메뉴 건너뛰기




Volumn 1335, Issue 1, 2015, Pages 78-99

Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton

Author keywords

Bone; Chondrocytes; Cilium; IFT proteins; MSCs; Osteoblasts; Osteocytes; Primary cilia

Indexed keywords

CARRIER PROTEIN;

EID: 84920496295     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.12463     Document Type: Review
Times cited : (90)

References (231)
  • 2
    • 33746171099 scopus 로고    scopus 로고
    • The primary cilium in cell signaling and cancer
    • Michaud, E.J. & B.K. Yoder . 2006. The primary cilium in cell signaling and cancer. Cancer Res. 66: 6463-6467.
    • (2006) Cancer Res. , vol.66 , pp. 6463-6467
    • Michaud, E.J.1    Yoder, B.K.2
  • 4
    • 84884900937 scopus 로고    scopus 로고
    • Cell cycle progression by the repression of primary cilia formation in proliferating cells
    • Goto, H., A. Inoko & M. Inagaki . 2013. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol. Life Sci. 70: 3893-3905.
    • (2013) Cell Mol. Life Sci. , vol.70 , pp. 3893-3905
    • Goto, H.1    Inoko, A.2    Inagaki, M.3
  • 5
    • 84878332706 scopus 로고    scopus 로고
    • The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies
    • Pan, J., T. Seeger-Nukpezah & E.A. Golemis . 2013. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell Mol. Life Sci. 70: 1849-1874.
    • (2013) Cell Mol. Life Sci. , vol.70 , pp. 1849-1874
    • Pan, J.1    Seeger-Nukpezah, T.2    Golemis, E.A.3
  • 6
    • 84870934410 scopus 로고    scopus 로고
    • The role of primary cilia in the pathophysiology of neural tube defects
    • Vogel, T.W. et al. 2012. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg. Focus 33: E2.
    • (2012) Neurosurg. Focus , vol.33 , pp. E2
    • Vogel, T.W.1
  • 7
    • 84901455140 scopus 로고    scopus 로고
    • Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development
    • Barker, A.R., R. Thomas & H.R. Dawe . 2013. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 10: 0-1.
    • (2013) Organogenesis , vol.10 , pp. 0-1
    • Barker, A.R.1    Thomas, R.2    Dawe, H.R.3
  • 8
    • 84901476399 scopus 로고    scopus 로고
    • The role of primary cilia in the development and disease of the retina
    • Wheway, G., D.A. Parry & C.A. Johnson . 2013. The role of primary cilia in the development and disease of the retina. Organogenesis 10: 0-1.
    • (2013) Organogenesis , vol.10 , pp. 0-1
    • Wheway, G.1    Parry, D.A.2    Johnson, C.A.3
  • 9
    • 34250838603 scopus 로고    scopus 로고
    • Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis
    • Koyama, E. et al. 2007. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development 134: 2159-2169.
    • (2007) Development , vol.134 , pp. 2159-2169
    • Koyama, E.1
  • 10
    • 34548577032 scopus 로고    scopus 로고
    • Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia
    • Ruiz-Perez, V.L. et al. 2007. Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development 134: 2903-2912.
    • (2007) Development , vol.134 , pp. 2903-2912
    • Ruiz-Perez, V.L.1
  • 11
    • 0037884961 scopus 로고    scopus 로고
    • Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease
    • Lin, F. et al. 2003. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad Sci. U.S.A. 100: 5286-5291.
    • (2003) Proc. Natl. Acad Sci. U.S.A. , vol.100 , pp. 5286-5291
    • Lin, F.1
  • 12
    • 33846978104 scopus 로고    scopus 로고
    • Intraflagellar transport is essential for endochondral bone formation
    • Haycraft, C.J. et al. 2007. Intraflagellar transport is essential for endochondral bone formation. Development 134: 307-316.
    • (2007) Development , vol.134 , pp. 307-316
    • Haycraft, C.J.1
  • 13
    • 0036901166 scopus 로고    scopus 로고
    • Intraflagellar transport and cilia-dependent diseases
    • Pazour, G.J. & J.L. Rosenbaum . 2002. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 12: 551-555.
    • (2002) Trends Cell Biol. , vol.12 , pp. 551-555
    • Pazour, G.J.1    Rosenbaum, J.L.2
  • 14
    • 34248151938 scopus 로고    scopus 로고
    • Role of primary cilia in the pathogenesis of polycystic kidney disease
    • Yoder, B.K. 2007. Role of primary cilia in the pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 18: 1381-1388.
    • (2007) J. Am. Soc. Nephrol. , vol.18 , pp. 1381-1388
    • Yoder, B.K.1
  • 15
    • 17144377111 scopus 로고    scopus 로고
    • Cilium-generated signaling and cilia-related disorders
    • Pan, J., Q. Wang & W.J. Snell . 2005. Cilium-generated signaling and cilia-related disorders. Lab Invest. 85: 452-463.
    • (2005) Lab Invest. , vol.85 , pp. 452-463
    • Pan, J.1    Wang, Q.2    Snell, W.J.3
  • 16
    • 81255142013 scopus 로고    scopus 로고
    • Bone development: overview of bone cells and signaling
    • Teti, A. 2011. Bone development: overview of bone cells and signaling. Curr. Osteoporos. Rep. 9: 264-273.
    • (2011) Curr. Osteoporos. Rep. , vol.9 , pp. 264-273
    • Teti, A.1
  • 17
    • 0036225281 scopus 로고    scopus 로고
    • Reaching a genetic and molecular understanding of skeletal development
    • Karsenty, G. & E.F. Wagner . 2002. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2: 389-406.
    • (2002) Dev. Cell , vol.2 , pp. 389-406
    • Karsenty, G.1    Wagner, E.F.2
  • 18
    • 42449139597 scopus 로고    scopus 로고
    • Growth and bone development
    • In Nestle Nutrition Workshop Series.
    • Cooper, C. et al. 2008. Growth and bone development. In Nestle Nutrition Workshop Series. Paediatric programme 61: 53-68.
    • (2008) Paediatric programme , vol.61 , pp. 53-68
    • Cooper, C.1
  • 19
    • 40149089555 scopus 로고    scopus 로고
    • Wnt and hedgehog signaling pathways in bone development
    • Day, T.F. & Y. Yang . 2008. Wnt and hedgehog signaling pathways in bone development. J. Bone. Joint. Surg. Am. 90(Suppl. 1): 19-24.
    • (2008) J. Bone. Joint. Surg. Am. , vol.90 , pp. 19-24
    • Day, T.F.1    Yang, Y.2
  • 20
    • 84857052943 scopus 로고    scopus 로고
    • Notch regulation of bone development and remodeling and related skeletal disorders
    • Zanotti, S. & E. Canalis . 2012. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif. Tissue Int. 90: 69-75.
    • (2012) Calcif. Tissue Int. , vol.90 , pp. 69-75
    • Zanotti, S.1    Canalis, E.2
  • 21
    • 70649094222 scopus 로고    scopus 로고
    • BMP2 signaling in bone development and repair
    • Rosen, V. 2009. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20: 475-480.
    • (2009) Cytokine Growth Factor Rev. , vol.20 , pp. 475-480
    • Rosen, V.1
  • 22
    • 79960019112 scopus 로고    scopus 로고
    • Thyroid hormones and bone development
    • Combs, C.E. et al. 2011. Thyroid hormones and bone development. Minerva Endocrinol. 36: 71-85.
    • (2011) Minerva Endocrinol. , vol.36 , pp. 71-85
    • Combs, C.E.1
  • 24
    • 0038688357 scopus 로고    scopus 로고
    • The genetic basis for skeletal diseases
    • Zelzer, E. & B. R. Olsen . 2003. The genetic basis for skeletal diseases. Nature 423: 343-348.
    • (2003) Nature , vol.423 , pp. 343-348
    • Zelzer, E.1    Olsen, B.R.2
  • 25
    • 84875429751 scopus 로고    scopus 로고
    • Molecular defects causing skeletal dysplasias
    • Makitie, O. 2011. Molecular defects causing skeletal dysplasias. Endocr. Dev. 21: 78-84.
    • (2011) Endocr. Dev. , vol.21 , pp. 78-84
    • Makitie, O.1
  • 26
    • 33748769378 scopus 로고    scopus 로고
    • The ciliopathies: an emerging class of human genetic disorders
    • Badano, J.L. et al. 2006. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7: 125-148.
    • (2006) Annu. Rev. Genomics Hum. Genet. , vol.7 , pp. 125-148
    • Badano, J.L.1
  • 28
    • 84862976952 scopus 로고    scopus 로고
    • Chondrocyte primary cilia shorten in response to osmotic challenge and are sites for endocytosis
    • Rich, D. & A. Clark . 2012. Chondrocyte primary cilia shorten in response to osmotic challenge and are sites for endocytosis. Osteoarthritis Cartilage 20: 923-930.
    • (2012) Osteoarthritis Cartilage , vol.20 , pp. 923-930
    • Rich, D.1    Clark, A.2
  • 29
    • 70349771967 scopus 로고    scopus 로고
    • Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes
    • Phan, M.N. et al. 2009. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60: 3028-3037.
    • (2009) Arthritis Rheum. , vol.60 , pp. 3028-3037
    • Phan, M.N.1
  • 30
    • 84879570297 scopus 로고    scopus 로고
    • ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury
    • Wang, S. et al. 2013. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim Biophys Acta 1832: 1582-1590.
    • (2013) Biochim Biophys Acta , vol.1832 , pp. 1582-1590
    • Wang, S.1
  • 31
    • 0031453864 scopus 로고    scopus 로고
    • Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells
    • Poole, C.A. et al. 1997. Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol. Int. 21: 483-494.
