
PLOS One
, vol.8
, Issue.8
, pp. e72263
-
-
Junkins, R.D.1
Shen, A.2
Rosen, K.3
McCormick, C.4
Lin, T.J.5
-
124
-
-
84869389296
-
Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on δF508 cystic fibrosis transmembrane conductance regulator
-
Luciani A., Villella V.R., Esposito S., Gavina M., Russo I., Silano M., Guido S., Pettoello-Mantovani M., Carnuccio R., Scholte B., De Matteis A., Maiuri M.C., Raia V., Luini A., Kroemer G., Maiuri L. Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on δF508 cystic fibrosis transmembrane conductance regulator. Autophagy 2012, 8(11):1657-1672. http://www.ncbi.nlm.nih.gov/pubmed/22874563. 10.4161/auto.21483.
-
(2012)
Autophagy
, vol.8
, Issue.11
, pp. 1657-1672
-
-
Luciani, A.1
Villella, V.R.2
Esposito, S.3
Gavina, M.4
Russo, I.5
Silano, M.6
Guido, S.7
Pettoello-Mantovani, M.8
Carnuccio, R.9
Scholte, B.10
De Matteis, A.11
Maiuri, M.C.12
Raia, V.13
Luini, A.14
Kroemer, G.15
Maiuri, L.16
-
125
-
-
80052941005
-
Worldwide behavioral research on major global causes of mortality
-
Dal-Ré R. Worldwide behavioral research on major global causes of mortality. Health Education & Behavior 2011, 38(5):433-440. http://www.ncbi.nlm.nih.gov/pubmed/21558465. 10.1177/1090198111402197.
-
(2011)
Health Education & Behavior
, vol.38
, Issue.5
, pp. 433-440
-
-
Dal-Ré, R.1
-
126
-
-
0141928029
-
Chronic obstructive pulmonary disease: molecular and cellular mechanisms
-
Barnes P.J., Shapiro S.D., Pauwels R.A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. European Respiratory Journal 2003, 22(4):672-688. http://www.ncbi.nlm.nih.gov/pubmed/14582923. 10.1183/09031936.03.00040703.
-
(2003)
European Respiratory Journal
, vol.22
, Issue.4
, pp. 672-688
-
-
Barnes, P.J.1
Shapiro, S.D.2
Pauwels, R.A.3
-
127
-
-
84873956600
-
Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary
-
Vestbo J., Hurd S.S., Agustí A.G., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., Stockley R.A., Sin D.D., Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 2013, 187(4):347-365. http://www.ncbi.nlm.nih.gov/pubmed/22878278. 10.1164/rccm.201204-0596PP.
-
(2013)
American Journal of Respiratory and Critical Care Medicine
, vol.187
, Issue.4
, pp. 347-365
-
-
Vestbo, J.1
Hurd, S.S.2
Agustí, A.G.3
Jones, P.W.4
Vogelmeier, C.5
Anzueto, A.6
Barnes, P.J.7
Fabbri, L.M.8
Martinez, F.J.9
Nishimura, M.10
Stockley, R.A.11
Sin, D.D.12
Rodriguez-Roisin, R.13
-
128
-
-
53749087325
-
Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease
-
Chen Z.H., Kim H.P., Sciurba F.C., Lee S.J., Feghali-Bostwick C., Stolz D.B., Dhir R., Landreneau R.J., Schuchert M.J., Yousem S.A., Nakahira K., Pilewski J.M., Lee J.S., Zhang Y., Ryter S.W., Choi A.M. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLOS One 2008, 3(10):e3316. http://www.ncbi.nlm.nih.gov/pubmed/18830406. 10.1371/journal.pone.0003316.
-
(2008)
PLOS One
, vol.3
, Issue.10
, pp. e3316
-
-
Chen, Z.H.1
Kim, H.P.2
Sciurba, F.C.3
Lee, S.J.4
Feghali-Bostwick, C.5
Stolz, D.B.6
Dhir, R.7
Landreneau, R.J.8
Schuchert, M.J.9
Yousem, S.A.10
Nakahira, K.11
Pilewski, J.M.12
Lee, J.S.13
Zhang, Y.14
Ryter, S.W.15
Choi, A.M.16
-
129
-
-
78650434097
-
Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema
-
Chen Z.H., Lam H.C., Jin Y., Kim H.P., Cao J., Lee S.J., Ifedigbo E., Parameswaran H., Ryter S.W., Choi A.M. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(44):18880-18885. http://www.ncbi.nlm.nih.gov/pubmed/20956295. 10.1073/pnas.1005574107.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.44
, pp. 18880-18885
-
-
Chen, Z.H.1
Lam, H.C.2
Jin, Y.3
Kim, H.P.4
Cao, J.5
Lee, S.J.6
Ifedigbo, E.7
Parameswaran, H.8
Ryter, S.W.9
Choi, A.M.10
-
130
-
-
53549090696
-
Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1
-
Kim H.P., Wang X., Chen Z.H., Lee S.J., Huang M.H., Wang Y., Ryter S.W., Choi A.M. Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy 2008, 4(7):887-895. http://www.ncbi.nlm.nih.gov/pubmed/18769149. 10.4161/auto.6767.
