메뉴 건너뛰기




Volumn 289, Issue 26, 2014, Pages 18413-18426

Specificity and catalytic mechanism in family 5 uracil DNA glycosylase

Author keywords

[No Author keywords available]

Indexed keywords

AROMATIC COMPOUNDS; HYDROGEN BONDS; MOLECULAR DYNAMICS;

EID: 84903517886     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M114.567354     Document Type: Article
Times cited : (24)

References (61)
  • 1
    • 0034734380 scopus 로고    scopus 로고
    • Lessons learned from structural results on uracil-DNA glycosylase
    • Parikh, S. S., Putnam, C. D., and Tainer, J. A. (2000) Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res. 460, 183-199
    • (2000) Mutat. Res. , vol.460 , pp. 183-199
    • Parikh, S.S.1    Putnam, C.D.2    Tainer, J.A.3
  • 2
    • 0037115911 scopus 로고    scopus 로고
    • Uracil in DNA: Occurrence, consequences and repair
    • Krokan, H. E., Drabløs, F., and Slupphaug, G. (2002) Uracil in DNA: occurrence, consequences and repair. Oncogene 21, 8935-8948
    • (2002) Oncogene , vol.21 , pp. 8935-8948
    • Krokan, H.E.1    Drabløs, F.2    Slupphaug, G.3
  • 5
    • 0034734383 scopus 로고    scopus 로고
    • Structure and function in the uracil-DNA glycosylase superfamily
    • Pearl, L. H. (2000) Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165-181
    • (2000) Mutat. Res. , vol.460 , pp. 165-181
    • Pearl, L.H.1
  • 6
    • 55149093638 scopus 로고    scopus 로고
    • Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase
    • Dong, L., Mi, R., Glass, R. A., Barry, J. N., and Cao, W. (2008) Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase. DNA Repair 7, 1962-1972
    • (2008) DNA Repair , vol.7 , pp. 1962-1972
    • Dong, L.1    Mi, R.2    Glass, R.A.3    Barry, J.N.4    Cao, W.5
  • 8
    • 80053917872 scopus 로고    scopus 로고
    • Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites
    • Maiti, A., and Drohat, A. C. (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334-35338
    • (2011) J. Biol. Chem. , vol.286 , pp. 35334-35338
    • Maiti, A.1    Drohat, A.C.2
  • 9
    • 0033602148 scopus 로고    scopus 로고
    • Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors
    • Haushalter, K. A., Todd Stukenberg, M. W., Kirschner, M. W., and Verdine, G. L. (1999) Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 9, 174-185
    • (1999) Curr. Biol. , vol.9 , pp. 174-185
    • Haushalter, K.A.1    Todd Stukenberg, M.W.2    Kirschner, M.W.3    Verdine, G.L.4
  • 10
    • 58149110763 scopus 로고    scopus 로고
    • Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: Switching SMUG1 to UDG
    • Mi, R., Dong, L., Kaulgud, T., Hackett, K. W., Dominy, B. N., and Cao, W. (2009) Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG. J. Mol. Biol. 385, 761-778
    • (2009) J. Mol. Biol. , vol.385 , pp. 761-778
    • Mi, R.1    Dong, L.2    Kaulgud, T.3    Hackett, K.W.4    Dominy, B.N.5    Cao, W.6
  • 11
    • 0033587149 scopus 로고    scopus 로고
    • Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes
    • Sandigursky, M., and Franklin, W. A. (1999) Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes. Curr. Biol. 9, 531-534
    • (1999) Curr. Biol. , vol.9 , pp. 531-534
    • Sandigursky, M.1    Franklin, W.A.2
  • 13
    • 80052396623 scopus 로고    scopus 로고
    • New family of deamination repair enzymes in uracil-DNA glycosylase superfamily
    • Lee, H. W., Dominy, B. N., and Cao, W. (2011) New family of deamination repair enzymes in uracil-DNA glycosylase superfamily. J. Biol. Chem. 286, 31282-31287
    • (2011) J. Biol. Chem. , vol.286 , pp. 31282-31287
    • Lee, H.W.1    Dominy, B.N.2    Cao, W.3
  • 14
    • 70350469035 scopus 로고    scopus 로고
    • The uracil DNA glycosylase UdgB of Mycobacterium smegmatis protects the organism from the mutagenic effects of cytosine and adenine deamination