    • (1997) Cell Biol. Int. , vol.21 , pp. 483-494
    • Poole, C.A.1
  • 32
    • 34247118840 scopus 로고    scopus 로고
    • Development of the post-natal growth plate requires intraflagellar transport proteins
    • Song, B. et al. 2007. Development of the post-natal growth plate requires intraflagellar transport proteins. Dev. Biol. 305: 202-216.
    • (2007) Dev. Biol. , vol.305 , pp. 202-216
    • Song, B.1
  • 33
    • 34247550303 scopus 로고    scopus 로고
    • orpk mice lacking the primary cilia protein polaris
    • orpk mice lacking the primary cilia protein polaris. Matrix Biol. 26: 234-246.
    • (2007) Matrix Biol. , vol.26 , pp. 234-246
    • McGlashan, S.1
  • 34
    • 77954150125 scopus 로고    scopus 로고
    • Primary cilia organization reflects polarity in the growth plate and implies loss of polarity and mosaicism in osteochondroma
    • de Andrea, C.E. et al. 2010. Primary cilia organization reflects polarity in the growth plate and implies loss of polarity and mosaicism in osteochondroma. Lab. Invest. 90: 1091-1101.
    • (2010) Lab. Invest. , vol.90 , pp. 1091-1101
    • de Andrea, C.E.1
  • 35
    • 49449108407 scopus 로고    scopus 로고
    • Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters
    • McGlashan, S. et al. 2008. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters. Dev. Dyn. 237: 2013-2020.
    • (2008) Dev. Dyn. , vol.237 , pp. 2013-2020
    • McGlashan, S.1
  • 36
    • 79960444984 scopus 로고    scopus 로고
    • Effect of localization, length and orientation of chondrocytic primary cilium on murine growth plate organization
    • Ascenzi, M.-G. et al. 2011. Effect of localization, length and orientation of chondrocytic primary cilium on murine growth plate organization. J. Theor. Biol. 285: 147-155.
    • (2011) J. Theor. Biol. , vol.285 , pp. 147-155
    • Ascenzi, M.-G.1
  • 37
    • 34248634583 scopus 로고    scopus 로고
    • Analysis of the orientation of primary cilia in growth plate cartilage: a mathematical method based on multiphoton microscopical images
    • Ascenzi, M.-G., M. Lenox & C. Farnum . 2007. Analysis of the orientation of primary cilia in growth plate cartilage: a mathematical method based on multiphoton microscopical images. J. Struct. Biol. 158: 293-306.
    • (2007) J. Struct. Biol. , vol.158 , pp. 293-306
    • Ascenzi, M.-G.1    Lenox, M.2    Farnum, C.3
  • 38
    • 84874000926 scopus 로고    scopus 로고
    • IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways
    • Wang, C., X. Yuan & S. Yang . 2013. IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp. Cell Res. 319: 623-632.
    • (2013) Exp. Cell Res. , vol.319 , pp. 623-632
    • Wang, C.1    Yuan, X.2    Yang, S.3
  • 39
    • 84862954468 scopus 로고    scopus 로고
    • Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis
    • Chang, C.F., G. Ramaswamy & R. Serra . 2012. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis. Osteoarthritis Cartilage 20: 152-161.
    • (2012) Osteoarthritis Cartilage , vol.20 , pp. 152-161
    • Chang, C.F.1    Ramaswamy, G.2    Serra, R.3
  • 40
    • 35649003049 scopus 로고    scopus 로고
    • Knockdown of the intraflagellar transport protein IFT46 stimulates selective gene expression in mouse chondrocytes and affects early development in zebrafish
    • Gouttenoire, J. et al. 2007. Knockdown of the intraflagellar transport protein IFT46 stimulates selective gene expression in mouse chondrocytes and affects early development in zebrafish. J. Biol. Chem. 282: 30960-30973.
    • (2007) J. Biol. Chem. , vol.282 , pp. 30960-30973
    • Gouttenoire, J.1
  • 41
    • 63749103524 scopus 로고    scopus 로고
    • Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome
    • Merrill, A.E. et al. 2009. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am. J. Hum. Genet. 84: 542-549.
    • (2009) Am. J. Hum. Genet. , vol.84 , pp. 542-549
    • Merrill, A.E.1
  • 42
    • 84920439600 scopus 로고    scopus 로고
    • Modeling the Matrix-Cilium-Golgi continuum in hyaline chondrocytes by electron tomography
    • Poole, T., M. Jennings & R. Walker . 2012. Modeling the Matrix-Cilium-Golgi continuum in hyaline chondrocytes by electron tomography. Cilia 1: P39.
    • (2012) Cilia , vol.1 , pp. P39
    • Poole, T.1    Jennings, M.2    Walker, R.3
  • 43
    • 1342302882 scopus 로고    scopus 로고
    • Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ
    • Jensen, C. et al. 2004. Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol. Int. 28: 101-110.
    • (2004) Cell Biol. Int. , vol.28 , pp. 101-110
    • Jensen, C.1
  • 44
    • 33750067366 scopus 로고    scopus 로고
    • Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression
    • Xiao, Z. et al. 2006. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J. Biol. Chem. 281: 30884-30895.
    • (2006) J. Biol. Chem. , vol.281 , pp. 30884-30895
    • Xiao, Z.1
  • 45
    • 34548067953 scopus 로고    scopus 로고
    • Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism
    • Malone, A. M. et al. 2007. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc. Natl. Acad. Sci. U. S. A. 104: 13325-13330.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 13325-13330
    • Malone, A.M.1
  • 46
    • 0032323347 scopus 로고    scopus 로고
    • Commitment and differentiation of stem cells to the osteoclast lineage
    • Hayashi, S. et al. 1998. Commitment and differentiation of stem cells to the osteoclast lineage. Biochem. Cell Biol. 6: 911-922.
    • (1998) Biochem. Cell Biol. , vol.6 , pp. 911-922
    • Hayashi, S.1
  • 47
    • 0016249015 scopus 로고
    • Bone cell cilia: vestigial or functional organelles
    • Federman, M. & G. Nichols, Jr. 1974. Bone cell cilia: vestigial or functional organelles? Calcif. Tissue Res. 17: 81-85.
    • (1974) Calcif. Tissue Res. , vol.17 , pp. 81-85
    • Federman, M.1    Nichols Jr, G.2
  • 48
    • 84871521117 scopus 로고    scopus 로고
    • Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium
    • Uzbekov, R.E. et al. 2012. Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc. Microanal. 18: 1430-1431.
    • (2012) Microsc. Microanal. , vol.18 , pp. 1430-1431
    • Uzbekov, R.E.1
  • 49
    • 84864066860 scopus 로고    scopus 로고
    • The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis
    • Yang, S. & C. Wang . 2012. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 51: 401-411.
    • (2012) Bone , vol.51 , pp. 401-411
    • Yang, S.1    Wang, C.2
  • 50
    • 45549101592 scopus 로고    scopus 로고
    • Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II
    • Xiao, Z. et al. 2008. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J. Biol. Chem. 283: 12624-12634.
    • (2008) J. Biol. Chem. , vol.283 , pp. 12624-12634
    • Xiao, Z.1
  • 51
    • 84863269754 scopus 로고    scopus 로고
    • Downregulation of PKD1 by shRNA results in defective osteogenic differentiation via cAMP/PKA pathway in human MG-63 cells
    • Qiu, N., H. Zhou & Z. Xiao . 2012. Downregulation of PKD1 by shRNA results in defective osteogenic differentiation via cAMP/PKA pathway in human MG-63 cells. J. Cell Biochem. 113: 967-976.
    • (2012) J. Cell Biochem. , vol.113 , pp. 967-976
    • Qiu, N.1    Zhou, H.2    Xiao, Z.3
  • 52
    • 0035504102 scopus 로고    scopus 로고
    • Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects
    • Lu, W. et al. 2001. Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum. Mol. Genet. 10: 2385-2396.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 2385-2396
    • Lu, W.1
  • 53
    • 84874518190 scopus 로고    scopus 로고
    • Primary cilia act as mechanosensors during bone healing around an implant
    • Leucht, P. et al. 2012. Primary cilia act as mechanosensors during bone healing around an implant. Med. Eng. Phys. 35: 392-402.
    • (2012) Med. Eng. Phys. , vol.35 , pp. 392-402
    • Leucht, P.1
  • 54
    • 80051795750 scopus 로고    scopus 로고
    • A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells
    • Hoey, D.A., D.J. Kelly & C.R. Jacobs . 2011. A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells. Biochem. Biophys. Res. Commun. 412: 182-187.
    • (2011) Biochem. Biophys. Res. Commun. , vol.412 , pp. 182-187
    • Hoey, D.A.1    Kelly, D.J.2    Jacobs, C.R.3
  • 55
    • 78651481696 scopus 로고    scopus 로고
    • The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment
    • Tummala, P., E.J. Arnsdorf & C.R. Jacobs . 2010. The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment. Cell. Mol. Bioeng. 3: 207-212.
    • (2010) Cell. Mol. Bioeng. , vol.3 , pp. 207-212
    • Tummala, P.1    Arnsdorf, E.J.2    Jacobs, C.R.3
  • 56
    • 84867906956 scopus 로고    scopus 로고
    • Primary Cilia Mediated Mechanotransduction in Human Mesenchymal Stem Cells
    • Hoey, D.A. et al. 2012. Primary Cilia Mediated Mechanotransduction in Human Mesenchymal Stem Cells. Stem Cells 30: 2561-2570.