-
(2008)
Autophagy
, vol.4
, Issue.7
, pp. 887-895
-
-
Kim, H.P.1
Wang, X.2
Chen, Z.H.3
Lee, S.J.4
Huang, M.H.5
Wang, Y.6
Ryter, S.W.7
Choi, A.M.8
-
131
-
-
84871916713
-
Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease
-
Fujii S., Hara H., Araya J., Takasaka N., Kojima J., Ito S., Minagawa S., Yumino Y., Ishikawa T., Numata T., Kawaishi M., Hirano J., Odaka M., Morikawa T., Nishimura S., Nakayama K., Kuwano K. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 2012, 1(5):630-641. http://www.ncbi.nlm.nih.gov/pubmed/22934255. 10.4161/onci.20297.
-
(2012)
Oncoimmunology
, vol.1
, Issue.5
, pp. 630-641
-
-
Fujii, S.1
Hara, H.2
Araya, J.3
Takasaka, N.4
Kojima, J.5
Ito, S.6
Minagawa, S.7
Yumino, Y.8
Ishikawa, T.9
Numata, T.10
Kawaishi, M.11
Hirano, J.12
Odaka, M.13
Morikawa, T.14
Nishimura, S.15
Nakayama, K.16
Kuwano, K.17
-
132
-
-
78149476302
-
Identification of an autophagy defect in smokers'alveolar macrophages
-
Monick M.M., Powers L.S., Walters K., Lovan N., Zhang M., Gerke A., Hansdottir S., Hunninghake G.W. Identification of an autophagy defect in smokers'alveolar macrophages. Journal ofImmunology 2010, 185(9):5425-5435. http://www.ncbi.nlm.nih.gov/pubmed/20921532. 10.4049/jimmunol.1001603.
-
(2010)
Journal ofImmunology
, vol.185
, Issue.9
, pp. 5425-5435
-
-
Monick, M.M.1
Powers, L.S.2
Walters, K.3
Lovan, N.4
Zhang, M.5
Gerke, A.6
Hansdottir, S.7
Hunninghake, G.W.8
-
133
-
-
84907010947
-
Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD
-
Mizumura K., Cloonan S.M., Nakahira K., Bhashyam A.R., Cervo M., Kitada T., Glass K., Owen C.A., Mahmood A., Washko G.R., Hashimoto S., Ryter S.W., Choi A.M. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. Journal of Clinical Investigation 2014, 124(9):3987-4003. http://www.ncbi.nlm.nih.gov/pubmed/25083992. 10.1172/JCI74985.
-
(2014)
Journal of Clinical Investigation
, vol.124
, Issue.9
, pp. 3987-4003
-
-
Mizumura, K.1
Cloonan, S.M.2
Nakahira, K.3
Bhashyam, A.R.4
Cervo, M.5
Kitada, T.6
Glass, K.7
Owen, C.A.8
Mahmood, A.9
Washko, G.R.10
Hashimoto, S.11
Ryter, S.W.12
Choi, A.M.13
-
134
-
-
84867740975
-
Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner
-
Frank M., Duvezin-Caubet S., Koob S., Occhipinti A., Jagasia R., Petcherski A., Ruonala M.O., Priault M., Salin B., Reichert A.S. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica et Biophysica Acta 2012, 1823(12):2297-2310. http://www.ncbi.nlm.nih.gov/pubmed/22917578. 10.1016/j.bbamcr.2012.08.007.
-
(2012)
Biochimica et Biophysica Acta
, vol.1823
, Issue.12
, pp. 2297-2310
-
-
Frank, M.1
Duvezin-Caubet, S.2
Koob, S.3
Occhipinti, A.4
Jagasia, R.5
Petcherski, A.6
Ruonala, M.O.7
Priault, M.8
Salin, B.9
Reichert, A.S.10
-
135
-
-
84891679916
-
Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy
-
Sureshbabu A., Bhandari V. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Frontiers in Physiology 2013, 4:384. http://www.ncbi.nlm.nih.gov/pubmed/24421769. 10.3389/fphys.2013.00384.
-
(2013)
Frontiers in Physiology
, vol.4
, pp. 384
-
-
Sureshbabu, A.1
Bhandari, V.2
-
136
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer 2012, 12(6):401-410. http://www.ncbi.nlm.nih.gov/pubmed/22534666. 10.1038/nrc3262.
-
(2012)
Nature Reviews Cancer
, vol.12
, Issue.6
, pp. 401-410
-
-
White, E.1
-
137
-
-
85027919042
-
The expression of p33(ING1), p53, and autophagy-related gene Beclin1 in patients with non-small cell lung cancer
-
Liu J., Lin Y., Yang H., Deng Q., Chen G., He J. The expression of p33(ING1), p53, and autophagy-related gene Beclin1 in patients with non-small cell lung cancer. Tumor Biology 2011, 32(6):1113-1121. http://www.ncbi.nlm.nih.gov/pubmed/21779982. 10.1007/s13277-011-0211-4.