    • Wanner, R. M., Castor, D., Güthlein, C., Böttger, E. C., Springer, B., and Jiricny, J. (2009) The uracil DNA glycosylase UdgB of Mycobacterium smegmatis protects the organism from the mutagenic effects of cytosine and adenine deamination. J. Bacteriol. 191, 6312-6319
    • (2009) J. Bacteriol. , vol.191 , pp. 6312-6319
    • Wanner, R.M.1    Castor, D.2    Güthlein, C.3    Böttger, E.C.4    Springer, B.5    Jiricny, J.6
  • 15
    • 34548534747 scopus 로고    scopus 로고
    • Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis
    • Srinath, T., Bharti, S. K., and Varshney, U. (2007) Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis. DNA Repair 6, 1517-1528
    • (2007) DNA Repair , vol.6 , pp. 1517-1528
    • Srinath, T.1    Bharti, S.K.2    Varshney, U.3
  • 16
    • 77749301852 scopus 로고    scopus 로고
    • Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis
    • Malshetty, V. S., Jain, R., Srinath, T., Kurthkoti, K., and Varshney, U. (2010) Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiology 156, 940-949
    • (2010) Microbiology , vol.156 , pp. 940-949
    • Malshetty, V.S.1    Jain, R.2    Srinath, T.3    Kurthkoti, K.4    Varshney, U.5
  • 17
    • 0037052965 scopus 로고    scopus 로고
    • A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus
    • Starkuviene, V., and Fritz, H. J. (2002) A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 30, 2097-2102
    • (2002) Nucleic Acids Res. , vol.30 , pp. 2097-2102
    • Starkuviene, V.1    Fritz, H.J.2
  • 18
    • 40649104519 scopus 로고    scopus 로고
    • Mutagenesis of uracil-DNA glycosylase deficient mutants of the extremely thermophilic eubacterium Thermus thermophilus
    • Sakai, T., Tokishita, S., Mochizuki, K., Motomiya, A., Yamagata, H., and Ohta, T. (2008) Mutagenesis of uracil-DNA glycosylase deficient mutants of the extremely thermophilic eubacterium Thermus thermophilus. DNA Repair 7, 663-669
    • (2008) DNA Repair , vol.7 , pp. 663-669
    • Sakai, T.1    Tokishita, S.2    Mochizuki, K.3    Motomiya, A.4    Yamagata, H.5    Ohta, T.6
  • 19
    • 34848920082 scopus 로고    scopus 로고
    • Crystal structure of family 5 uracil-DNA glycosylase bound to DNA
    • Kosaka, H., Hoseki, J., Nakagawa, N., Kuramitsu, S., and Masui, R. (2007) Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. J. Mol. Biol. 373, 839-850
    • (2007) J. Mol. Biol. , vol.373 , pp. 839-850
    • Kosaka, H.1    Hoseki, J.2    Nakagawa, N.3    Kuramitsu, S.4    Masui, R.5
  • 20
    • 0242396923 scopus 로고    scopus 로고
    • 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures
    • Lu, X. J., and Olson, W. K. (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108-5121
    • (2003) Nucleic Acids Res. , vol.31 , pp. 5108-5121
    • Lu, X.J.1    Olson, W.K.2
  • 21
    • 78650659384 scopus 로고    scopus 로고
    • Identification of Escherichia coli mismatch-specific uracil DNA glycosylase as a robust xanthine DNA glycosylase
    • Lee, H. W., Brice, A. R., Wright, C. B., Dominy, B. N., and Cao, W. (2010) Identification of Escherichia coli mismatch-specific uracil DNA glycosylase as a robust xanthine DNA glycosylase. J. Biol. Chem. 285, 41483-41490
    • (2010) J. Biol. Chem. , vol.285 , pp. 41483-41490
    • Lee, H.W.1    Brice, A.R.2    Wright, C.B.3    Dominy, B.N.4    Cao, W.5
  • 22
    • 33644622321 scopus 로고    scopus 로고
    • Computational approaches for investigating base flipping in oligonucleotides
    • Priyakumar, U. D., and MacKerell, A. D., Jr. (2006) Computational approaches for investigating base flipping in oligonucleotides. Chem. Rev. 106, 489-505
    • (2006) Chem. Rev. , vol.106 , pp. 489-505
    • Priyakumar, U.D.1    MacKerell Jr., A.D.2
  • 23