    • (2012) Stem Cells , vol.30 , pp. 2561-2570
    • Hoey, D.A.1
  • 57
    • 79953116478 scopus 로고    scopus 로고
    • Intraflagellar transport: a new player at the immune synapse
    • Finetti, F. et al. 2011. Intraflagellar transport: a new player at the immune synapse. Trends Immunol. 32: 139-145.
    • (2011) Trends Immunol. , vol.32 , pp. 139-145
    • Finetti, F.1
  • 58
    • 0031041482 scopus 로고    scopus 로고
    • Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment
    • Hayase, Y., Y. Muguruma & M.Y. Lee . 1997. Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment. Exp. Hematol. 25: 19-25.
    • (1997) Exp. Hematol. , vol.25 , pp. 19-25
    • Hayase, Y.1    Muguruma, Y.2    Lee, M.Y.3
  • 59
    • 84871732388 scopus 로고    scopus 로고
    • Cilia-the prodigal organelle
    • Beales, P. & P. K. Jackson . 2012. Cilia-the prodigal organelle. Cilia 1: 1-3.
    • (2012) Cilia , vol.1 , pp. 1-3
    • Beales, P.1    Jackson, P.K.2
  • 60
    • 0242581681 scopus 로고    scopus 로고
    • Hedgehog signalling in the mouse requires intraflagellar transport proteins
    • Huangfu, D. et al. 2003. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426: 83-87.
    • (2003) Nature , vol.426 , pp. 83-87
    • Huangfu, D.1
  • 61
    • 0034735526 scopus 로고    scopus 로고
    • Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella
    • Pazour, G.J. et al. 2000. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151: 709-718.
    • (2000) J. Cell Biol. , vol.151 , pp. 709-718
    • Pazour, G.J.1
  • 62
    • 0033598394 scopus 로고    scopus 로고
    • A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans
    • Barr, M.M. & P.W. Sternberg . 1999. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401: 386-389.
    • (1999) Nature , vol.401 , pp. 386-389
    • Barr, M.M.1    Sternberg, P.W.2
  • 63
    • 84855460847 scopus 로고    scopus 로고
    • Cilia in vertebrate development and disease
    • Oh, E.C. & N. Katsanis . 2012. Cilia in vertebrate development and disease. Development 139: 443-448.
    • (2012) Development , vol.139 , pp. 443-448
    • Oh, E.C.1    Katsanis, N.2
  • 64
    • 61649116183 scopus 로고    scopus 로고
    • Primary cilia and signaling pathways in mammalian development, health and disease
    • Veland, I.R. et al. 2009. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron. Physiol. 111: 39-53.
    • (2009) Nephron. Physiol. , vol.111 , pp. 39-53
    • Veland, I.R.1
  • 65
    • 0027453410 scopus 로고
    • Incidence and significance of oligocilia in normal and pathologic tissues
    • Wheatley, D.N. 1993. Incidence and significance of oligocilia in normal and pathologic tissues. Ultrastruct. Pathol. 17: 565-566.
    • (1993) Ultrastruct. Pathol. , vol.17 , pp. 565-566
    • Wheatley, D.N.1
  • 66
    • 0029586470 scopus 로고
    • Primary cilia in normal and pathological tissues
    • Wheatley, D.N. 1995. Primary cilia in normal and pathological tissues. Pathobiology. 63: 222-238.
    • (1995) Pathobiology. , vol.63 , pp. 222-238
    • Wheatley, D.N.1
  • 68
    • 58149345565 scopus 로고    scopus 로고
    • Basal bodies platforms for building cilia
    • Marshall, W.F. 2008. Basal bodies platforms for building cilia. Curr. Top. Dev. Biol. 85: 1-22.
    • (2008) Curr. Top. Dev. Biol. , vol.85 , pp. 1-22
    • Marshall, W.F.1
  • 69
    • 83555176400 scopus 로고    scopus 로고
    • The mechanics of the primary cilium: an intricate structure with complex function
    • Hoey, D.A., M.E. Downs & C.R. Jacobs . 2012. The mechanics of the primary cilium: an intricate structure with complex function. J. Biomech. 45: 17-26.
    • (2012) J. Biomech. , vol.45 , pp. 17-26
    • Hoey, D.A.1    Downs, M.E.2    Jacobs, C.R.3
  • 70
    • 33947384151 scopus 로고    scopus 로고
    • Overview of structure and function of mammalian cilia
    • Satir, P. & S.T. Christensen . 2007. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69: 377-400.
    • (2007) Annu. Rev. Physiol. , vol.69 , pp. 377-400
    • Satir, P.1    Christensen, S.T.2
  • 73
    • 0027286361 scopus 로고
    • A motility in the eukaryotic flagellum unrelated to flagellar beating
    • Kozminski, K.G. et al. 1993. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. U. S. A. 90: 5519-5523.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 5519-5523
    • Kozminski, K.G.1
  • 74
    • 0033594421 scopus 로고    scopus 로고
    • Movement of motor and cargo along cilia
    • Orozco, J.T. et al. 1999. Movement of motor and cargo along cilia. Nature 398: 674-674.
    • (1999) Nature , vol.398 , pp. 674-674
    • Orozco, J.T.1
  • 75
    • 23144445446 scopus 로고    scopus 로고
    • Functional coordination of intraflagellar transport motors
    • Ou, G. et al. 2005. Functional coordination of intraflagellar transport motors. Nature 436: 583-587.
    • (2005) Nature , vol.436 , pp. 583-587
    • Ou, G.1
  • 76
    • 38349000827 scopus 로고    scopus 로고
    • Intraflagellar transport motors in cilia: moving along the cell's antenna
    • Scholey, J.M. 2008. Intraflagellar transport motors in cilia: moving along the cell's antenna. J. Cell Biol. 180: 23-29.
    • (2008) J. Cell Biol. , vol.180 , pp. 23-29
    • Scholey, J.M.1
  • 78
    • 27744443394 scopus 로고    scopus 로고
    • Cytoplasmic dynein nomenclature
    • Pfister, K.K. et al. 2005. Cytoplasmic dynein nomenclature. J. Cell Biol. 171: 411-413.
    • (2005) J. Cell Biol. , vol.171 , pp. 411-413
    • Pfister, K.K.1
  • 79
    • 84873115907 scopus 로고    scopus 로고
    • Cytoplasmic dynein-2: from molecules to human diseases
    • Rajagopalan, V., J.P. D'Amico & D.E. Wilkes . 2013. Cytoplasmic dynein-2: from molecules to human diseases. Front. Biol. 8: 119-126.
    • (2013) Front. Biol. , vol.8 , pp. 119-126
    • Rajagopalan, V.1    D'Amico, J.P.2    Wilkes, D.E.3
  • 80
    • 0031750484 scopus 로고    scopus 로고
    • Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons
    • Cole, D.G. et al. 1998. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141: 993-1008.
    • (1998) J. Cell Biol. , vol.141 , pp. 993-1008
    • Cole, D.G.1
  • 81
    • 65549148605 scopus 로고    scopus 로고
    • SnapShot: Intraflagellar transport
    • Cole, D.G. & W.J. Snell . 2009. SnapShot: Intraflagellar transport. Cell 137: 784.
    • (2009) Cell , vol.137 , pp. 784
    • Cole, D.G.1    Snell, W.J.2
  • 82
    • 0032517769 scopus 로고    scopus 로고
    • Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects
    • Piperno, G. et al. 1998. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J. Cell Biol. 143: 1591-1601.
    • (1998) J. Cell Biol. , vol.143 , pp. 1591-1601
    • Piperno, G.1
  • 83
    • 58149326846 scopus 로고    scopus 로고
    • Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling
    • Pedersen, L.B. & J.L. Rosenbaum . 2008. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 85: 23-61.
    • (2008) Curr. Top. Dev. Biol. , vol.85 , pp. 23-61
    • Pedersen, L.B.1    Rosenbaum, J.L.2
  • 84
    • 23044441462 scopus 로고    scopus 로고
    • Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits
    • Lucker, B.F. et al. 2005. Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J. Biol. Chem. 280: 27688-27696.
    • (2005) J. Biol. Chem. , vol.280 , pp. 27688-27696
    • Lucker, B.F.1
  • 85
    • 84856343802 scopus 로고    scopus 로고
    • Architecture and function of IFT complex proteins in ciliogenesis
    • Taschner, M., S. Bhogaraju & E. Lorentzen . 2012. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation. 83: S12-S22.
    • (2012) Differentiation. , vol.83 , pp. S12-S22
    • Taschner, M.1    Bhogaraju, S.2    Lorentzen, E.3
  • 86
    • 67749086369 scopus 로고    scopus 로고
    • Cartilage abnormalities associated with defects of chondrocytic primary cilia in Bardet-Biedl syndrome mutant mice
    • Kaushik, A.P. et al. 2009. Cartilage abnormalities associated with defects of chondrocytic primary cilia in Bardet-Biedl syndrome mutant mice. J. Orthop. Res. 27: 1093-1099.
    • (2009) J. Orthop. Res. , vol.27 , pp. 1093-1099
    • Kaushik, A.P.1
  • 87
    • 19444377129 scopus 로고    scopus 로고
    • Lifting the lid on Pandora's box: the Bardet-Biedl syndrome
    • Beales, P.L. 2005. Lifting the lid on Pandora's box: the Bardet-Biedl syndrome. Curr. Opin. Genet. Dev. 15: 315-323.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 315-323
    • Beales, P.L.1
  • 88
    • 13844292417 scopus 로고    scopus 로고
    • Antenatal presentation of Bardet-Biedl syndrome may mimic Meckel syndrome
    • Karmous-Benailly, H. et al. 2005. Antenatal presentation of Bardet-Biedl syndrome may mimic Meckel syndrome. Am. J. Hum. Genet. 76: 493.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 493
    • Karmous-Benailly, H.1
  • 89
    • 77953895859 scopus 로고    scopus 로고
    • Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier?