-
(2011)
Tumor Biology
, vol.32
, Issue.6
, pp. 1113-1121
-
-
Liu, J.1
Lin, Y.2
Yang, H.3
Deng, Q.4
Chen, G.5
He, J.6
-
138
-
-
83055194636
-
Decreased Beclin-1 expression is correlated with the growth of the primary tumor in patients with squamous cell carcinoma and adenocarcinoma of the lung
-
Won K.Y., Kim G.Y., Lim S.J., Kim Y.W. Decreased Beclin-1 expression is correlated with the growth of the primary tumor in patients with squamous cell carcinoma and adenocarcinoma of the lung. Human Pathology 2012, 43(1):62-68. http://www.ncbi.nlm.nih.gov/pubmed/21777947. 10.1016/j.humpath.2011.04.007.
-
(2012)
Human Pathology
, vol.43
, Issue.1
, pp. 62-68
-
-
Won, K.Y.1
Kim, G.Y.2
Lim, S.J.3
Kim, Y.W.4
-
139
-
-
84876219974
-
MTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy
-
Kim E.J., Jeong J.H., Bae S., Kang S., Kim C.H., Lim Y.B. mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy. Journal of Cellular Biochemistry 2013, 114(6):1248-1256. http://www.ncbi.nlm.nih.gov/pubmed/23592446. 10.1002/jcb.24465.
-
(2013)
Journal of Cellular Biochemistry
, vol.114
, Issue.6
, pp. 1248-1256
-
-
Kim, E.J.1
Jeong, J.H.2
Bae, S.3
Kang, S.4
Kim, C.H.5
Lim, Y.B.6
-
140
-
-
84892882660
-
A dual role for autophagy in a murine model of lung cancer
-
Rao S., Tortola L., Perlot T., Wirnsberger G., Novatchkova M., Nitsch R., Sykacek P., Frank L., Schramek D., Komnenovic V., Sigl V., Aumayr K., Schmauss G., Fellner N., Handschuh S., Glösmann M., Pasierbek P., Schlederer M., Resch G.P., Ma Y., Yang H., Popper H., Kenner L., Kroemer G., Penninger J.M. A dual role for autophagy in a murine model of lung cancer. Nature Communications 2014, 5:3056. http://www.ncbi.nlm.nih.gov/pubmed/24445999. 10.1038/ncomms4056.
-
(2014)
Nature Communications
, vol.5
, pp. 3056
-
-
Rao, S.1
Tortola, L.2
Perlot, T.3
Wirnsberger, G.4
Novatchkova, M.5
Nitsch, R.6
Sykacek, P.7
Frank, L.8
Schramek, D.9
Komnenovic, V.10
Sigl, V.11
Aumayr, K.12
Schmauss, G.13
Fellner, N.14
Handschuh, S.15
Glösmann, M.16
Pasierbek, P.17
Schlederer, M.18
Resch, G.P.19
Ma, Y.20
Yang, H.21
Popper, H.22
Kenner, L.23
Kroemer, G.24
Penninger, J.M.25
more..
-
141
-
-
84873709314
-
Identification of a candidate therapeutic autophagy-inducing peptide
-
Shoji-Kawata S., Sumpter R., Leveno M., Campbell G.R., Zou Z., Kinch L., Wilkins A.D., Sun Q., Pallauf K., MacDuff D., Huerta C., Virgin H.W., Helms J.B., Eerland R., Tooze S.A., Xavier R., Lenschow D.J., Yamamoto A., King D., Lichtarge O., Grishin N.V., Spector S.A., Kaloyanova D.V., Levine B. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013, 494(7436):201-206. http://www.ncbi.nlm.nih.gov/pubmed/23364696. 10.1038/nature11866.
-
(2013)
Nature
, vol.494
, Issue.7436
, pp. 201-206
-
-
Shoji-Kawata, S.1
Sumpter, R.2
Leveno, M.3
Campbell, G.R.4
Zou, Z.5
Kinch, L.6
Wilkins, A.D.7
Sun, Q.8
Pallauf, K.9
MacDuff, D.10
Huerta, C.11
Virgin, H.W.12
Helms, J.B.13
Eerland, R.14
Tooze, S.A.15
Xavier, R.16
Lenschow, D.J.17
Yamamoto, A.18
King, D.19
Lichtarge, O.20
Grishin, N.V.21
Spector, S.A.22
Kaloyanova, D.V.23
Levine, B.24
more..
-
142
-
-
84863714328
-
Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy
-
Campbell G.R., Spector S.A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathogens 2012, 8(5):e1002689. http://www.ncbi.nlm.nih.gov/pubmed/22589721. 10.1371/journal.ppat.1002689.
-
(2012)
PLoS Pathogens
, vol.8
, Issue.5
, pp. e1002689
-
-
Campbell, G.R.1
Spector, S.A.2
|