    • 0019921462 scopus 로고
    • Role of exonuclease III in the base excision repair of uracil-containing DNA
    • Taylor, A. F., and Weiss, B. (1982) Role of exonuclease III in the base excision repair of uracil-containing DNA. J. Bacteriol. 151, 351-357
    • (1982) J. Bacteriol. , vol.151 , pp. 351-357
    • Taylor, A.F.1    Weiss, B.2
  • 24
    • 0031473847 scopus 로고    scopus 로고
    • SWISS-MODEL and the Swiss-Pdb-Viewer: An environment for comparative protein modeling
    • Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-Pdb-Viewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723
    • (1997) Electrophoresis , vol.18 , pp. 2714-2723
    • Guex, N.1    Peitsch, M.C.2
  • 27
    • 0000214231 scopus 로고    scopus 로고
    • All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution
    • MacKerell, A. D., and Banavali, N. K. (2000) All-atom empirical force field for nucleic acids: II. application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 21, 105-120
    • (2000) J. Comput. Chem. , vol.21 , pp. 105-120
    • MacKerell, A.D.1    Banavali, N.K.2
  • 28
    • 33846823909 scopus 로고
    • Particle mesh Ewald: An Nα log (N) method for Ewald sums in large systems
    • Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: An Nα log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092
    • (1993) J. Chem. Phys. , vol.98 , pp. 10089-10092
    • Darden, T.1    York, D.2    Pedersen, L.3
  • 29
    • 36749113534 scopus 로고
    • Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids
    • Adelman, S. A., and Doll, J. D. (1976) Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375-2388
    • (1976) J. Chem. Phys. , vol.64 , pp. 2375-2388
    • Adelman, S.A.1    Doll, J.D.2
  • 32
    • 0019475150 scopus 로고
    • Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli
    • Warner, H. R., Duncan, B. K., Garrett, C., and Neuhard, J. (1981) Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli. J. Bacteriol. 145, 687-695
    • (1981) J. Bacteriol. , vol.145 , pp. 687-695
    • Warner, H.R.1    Duncan, B.K.2    Garrett, C.3    Neuhard, J.4
  • 33
  • 34
    • 0026577240 scopus 로고
    • Crystal structure at 1.5-A resolution of d (CGCICICG), an octanucleotide containing inosine, and its comparison with d (CGCG) and d (CGCGCG) structures
    • Kumar, V. D., Harrison, R. W., Andrews, L. C., and Weber, I. T. (1992) Crystal structure at 1.5-A resolution of d (CGCICICG), an octanucleotide containing inosine, and its comparison with d (CGCG) and d (CGCGCG) structures. Biochemistry 31, 1541-1550
    • (1992) Biochemistry , vol.31 , pp. 1541-1550
    • Kumar, V.D.1    Harrison, R.W.2    Andrews, L.C.3    Weber, I.T.4
  • 35
    • 0028231020 scopus 로고
    • Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides
    • Case-Green, S. C., and Southern, E. M. (1994) Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Res. 22, 131-136
    • (1994) Nucleic Acids Res. , vol.22 , pp. 131-136
    • Case-Green, S.C.1    Southern, E.M.2
  • 36
    • 0022429804 scopus 로고
    • Base pairing involving deoxyinosine: Implications for probe design
    • Martin, F. H., Castro, M. M., Aboul-ela, F., and Tinoco, I., Jr. (1985) Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res. 13, 8927-8938
    • (1985) Nucleic Acids Res. , vol.13 , pp. 8927-8938
    • Martin, F.H.1    Castro, M.M.2    Aboul-ela, F.3    Tinoco Jr., I.4
  • 37
    • 28544447850 scopus 로고    scopus 로고
    • Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes
    • Watkins, N. E., Jr., and SantaLucia, J., Jr. (2005) Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res. 33, 6258-6267
    • (2005) Nucleic Acids Res. , vol.33 , pp. 6258-6267
    • Watkins Jr., N.E.1    SantaLucia Jr., J.2
  • 38
    • 33644635257 scopus 로고    scopus 로고