    • Nachury, M.V., E. S. Seeley & H. Jin . 2010. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Ann. Rev. Cell Dev. Biol. 26: 59.
    • (2010) Ann. Rev. Cell Dev. Biol. , vol.26 , pp. 59
    • Nachury, M.V.1    Seeley, E.S.2    Jin, H.3
  • 90
    • 34250012834 scopus 로고    scopus 로고
    • A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis
    • Nachury, M.V. et al. 2007. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129: 1201-1213.
    • (2007) Cell , vol.129 , pp. 1201-1213
    • Nachury, M.V.1
  • 91
    • 84865803552 scopus 로고    scopus 로고
    • The BBSome controls IFT assembly and turnaround in cilia
    • Wei, Q. et al. 2012. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 14: 950-957.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 950-957
    • Wei, Q.1
  • 92
    • 33749024768 scopus 로고    scopus 로고
    • Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors
    • Pan, X. et al. 2006. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174: 1035-1045.
    • (2006) J. Cell Biol. , vol.174 , pp. 1035-1045
    • Pan, X.1
  • 94
    • 77953662946 scopus 로고    scopus 로고
    • The primary cilium as a Hedgehog signal transduction machine
    • Goetz, S.C., P.J. Ocbina & K.V. Anderson . 2009. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol. 94: 199-222.
    • (2009) Methods Cell Biol. , vol.94 , pp. 199-222
    • Goetz, S.C.1    Ocbina, P.J.2    Anderson, K.V.3
  • 95
    • 79960283841 scopus 로고    scopus 로고
    • Primary cilia and organogenesis: is Hedgehog the only sculptor
    • Tasouri, E. & K. L. Tucker . 2011. Primary cilia and organogenesis: is Hedgehog the only sculptor? Cell Tissue Res. 345: 21-40.
    • (2011) Cell Tissue Res. , vol.345 , pp. 21-40
    • Tasouri, E.1    Tucker, K.L.2
  • 96
  • 97
    • 0033950445 scopus 로고    scopus 로고
    • Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways
    • Karp, S.J. et al. 2000. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127: 543-548.
    • (2000) Development , vol.127 , pp. 543-548
    • Karp, S.J.1
  • 98
    • 0033567213 scopus 로고    scopus 로고
    • Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation
    • St-Jacques, B., M. Hammerschmidt & A.P. McMahon . 1999. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13: 2072-2086.
    • (1999) Genes Dev. , vol.13 , pp. 2072-2086
    • St-Jacques, B.1    Hammerschmidt, M.2    McMahon, A.P.3
  • 99
    • 84883808810 scopus 로고    scopus 로고
    • A review of hedgehog signaling in cranial bone development
    • Pan, A. et al. 2013. A review of hedgehog signaling in cranial bone development. Front. Physiol. 4: 61-75.
    • (2013) Front. Physiol. , vol.4 , pp. 61-75
    • Pan, A.1
  • 100
    • 0034949211 scopus 로고    scopus 로고
    • Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation
    • Spinella-Jaegle, S. et al. 2001. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell Sci. 114: 2085-2094.
    • (2001) J. Cell Sci. , vol.114 , pp. 2085-2094
    • Spinella-Jaegle, S.1
  • 102
    • 84867678037 scopus 로고    scopus 로고
    • A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia
    • Dorn, K.V., C.E. Hughes & R. Rohatgi . 2012. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev. Cell 23: 823-835.
    • (2012) Dev. Cell , vol.23 , pp. 823-835
    • Dorn, K.V.1    Hughes, C.E.2    Rohatgi, R.3
  • 103
    • 34547110771 scopus 로고    scopus 로고
    • Patched1 regulates hedgehog signaling at the primary cilium
    • Rohatgi, R., L. Milenkovic & M.P. Scott . 2007. Patched1 regulates hedgehog signaling at the primary cilium. Science 317: 372-376.
    • (2007) Science , vol.317 , pp. 372-376
    • Rohatgi, R.1    Milenkovic, L.2    Scott, M.P.3
  • 104
    • 26644460824 scopus 로고    scopus 로고
    • Vertebrate Smoothened functions at the primary cilium
    • Corbit, K.C. et al. 2005. Vertebrate Smoothened functions at the primary cilium. Nature 437: 1018-1021.
    • (2005) Nature , vol.437 , pp. 1018-1021
    • Corbit, K.C.1
  • 105
    • 84867799739 scopus 로고    scopus 로고
    • The hedgehog signal transduction network
    • Robbins, D.J., D.L. Fei & N.A. Riobo . 2012. The hedgehog signal transduction network. Sci. Signal. 5: re6.
    • (2012) Sci. Signal. , vol.5 , pp. re6
    • Robbins, D.J.1    Fei, D.L.2    Riobo, N.A.3
  • 106
    • 77958508124 scopus 로고    scopus 로고
    • A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes
    • Tukachinsky, H., L.V. Lopez & A. Salic . 2010. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell Biol. 191: 415-428.
    • (2010) J. Cell Biol. , vol.191 , pp. 415-428
    • Tukachinsky, H.1    Lopez, L.V.2    Salic, A.3
  • 107
    • 84871229068 scopus 로고    scopus 로고
    • The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia
    • Caparrós-Martín, J.A. et al. 2013. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum. Mol. Genet. 22: 124-139.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 124-139
    • Caparrós-Martín, J.A.1
  • 108
    • 79551587194 scopus 로고    scopus 로고
    • Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia
    • Wallingford, J.B. & B. Mitchell . 2011. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25: 201-213.
    • (2011) Genes Dev. , vol.25 , pp. 201-213
    • Wallingford, J.B.1    Mitchell, B.2
  • 109
    • 79957911385 scopus 로고    scopus 로고
    • Subcellular spatial regulation of canonical Wnt signalling at the primary cilium
    • Lancaster, M.A., J. Schroth & J.G. Gleeson . 2011. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13: 700-707.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 700-707
    • Lancaster, M.A.1    Schroth, J.2    Gleeson, J.G.3
  • 110
    • 84894063727 scopus 로고    scopus 로고
    • Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells
    • McMurray, R. et al. 2013. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci. Rep. 3: 3545-3551.
    • (2013) Sci. Rep. , vol.3 , pp. 3545-3551
    • McMurray, R.1
  • 111
    • 33749018196 scopus 로고    scopus 로고
    • Planar cell polarity, ciliogenesis and neural tube defects
    • Wallingford, J.B. 2006. Planar cell polarity, ciliogenesis and neural tube defects. Hum. Mol. Genet. 15: R227-R234.
    • (2006) Hum. Mol. Genet. , vol.15 , pp. R227-R234
    • Wallingford, J.B.1
  • 112
    • 65349184492 scopus 로고    scopus 로고
    • The emerging role of Wnt/PCP signaling in organ formation
    • Dale, R.M., B.E. Sisson & J. Topczewski . 2009. The emerging role of Wnt/PCP signaling in organ formation. Zebrafish 6: 9-14.
    • (2009) Zebrafish , vol.6 , pp. 9-14
    • Dale, R.M.1    Sisson, B.E.2    Topczewski, J.3
  • 113
    • 84919793208 scopus 로고    scopus 로고
    • Cilia, Wnt signaling, and the cytoskeleton
    • May-Simera, H.L. & M.W. Kelley . 2012. Cilia, Wnt signaling, and the cytoskeleton. Signal Transduct. 11: 19.
    • (2012) Signal Transduct. , vol.11 , pp. 19
    • May-Simera, H.L.1    Kelley, M.W.2
  • 114
    • 84870742391 scopus 로고    scopus 로고
    • Wnt signaling in bone development and disease: making stronger bone with Wnts
    • Regard, J.B. et al. 2012. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4: 430-434.
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4 , pp. 430-434
    • Regard, J.B.1
  • 115
    • 69949120070 scopus 로고    scopus 로고
    • Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo
    • Ocbina, P.J. R., M. Tuson & K.V. Anderson . 2009. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PloS One 4: e6839.
    • (2009) PloS One , vol.4 , pp. e6839
    • Ocbina, P.R.1    Tuson, M.2    Anderson, K.V.3
  • 116
    • 50249133086 scopus 로고    scopus 로고
    • PDGF receptor beta is a potent regulator of mesenchymal stromal cell function
    • Tokunaga, A. et al. 2008. PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. J. Bone Miner Res. 23: 1519-1528.
    • (2008) J. Bone Miner Res. , vol.23 , pp. 1519-1528
    • Tokunaga, A.1
  • 117
    • 80955178835 scopus 로고    scopus 로고
    • PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs
    • Caplan, A.I. & D. Correa . 2011. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J. Orthop. Res. 29: 1795-1803.
    • (2011) J. Orthop. Res. , vol.29 , pp. 1795-1803
    • Caplan, A.I.1    Correa, D.2
  • 118
    • 79954617321 scopus 로고    scopus 로고
    • The emerging face of primary cilia
    • Zaghloul, N.A. & S.A. Brugmann . 2011. The emerging face of primary cilia. Genesis 49: 231-246.
    • (2011) Genesis , vol.49 , pp. 231-246
    • Zaghloul, N.A.1    Brugmann, S.A.2
  • 119
    • 27144529532 scopus 로고    scopus 로고
    • PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts
    • Schneider, L. et al. 2005. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15: 1861-1866.
    • (2005) Curr. Biol. , vol.15 , pp. 1861-1866
    • Schneider, L.1
  • 120
    • 0030684749 scopus 로고    scopus 로고
    • Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts
    • Komori, T. et al. 1997. Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts. Cell 89: 755-764.
    • (1997) Cell , vol.89 , pp. 755-764
    • Komori, T.1
  • 121
    • 19944433990 scopus 로고    scopus 로고
    • TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro
    • Subramaniam, M. et al. 2005. TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol. Cell. Biol. 25: 1191-1199.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 1191-1199
    • Subramaniam, M.1
  • 122
    • 24644482494 scopus 로고    scopus 로고
    • The BMP signaling and in vivo bone formation
    • Cao, X. & D. Chen . 2005. The BMP signaling and in vivo bone formation. Gene 357: 1-8.
    • (2005) Gene , vol.357 , pp. 1-8
    • Cao, X.1    Chen, D.2
  • 123
    • 0347721834 scopus 로고    scopus 로고
    • Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization
    • Zhang, M. et al. 2002. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J. Biol. Chem. 277: 44005-44012.
    • (2002) J. Biol. Chem. , vol.277 , pp. 44005-44012
    • Zhang, M.1
  • 125
    • 79551628202 scopus 로고    scopus 로고
    • Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum
    • Cavalcanti, D.P. et al. 2011. Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum. J. Med. Genet. 48: 88-92.
    • (2011) J. Med. Genet. , vol.48 , pp. 88-92
    • Cavalcanti, D.P.1
  • 126
    • 34249792368 scopus 로고    scopus 로고
    • IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy
    • Beales, P.L. et al. 2007. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet. 39: 727-729.
    • (2007) Nat. Genet. , vol.39 , pp. 727-729
    • Beales, P.L.1
  • 127
    • 79952586302 scopus 로고    scopus 로고
    • An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia
    • Rix, S. et al. 2011. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum. Mol. Genet. 20: 1306-1314.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1306-1314
    • Rix, S.1
  • 128
    • 33748768971 scopus 로고    scopus 로고
    • Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
    • Rodda, S.J. & A.P. McMahon . 2006. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133: 3231-3244.
    • (2006) Development , vol.133 , pp. 3231-3244
    • Rodda, S.J.1    McMahon, A.P.2
  • 129
    • 0033609103 scopus 로고    scopus 로고
    • Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II
    • Marszalek, J.R. et al. 1999. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. U. S. A. 96: 5043-5048.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 5043-5048
    • Marszalek, J.R.1
  • 130
    • 84863084212 scopus 로고    scopus 로고
    • Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia
    • Qiu, N. et al. 2012. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J. Cell Sci. 125: 1945-1957.
    • (2012) J. Cell Sci. , vol.125 , pp. 1945-1957
    • Qiu, N.1
  • 131
    • 78649971268 scopus 로고    scopus 로고
    • Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis
    • Qiu, N. et al. 2010. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PloS One 5: e15240.
    • (2010) PloS One , vol.5 , pp. e15240
    • Qiu, N.1
  • 132
    • 0035989973 scopus 로고    scopus 로고
    • Mouse α1 (I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast
    • Dacquin, R. et al. 2002. Mouse α1 (I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev. Dyn. 224: 245-251.
    • (2002) Dev. Dyn. , vol.224 , pp. 245-251
    • Dacquin, R.1
  • 133
    • 84858052792 scopus 로고    scopus 로고
    • Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading
    • Temiyasathit, S. et al. 2012. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PloS One 7: e33368.
    • (2012) PloS One , vol.7 , pp. e33368
    • Temiyasathit, S.1
  • 134
    • 84906418947 scopus 로고
    • A Syndrome Characterized by Ectodermal Dysplasia, Polydactyly, Chondro-Dysplasia and Congenital Morbus Cordis Report of Three Cases
    • Ellis, R.W. & S. Van Creveld . 1940. A Syndrome Characterized by Ectodermal Dysplasia, Polydactyly, Chondro-Dysplasia and Congenital Morbus Cordis Report of Three Cases. Arch. Dis. Child. 15: 65-84.
    • (1940) Arch. Dis. Child. , vol.15 , pp. 65-84
    • Ellis, R.W.1    Van Creveld, S.2
  • 135
    • 70449672809 scopus 로고    scopus 로고
    • Ellis-van Creveld syndrome and Weyers acrodental dysostosis are caused by cilia-mediated diminished response to hedgehog ligands
    • Ruiz-Perez, V.L. & J.A. Goodship . 2009. Ellis-van Creveld syndrome and Weyers acrodental dysostosis are caused by cilia-mediated diminished response to hedgehog ligands. Am. J. Med. Genet. C Semin. Med. Genet. 151: 341-351.
    • (2009) Am. J. Med. Genet. C Semin. Med. Genet. , vol.151 , pp. 341-351
    • Ruiz-Perez, V.L.1    Goodship, J.A.2
  • 136
    • 0036928278 scopus 로고    scopus 로고
    • A new gene, EVC2, is mutated in Ellis-van Creveld syndrome
    • Galdzicka, M. et al. 2002. A new gene, EVC2, is mutated in Ellis-van Creveld syndrome. Mol. Genet. Metab. 77: 291-295.
    • (2002) Mol. Genet. Metab. , vol.77 , pp. 291-295
    • Galdzicka, M.1
  • 137
    • 33845631572 scopus 로고    scopus 로고
    • Sequencing EVC and EVC2 identifies mutations in two-thirds of Ellis-van Creveld syndrome patients
    • Tompson, S.W. et al. 2007. Sequencing EVC and EVC2 identifies mutations in two-thirds of Ellis-van Creveld syndrome patients. Hum. Genet. 120: 663-670.
    • (2007) Hum. Genet. , vol.120 , pp. 663-670
    • Tompson, S.W.1
  • 138
    • 80053621366 scopus 로고    scopus 로고
    • Evc works in chondrocytes and osteoblasts to regulate multiple aspects of growth plate development in the appendicular skeleton and cranial base
    • Pacheco, M. et al. 2012. Evc works in chondrocytes and osteoblasts to regulate multiple aspects of growth plate development in the appendicular skeleton and cranial base. Bone 50: 28-41.
    • (2012) Bone , vol.50 , pp. 28-41
    • Pacheco, M.1
  • 139
    • 70450242873 scopus 로고    scopus 로고
    • The pyrophosphate transporter ANKH is expressed in kidney and bone cells and colocalises to the primary cilium/basal body complex
    • Carr, G. et al. 2009. The pyrophosphate transporter ANKH is expressed in kidney and bone cells and colocalises to the primary cilium/basal body complex. Cell. Physiol. Biochem. 24: 595-604.
    • (2009) Cell. Physiol. Biochem. , vol.24 , pp. 595-604
    • Carr, G.1
  • 140
    • 33845229878 scopus 로고    scopus 로고
    • Biochemical and genetic analysis of ANK in arthritis and bone disease
    • Gurley, K.A., R.J. Reimer & D.M. Kingsley . 2006. Biochemical and genetic analysis of ANK in arthritis and bone disease. Am. J. Hum. Genet. 79: 1017-1029.
    • (2006) Am. J. Hum. Genet. , vol.79 , pp. 1017-1029
    • Gurley, K.A.1    Reimer, R.J.2    Kingsley, D.M.3
  • 141
    • 0034647482 scopus 로고    scopus 로고
    • Role of the mouse ank gene in control of tissue calcification and arthritis
    • Ho, A.M., M.D. Johnson & D.M. Kingsley . 2000. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289: 265-270.
    • (2000) Science , vol.289 , pp. 265-270
    • Ho, A.M.1    Johnson, M.D.2    Kingsley, D.M.3
  • 142
    • 0033972998 scopus 로고    scopus 로고
    • Molecular genetics and mechanism of autosomal dominant polycystic kidney disease
    • Wu, G. & S. Somlo . 2000. Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol. Genet. Metab. 69: 1-15.
    • (2000) Mol. Genet. Metab. , vol.69 , pp. 1-15
    • Wu, G.1    Somlo, S.2
  • 143
    • 4444381130 scopus 로고    scopus 로고
    • Polycystins, calcium signaling, and human diseases
    • Delmas, P. et al. 2004. Polycystins, calcium signaling, and human diseases. Biochem. Biophys. Res. Commun. 322: 1374-1383.
    • (2004) Biochem. Biophys. Res. Commun. , vol.322 , pp. 1374-1383
    • Delmas, P.1
  • 144
    • 67649844614 scopus 로고    scopus 로고
    • Polycystins and primary cilia: primers for cell cycle progression
    • Zhou, J. 2009. Polycystins and primary cilia: primers for cell cycle progression. Annu. Rev. Physiol. 71: 83-113.
    • (2009) Annu. Rev. Physiol. , vol.71 , pp. 83-113
    • Zhou, J.1
  • 145
    • 33750399423 scopus 로고    scopus 로고
    • Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells
    • Li, Q. et al. 2006. Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J. Biol. Chem. 281: 37566-37575.
    • (2006) J. Biol. Chem. , vol.281 , pp. 37566-37575
    • Li, Q.1
  • 146
    • 77950673151 scopus 로고    scopus 로고
    • Role of the polycytin-primary cilia complex in bone development and mechanosensing
    • Xiao, Z.S. & L.D. Quarles . 2010. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann. N.Y. Acad. Sci. 1192: 410-421.
    • (2010) Ann. N.Y. Acad. Sci. , vol.1192 , pp. 410-421
    • Xiao, Z.S.1    Quarles, L.D.2
  • 147
    • 74049138304 scopus 로고    scopus 로고
    • Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation
    • Xiao, Z. et al. 2010. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation. J. Biol. Chem. 285: 1177-1187.
    • (2010) J. Biol. Chem. , vol.285 , pp. 1177-1187
    • Xiao, Z.1
  • 148
    • 9644255730 scopus 로고    scopus 로고
    • A functional floxed allele of Pkd1 that can be conditionally inactivated in vivo
    • Piontek, K.B. et al. 2004. A functional floxed allele of Pkd1 that can be conditionally inactivated in vivo. J. Am. Soc. Nephrol. 15: 3035-3043.
    • (2004) J. Am. Soc. Nephrol. , vol.15 , pp. 3035-3043
    • Piontek, K.B.1
  • 149
    • 33746682471 scopus 로고    scopus 로고
    • The chondrocyte: biology and clinical application
    • Lin, Z. et al. 2006. The chondrocyte: biology and clinical application. Tissue Eng. 12: 1971-1984.
    • (2006) Tissue Eng. , vol.12 , pp. 1971-1984
    • Lin, Z.1
  • 150
    • 38849169996 scopus 로고    scopus 로고
    • Regulation of chondrogenesis and chondrocyte differentiation by stress
    • Zuscik, M.J. et al. 2008. Regulation of chondrogenesis and chondrocyte differentiation by stress. J. Clin. Invest. 118: 429.
    • (2008) J. Clin. Invest. , vol.118 , pp. 429
    • Zuscik, M.J.1
  • 152
    • 33847413590 scopus 로고    scopus 로고
    • Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella
    • Hou, Y. et al. 2007. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol. 176: 653-665.
    • (2007) J. Cell Biol. , vol.176 , pp. 653-665
    • Hou, Y.1
  • 153
    • 84891834933 scopus 로고    scopus 로고
    • Depletion of primary cilia reduces the compressive modulus of articular cartilage
    • Irianto, J. et al. 2013. Depletion of primary cilia reduces the compressive modulus of articular cartilage. J. Biomech. 47: 579-582.
    • (2013) J. Biomech , vol.47 , pp. 579-582
    • Irianto, J.1
  • 154
    • 84872788408 scopus 로고    scopus 로고
    • Ift88 regulates Hedgehog signaling, Sfrp5 expression, and beta-catenin activity in post-natal growth plate
    • Chang, C.F. & R. Serra . 2013. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and beta-catenin activity in post-natal growth plate. J. Orthop. Res. 31: 350-356.
    • (2013) J. Orthop. Res. , vol.31 , pp. 350-356
    • Chang, C.F.1    Serra, R.2
  • 155
    • 67650758031 scopus 로고    scopus 로고
    • Roles of the primary cilium component Polaris in synchondrosis development
    • Ochiai, T. et al. 2009. Roles of the primary cilium component Polaris in synchondrosis development. J. Dent. Res. 88: 545-550.
    • (2009) J. Dent. Res. , vol.88 , pp. 545-550
    • Ochiai, T.1
  • 156
    • 65549140785 scopus 로고    scopus 로고
    • DYNC2H1 mutations cause Asphyxiating Thoracic Dystrophy and Short Rib-Polydactyly Syndrome, Type III
    • Dagoneau, N. et al. 2009. DYNC2H1 mutations cause Asphyxiating Thoracic Dystrophy and Short Rib-Polydactyly Syndrome, Type III. Am. J. Hum. Genet. 84: 706-711.
    • (2009) Am. J. Hum. Genet. , vol.84 , pp. 706-711
    • Dagoneau, N.1
  • 157
    • 84864074875 scopus 로고    scopus 로고
    • NEK1 and DYNC2H1 are both involved in short rib polydactyly Majewski type but not in Beemer Langer cases
    • El Hokayem, J. et al. 2012. NEK1 and DYNC2H1 are both involved in short rib polydactyly Majewski type but not in Beemer Langer cases. J. Med. Genet. 49: 227-233.
    • (2012) J. Med. Genet. , vol.49 , pp. 227-233
    • El Hokayem, J.1
  • 159
    • 84859219770 scopus 로고    scopus 로고
    • BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes
    • Zhang, Q. et al. 2012. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum. Mol. Genet. 21: 1945-1953.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 1945-1953
    • Zhang, Q.1
  • 160
    • 79960462512 scopus 로고    scopus 로고
    • TMJ development and growth require primary cilia function
    • Kinumatsu, T. et al. 2011. TMJ development and growth require primary cilia function. J. Dent. Res. 90: 988-994.
    • (2011) J. Dent. Res. , vol.90 , pp. 988-994
    • Kinumatsu, T.1
  • 161
    • 0033515827 scopus 로고    scopus 로고
    • Multilineage potential of adult human mesenchymal stem cells
    • Pittenger, M.F. et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
    • (1999) Science , vol.284 , pp. 143-147
    • Pittenger, M.F.1
  • 163
    • 0036076389 scopus 로고    scopus 로고
    • Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer
    • Logan, M. et al. 2002. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33: 77-80.
    • (2002) Genesis , vol.33 , pp. 77-80
    • Logan, M.1
  • 164
    • 73949094342 scopus 로고    scopus 로고
    • Generation of mice with a conditional allele for Ift172
    • Howard, P.W., T.L. Howard & R.A. Maurer . 2010. Generation of mice with a conditional allele for Ift172. Transgenic Res. 19: 121-126.
    • (2010) Transgenic Res. , vol.19 , pp. 121-126
    • Howard, P.W.1    Howard, T.L.2    Maurer, R.A.3
  • 165
    • 34548406546 scopus 로고    scopus 로고
    • Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog-and Gli3-dependent mechanisms
    • Kolpakova-Hart, E. et al. 2007. Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog-and Gli3-dependent mechanisms. Dev. Biol. 309: 273-284.
    • (2007) Dev. Biol. , vol.309 , pp. 273-284
    • Kolpakova-Hart, E.1
  • 166
    • 77950684065 scopus 로고    scopus 로고
    • Osteocyte primary cilium and its role in bone mechanotransduction
    • Temiyasathit, S. & C.R. Jacobs . 2010. Osteocyte primary cilium and its role in bone mechanotransduction. Ann. N.Y. Acad. Sci. 1192: 422-428.
    • (2010) Ann. N.Y. Acad. Sci. , vol.1192 , pp. 422-428
    • Temiyasathit, S.1    Jacobs, C.R.2
  • 167
    • 65549170980 scopus 로고    scopus 로고
    • Mechanotransduction in osteoblast regulation and bone disease
    • Papachroni, K.K. et al. 2009. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med. 15: 208-216.
    • (2009) Trends Mol. Med. , vol.15 , pp. 208-216
    • Papachroni, K.K.1
  • 168
    • 38349013550 scopus 로고    scopus 로고
    • Mechanotransduction in human bone: in vitro cellular physiology that underpins bone changes with exercise
    • Scott, A. et al. 2008. Mechanotransduction in human bone: in vitro cellular physiology that underpins bone changes with exercise. Sports Med. 38: 139-160.
    • (2008) Sports Med. , vol.38 , pp. 139-160
    • Scott, A.1
  • 169
    • 0028401483 scopus 로고
    • Review: bone tissue engineering: the role of interstitial fluid flow
    • Hillsley, M. & J. Frangos . 1994. Review: bone tissue engineering: the role of interstitial fluid flow. Biotechnol. Bioeng. 43: 573-581.
    • (1994) Biotechnol. Bioeng. , vol.43 , pp. 573-581
    • Hillsley, M.1    Frangos, J.2
  • 170
    • 84874828473 scopus 로고    scopus 로고
    • The ciliary flow sensor and polycystic kidney disease
    • Kotsis, F., C. Boehlke & E.W. Kuehn . 2013. The ciliary flow sensor and polycystic kidney disease. Nephrol. Dial. Transplant. 28: 518-526.
    • (2013) Nephrol. Dial. Transplant. , vol.28 , pp. 518-526
    • Kotsis, F.1    Boehlke, C.2    Kuehn, E.W.3
  • 171
    • 29744470060 scopus 로고    scopus 로고
    • Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease
    • Low, S.H. et al. 2006. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell 10: 57-69.
    • (2006) Dev. Cell , vol.10 , pp. 57-69
    • Low, S.H.1
  • 172
    • 77951616289 scopus 로고    scopus 로고
    • Mechanical properties of primary cilia regulate the response to fluid flow
    • Rydholm, S. et al. 2010. Mechanical properties of primary cilia regulate the response to fluid flow. Am. J. Physiol. Renal Physiol. 298: F1096-F1102.
    • (2010) Am. J. Physiol. Renal Physiol. , vol.298 , pp. F1096-F1102
    • Rydholm, S.1
  • 173
    • 0035498717 scopus 로고    scopus 로고
    • Bending the MDCK cell primary cilium increases intracellular calcium
    • Praetorius, H. A. & K. R. Spring . 2001. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184: 71-79.
    • (2001) J. Membr. Biol. , vol.184 , pp. 71-79
    • Praetorius, H.A.1    Spring, K.R.2
  • 174
    • 84887964471 scopus 로고    scopus 로고
    • Mechanically induced osteogenic lineage commitment of stem cells
    • Chen, J.C. & C.R. Jacobs . 2013. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res. Ther. 4: 107-116.
    • (2013) Stem Cell Res. Ther. , vol.4 , pp. 107-116
    • Chen, J.C.1    Jacobs, C.R.2
  • 175
    • 84875838541 scopus 로고    scopus 로고
    • Mechanosensation and transduction in osteocytes
    • Klein-Nulend, J. et al. 2013. Mechanosensation and transduction in osteocytes. Bone 54: 182-190.
    • (2013) Bone , vol.54 , pp. 182-190
    • Klein-Nulend, J.1
  • 176
    • 0038034405 scopus 로고    scopus 로고
    • Primary cilium-is it an osteocyte's strain sensing flowmeter
    • Whitfield, J.F. 2003. Primary cilium-is it an osteocyte's strain sensing flowmeter? J. Cell. Biochem. 89: 233-237.
    • (2003) J. Cell. Biochem. , vol.89 , pp. 233-237
    • Whitfield, J.F.1
  • 177
    • 0041831249 scopus 로고    scopus 로고
    • The renal cell primary cilium functions as a flow sensor
    • Praetorius, H.A. & K.R. Spring . 2003. The renal cell primary cilium functions as a flow sensor. Curr. Opin. Nephrol. Hypertens. 12: 517-520.
    • (2003) Curr. Opin. Nephrol. Hypertens. , vol.12 , pp. 517-520
    • Praetorius, H.A.1    Spring, K.R.2
  • 178
    • 0037557518 scopus 로고    scopus 로고
    • Removal of the MDCK cell primary cilium abolishes flow sensing
    • A.
    • Praetorius, H.A. & K.R. Spring . 2003. Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191: 69-76.
    • (2003) J. Membr. Biol. , vol.191 , pp. 69-76
    • Praetorius, H.1    Spring, K.R.2
  • 179
    • 84920466219 scopus 로고    scopus 로고
    • Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts
    • Delaine-Smith, R.M., A. Sittichokechaiwut & G.C. Reilly . 2013. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J. 13: 231894.
    • (2013) FASEB J. , vol.13 , pp. 231894
    • Delaine-Smith, R.M.1    Sittichokechaiwut, A.2    Reilly, G.C.3
  • 180
    • 84873477081 scopus 로고    scopus 로고
    • Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling
    • Praetorius, H.A. & J. Leipziger . 2013. Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling. Semin. Cell Dev. Biol. 24: 3-10.
    • (2013) Semin. Cell Dev. Biol. , vol.24 , pp. 3-10
    • Praetorius, H.A.1    Leipziger, J.2
  • 181
    • 84887123973 scopus 로고    scopus 로고
    • Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia
    • Su, S. et al. 2013. Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat. Methods. 10: 1105-1107.
    • (2013) Nat. Methods , vol.10 , pp. 1105-1107
    • Su, S.1
  • 182
    • 84902270933 scopus 로고    scopus 로고
    • Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli
    • Jin, X. et al. 2013. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell. Mol. Life Sci. 1-14.
    • (2013) Cell. Mol. Life Sci. , pp. 1-14
    • Jin, X.1
  • 183
    • 84903715527 scopus 로고    scopus 로고
    • Primary cilium regulates CaV1. 2 expression through Wnt signaling
    • Muntean, B. S. et al. 2014. Primary cilium regulates CaV1. 2 expression through Wnt signaling. J. Cell. Physiol.
    • (2014) J. Cell. Physiol.
    • Muntean, B.S.1
  • 184
    • 0037317302 scopus 로고    scopus 로고
    • Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
    • Nauli, S.M. et al. 2003. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33: 129-137.
    • (2003) Nat. Genet. , vol.33 , pp. 129-137
    • Nauli, S.M.1
  • 185
    • 84897541931 scopus 로고    scopus 로고
    • Polycystin-1 Mediates Mechanical Strain-Induced Osteoblastic Mechanoresponses via Potentiation of Intracellular Calcium and Akt/β-Catenin Pathway
    • Wang, H. et al. 2014. Polycystin-1 Mediates Mechanical Strain-Induced Osteoblastic Mechanoresponses via Potentiation of Intracellular Calcium and Akt/β-Catenin Pathway. PloS One 9: e91730.
    • (2014) PloS One , vol.9 , pp. e91730
    • Wang, H.1
  • 186
    • 34247258572 scopus 로고    scopus 로고
    • DMP1-targeted Cre expression in odontoblasts and osteocytes
    • Lu, Y. et al. 2007. DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res. 86: 320-325.
    • (2007) J. Dent. Res. , vol.86 , pp. 320-325
    • Lu, Y.1
  • 187
    • 79960169162 scopus 로고    scopus 로고
    • Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice
    • Xiao, Z. et al. 2011. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 25: 2418-2432.
    • (2011) FASEB J. , vol.25 , pp. 2418-2432
    • Xiao, Z.1
  • 188
    • 77955799439 scopus 로고    scopus 로고
    • Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells
    • Kwon, R.Y. et al. 2010. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 24: 2859-2868.
    • (2010) FASEB J. , vol.24 , pp. 2859-2868
    • Kwon, R.Y.1
  • 189
    • 84899573128 scopus 로고    scopus 로고
    • Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo
    • Lee, K.L. et al. 2014. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. FASEB J. 28: 1157-1165.
    • (2014) FASEB J. , vol.28 , pp. 1157-1165
    • Lee, K.L.1
  • 190
    • 0034773122 scopus 로고    scopus 로고
    • The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes
    • Poole, C.A., Z.J. Zhang & J.M. Ross . 2001. The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J. Anat. 199: 393-405.
    • (2001) J. Anat. , vol.199 , pp. 393-405
    • Poole, C.A.1    Zhang, Z.J.2    Ross, J.M.3
  • 191
    • 0036161627 scopus 로고    scopus 로고
    • CD44 and integrin matrix receptors participate in cartilage homeostasis
    • Knudson, W. & R.F. Loeser . 2002. CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell. Mol. Life Sci. 59: 36-44.
    • (2002) Cell. Mol. Life Sci. , vol.59 , pp. 36-44
    • Knudson, W.1    Loeser, R.F.2
  • 192
    • 0035216650 scopus 로고    scopus 로고
    • Mechanisms of chondrocyte adhesion to cartilage: role of beta1-integrins, CD44, and annexin V
    • Kurtis, M.S. et al. 2001. Mechanisms of chondrocyte adhesion to cartilage: role of beta1-integrins, CD44, and annexin V. J. Orthop. Res. 19: 1122-1130.
    • (2001) J. Orthop. Res. , vol.19 , pp. 1122-1130
    • Kurtis, M.S.1
  • 193
    • 33748089680 scopus 로고    scopus 로고
    • Localization of extracellular matrix receptors on the chondrocyte primary cilium
    • McGlashan, S. R., C.G. Jensen & C.A. Poole . 2006. Localization of extracellular matrix receptors on the chondrocyte primary cilium. J. Histochem. Cytochem. 54: 1005-1014.
    • (2006) J. Histochem. Cytochem. , vol.54 , pp. 1005-1014
    • McGlashan, S.R.1    Jensen, C.G.2    Poole, C.A.3
  • 195
    • 77955290692 scopus 로고    scopus 로고
    • Mechanical loading modulates chondrocyte primary cilia incidence and length
    • McGlashan, S.R. et al. 2010. Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol. Int. 34: 441-446.
    • (2010) Cell Biol. Int. , vol.34 , pp. 441-446
    • McGlashan, S.R.1
  • 196
    • 84860906128 scopus 로고    scopus 로고
    • 2+ signaling in compressed chondrocytes
    • 2+ signaling in compressed chondrocytes. FASEB J. 26: 1663-1671.
    • (2012) FASEB J. , vol.26 , pp. 1663-1671
    • Wann, A.K.1
  • 197
    • 84893402011 scopus 로고    scopus 로고
    • TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading
    • O'Conor, C.J. et al. 2014. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl. Acad. Sci. U. S. A. 111: 1316-1321.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 1316-1321
    • O'Conor, C.J.1
  • 198
    • 84896729110 scopus 로고    scopus 로고
    • Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes
    • Thompson, C.L., J.P. Chapple & M.M. Knight . 2014. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes. Osteoarthritis Cartilage 22: 490-498.
    • (2014) Osteoarthritis Cartilage , vol.22 , pp. 490-498
    • Thompson, C.L.1    Chapple, J.P.2    Knight, M.M.3
  • 199
    • 84875864388 scopus 로고    scopus 로고
    • Emerging role of primary cilia as mechanosensors in osteocytes
    • Nguyen, A.M. & C.R. Jacobs . 2013. Emerging role of primary cilia as mechanosensors in osteocytes. Bone 54: 196-204.
    • (2013) Bone , vol.54 , pp. 196-204
    • Nguyen, A.M.1    Jacobs, C.R.2
  • 200
    • 77949758125 scopus 로고    scopus 로고
    • The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells
    • Kelly, D.J. & C.R. Jacobs . 2010. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res. C: Embryo Today 90: 75-85.
    • (2010) Birth Defects Res. C: Embryo Today , vol.90 , pp. 75-85
    • Kelly, D.J.1    Jacobs, C.R.2
  • 201
    • 20444389065 scopus 로고    scopus 로고
    • Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner
    • Kreke, M.R., W.R. Huckle & A.S. Goldstein . 2005. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36: 1047-1055.
    • (2005) Bone , vol.36 , pp. 1047-1055
    • Kreke, M.R.1    Huckle, W.R.2    Goldstein, A.S.3
  • 202
    • 31044451130 scopus 로고    scopus 로고
    • Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation
    • Knippenberg, M. et al. 2005. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng. 11: 1780-1788.
    • (2005) Tissue Eng. , vol.11 , pp. 1780-1788
    • Knippenberg, M.1
  • 203
    • 78649831457 scopus 로고    scopus 로고
    • Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress
    • Liu, L., W. Yuan & J. Wang . 2010. Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech. Model. Mechanobiol. 9: 659-670.
    • (2010) Biomech. Model. Mechanobiol. , vol.9 , pp. 659-670
    • Liu, L.1    Yuan, W.2    Wang, J.3
  • 204
    • 0001305966 scopus 로고
    • Row formation and other types of arrangement of cartilage cells in endochondral ossification
    • Dodds, G. 1930. Row formation and other types of arrangement of cartilage cells in endochondral ossification. Anat. Rec. 46: 385-399.
    • (1930) Anat. Rec. , vol.46 , pp. 385-399
    • Dodds, G.1
  • 205
    • 0038687536 scopus 로고    scopus 로고
    • Developmental regulation of the growth plate
    • Kronenberg, H.M. 2003. Developmental regulation of the growth plate. Nature 423: 332-336.
    • (2003) Nature , vol.423 , pp. 332-336
    • Kronenberg, H.M.1
  • 206
    • 82755189619 scopus 로고    scopus 로고
    • Epiphyseal growth plate and secondary peripheral chondrosarcoma: the neighbours matter
    • de Andrea, C.E. & P.C. Hogendoorn . 2012. Epiphyseal growth plate and secondary peripheral chondrosarcoma: the neighbours matter. J. Pathol. 226: 219-228.
    • (2012) J. Pathol. , vol.226 , pp. 219-228
    • de Andrea, C.E.1    Hogendoorn, P.C.2
  • 207
    • 52049108975 scopus 로고    scopus 로고
    • The primary cilium of connective tissue cells: imaging by multiphoton microscopy
    • Donnelly, E., R. Williams & C. Farnum . 2008. The primary cilium of connective tissue cells: imaging by multiphoton microscopy. Anat. Rec. 291: 1062-1073.
    • (2008) Anat. Rec. , vol.291 , pp. 1062-1073
    • Donnelly, E.1    Williams, R.2    Farnum, C.3
  • 208
    • 0141483387 scopus 로고    scopus 로고
    • Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis
    • Aszodi, A. et al. 2003. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 17: 2465-2479.
    • (2003) Genes Dev. , vol.17 , pp. 2465-2479
    • Aszodi, A.1
  • 209
    • 77953674312 scopus 로고    scopus 로고
    • Analyzing primary cilia by multiphoton microscopy
    • Farnum, C.E., R.M. Williams & E. Donnelly . 2009. Analyzing primary cilia by multiphoton microscopy. Methods Cell Biol. 94: 117-135.
    • (2009) Methods Cell Biol. , vol.94 , pp. 117-135
    • Farnum, C.E.1    Williams, R.M.2    Donnelly, E.3
  • 210
    • 84867851891 scopus 로고    scopus 로고
    • The extracellular matrix and ciliary signaling
    • Seeger-Nukpezah, T. & E.A. Golemis . 2012. The extracellular matrix and ciliary signaling. Curr. Opin. Cell Biol. 24: 652-661.
    • (2012) Curr. Opin. Cell Biol , vol.24 , pp. 652-661
    • Seeger-Nukpezah, T.1    Golemis, E.A.2
  • 211
    • 23844485210 scopus 로고    scopus 로고
    • Cilia and Hedgehog responsiveness in the mouse
    • Huangfu, D. & K.V. Anderson . 2005. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. U. S. A. 102: 11325-11330.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 11325-11330
    • Huangfu, D.1    Anderson, K.V.2
  • 212
    • 79951760600 scopus 로고    scopus 로고
    • Orientation of Primary Cilia of Articular Chondrocytes in Three-Dimensional Space
    • Farnum, C.E. & N.J. Wilsman . 2011. Orientation of Primary Cilia of Articular Chondrocytes in Three-Dimensional Space. Anat. Rec. 294: 533-549.
    • (2011) Anat. Rec. , vol.294 , pp. 533-549
    • Farnum, C.E.1    Wilsman, N.J.2
  • 214
    • 0035184233 scopus 로고    scopus 로고
    • Biological basket weaving: formation and function of clathrin-coated vesicles
    • Brodsky, F.M. et al. 2001. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17: 517-568.
    • (2001) Annu. Rev. Cell Dev. Biol. , vol.17 , pp. 517-568
    • Brodsky, F.M.1
  • 215
    • 0036154205 scopus 로고    scopus 로고
    • CD44-mediated uptake and degradation of hyaluronan
    • Knudson, W., G. Chow & C.B. Knudson . 2002. CD44-mediated uptake and degradation of hyaluronan. Matrix Biol. 21: 15-23.
    • (2002) Matrix Biol. , vol.21 , pp. 15-23
    • Knudson, W.1    Chow, G.2    Knudson, C.B.3
  • 216
    • 0027491281 scopus 로고
    • Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis
    • Hua, Q., C.B. Knudson & W. Knudson . 1993. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J. Cell Sci. 106: 365-375.
    • (1993) J. Cell Sci. , vol.106 , pp. 365-375
    • Hua, Q.1    Knudson, C.B.2    Knudson, W.3
  • 217
    • 0033231406 scopus 로고    scopus 로고
    • Internalization of the hyaluronan receptor CD44 by chondrocytes
    • Aguiar, D.J., W. Knudson & C.B. Knudson . 1999. Internalization of the hyaluronan receptor CD44 by chondrocytes. Exp. Cell Res. 252: 292-302.
    • (1999) Exp. Cell Res. , vol.252 , pp. 292-302
    • Aguiar, D.J.1    Knudson, W.2    Knudson, C.B.3
  • 218
    • 77952407399 scopus 로고    scopus 로고
    • The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia
    • Molla-Herman, A. et al. 2010. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123: 1785-1795.
    • (2010) J. Cell Sci. , vol.123 , pp. 1785-1795
    • Molla-Herman, A.1
  • 219
    • 0035028654 scopus 로고    scopus 로고
    • Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes
    • Bush, P.G. & A.C. Hall . 2001. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J. Cell. Physiol. 187: 304-314.
    • (2001) J. Cell. Physiol. , vol.187 , pp. 304-314
    • Bush, P.G.1    Hall, A.C.2
  • 220
    • 0034865783 scopus 로고    scopus 로고
    • The osmotic sensitivity of isolated and in situ bovine articular chondrocytes
    • Bush, P.G. & A.C. Hall . 2001. The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J. Orthop. Res. 19: 768-778.
    • (2001) J. Orthop. Res. , vol.19 , pp. 768-778
    • Bush, P.G.1    Hall, A.C.2
  • 221
    • 0027403750 scopus 로고
    • Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes
    • Urban, J., A. Hall & K. Gehl . 1993. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell. Physiol. 154: 262-270.
    • (1993) J. Cell. Physiol. , vol.154 , pp. 262-270
    • Urban, J.1    Hall, A.2    Gehl, K.3
  • 222
    • 46749121432 scopus 로고    scopus 로고
    • Osmolarity influences chondrocyte death in wounded articular cartilage
    • Amin, A.K. et al. 2008. Osmolarity influences chondrocyte death in wounded articular cartilage. J. Bone Joint Surg. Am. 90: 1531-1542.
    • (2008) J. Bone Joint Surg. Am. , vol.90 , pp. 1531-1542
    • Amin, A.K.1
  • 223
    • 0028062112 scopus 로고
    • The chondrocyte: a cell under pressure
    • Urban, J. 1994. The chondrocyte: a cell under pressure. Rheumatology 33: 901-908.
    • (1994) Rheumatology , vol.33 , pp. 901-908
    • Urban, J.1
  • 224
    • 0033784893 scopus 로고    scopus 로고
    • The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation
    • Bank, R.A. et al. 2000. The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum. 43: 2202-2210.
    • (2000) Arthritis Rheum. , vol.43 , pp. 2202-2210
    • Bank, R.A.1
  • 225
    • 0029086855 scopus 로고
    • Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular-Cartilage
    • Jeffrey, J.E., D.W. Gregory & R.M. Aspden . 1995. Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular-Cartilage. Arch. Biochem. Biophys. 322: 87-96.
    • (1995) Arch. Biochem. Biophys. , vol.322 , pp. 87-96
    • Jeffrey, J.E.1    Gregory, D.W.2    Aspden, R.M.3
  • 227
    • 79952844342 scopus 로고    scopus 로고
    • Soluble levels of cytosolic tubulin regulate ciliary length control
    • Sharma, N. et al. 2011. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol. Biol. Cell 22: 806-816.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 806-816
    • Sharma, N.1
  • 228
    • 77951128108 scopus 로고    scopus 로고
    • Functional genomic screen for modulators of ciliogenesis and cilium length
    • Kim, J. et al. 2010. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464: 1048-1051.
    • (2010) Nature , vol.464 , pp. 1048-1051
    • Kim, J.1
  • 229
    • 84865043909 scopus 로고    scopus 로고
    • Primary cilia elongation in response to interleukin-1 mediates the inflammatory response
    • Wann, A. & M. Knight . 2012. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response. Cell. Mol. Life Sci. 69: 2967-2977.
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 2967-2977
    • Wann, A.1    Knight, M.2
  • 230
    • 75749090851 scopus 로고    scopus 로고
    • Intraflagellar transport: it's not just for cilia anymore
    • Baldari, C.T. & J. Rosenbaum . 2010. Intraflagellar transport: it's not just for cilia anymore. Curr. Opin. Cell Biol. 22: 75-80.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 75-80
    • Baldari, C.T.1    Rosenbaum, J.2
  • 231
    • 70449517408 scopus 로고    scopus 로고
    • Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse
    • Finetti, F. et al. 2009. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11: 1332-1339.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1332-1339
    • Finetti, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.