    • Toward a detailed understanding of base excision repair enzymes: Transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer
    • Berti, P. J., and McCann, J. A. (2006) Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 106, 506-555
    • (2006) Chem. Rev. , vol.106 , pp. 506-555
    • Berti, P.J.1    McCann, J.A.2
  • 39
    • 0042342532 scopus 로고    scopus 로고
    • A mechanistic perspective on the chemistry of DNA repair glycosylases
    • Stivers, J. T., and Jiang, Y. L. (2003) A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103, 2729-2759
    • (2003) Chem. Rev. , vol.103 , pp. 2729-2759
    • Stivers, J.T.1    Jiang, Y.L.2
  • 40
    • 0028959237 scopus 로고
    • The structural basis of specific base-excision repair by uracil-DNA glycosylase
    • Savva, R., McAuley-Hecht, K., Brown, T., and Pearl, L. (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373, 487-493
    • (1995) Nature , vol.373 , pp. 487-493
    • Savva, R.1    McAuley-Hecht, K.2    Brown, T.3    Pearl, L.4
  • 41
    • 0028934537 scopus 로고
    • Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysis
    • Mol, C. D., Arvai, A. S., Slupphaug, G., Kavli, B., Alseth, I., Krokan, H. E., and Tainer, J. A. (1995) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80, 869-878
    • (1995) Cell , vol.80 , pp. 869-878
    • Mol, C.D.1    Arvai, A.S.2    Slupphaug, G.3    Kavli, B.4    Alseth, I.5    Krokan, H.E.6    Tainer, J.A.7
  • 42
    • 0033551258 scopus 로고    scopus 로고
    • Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: Effect on DNA binding, uracil inhibition and catalysis
    • Shroyer, M. J., Bennett, S. E., Putnam, C. D., Tainer, J. A., and Mosbaugh, D. W. (1999) Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis. Biochemistry 38, 4834-4845
    • (1999) Biochemistry , vol.38 , pp. 4834-4845
    • Shroyer, M.J.1    Bennett, S.E.2    Putnam, C.D.3    Tainer, J.A.4    Mosbaugh, D.W.5
  • 43
    • 0033554424 scopus 로고    scopus 로고
    • Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase
    • Drohat, A. C., Jagadeesh, J., Ferguson, E., and Stivers, J. T. (1999) Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase. Biochemistry 38, 11866-11875
    • (1999) Biochemistry , vol.38 , pp. 11866-11875
    • Drohat, A.C.1    Jagadeesh, J.2    Ferguson, E.3    Stivers, J.T.4
  • 45
    • 0029904839 scopus 로고    scopus 로고
    • Anucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA
    • Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., and Tainer, J. A. (1996) Anucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87-92
    • (1996) Nature , vol.384 , pp. 87-92
    • Slupphaug, G.1    Mol, C.D.2    Kavli, B.3    Arvai, A.S.4    Krokan, H.E.5    Tainer, J.A.6
  • 46
    • 0032498302 scopus 로고    scopus 로고
    • Crystal structure of a G: T/U mismatch-specific DNA glycosylase: Mismatch recognition by complementary-strand interactions
    • Barrett, T. E., Savva, R., Panayotou, G., Barlow, T., Brown, T., Jiricny, J., and Pearl, L. H. (1998) Crystal structure of a G: T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 92, 117-129
    • (1998) Cell , vol.92 , pp. 117-129
    • Barrett, T.E.1    Savva, R.2    Panayotou, G.3    Barlow, T.4    Brown, T.5    Jiricny, J.6    Pearl, L.H.7
  • 48
    • 0014961477 scopus 로고
    • Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides
    • Zoltewicz, J. A., Clark, D. F., Sharpless, T. W., and Grahe, G. (1970) Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 92, 1741-1749
    • (1970) J. Am. Chem. Soc. , vol.92 , pp. 1741-1749
    • Zoltewicz, J.A.1    Clark, D.F.2    Sharpless, T.W.3    Grahe, G.4
  • 49
    • 42649085059 scopus 로고    scopus 로고
    • Transition-state analysis of the DNA repair enzyme MutY
    • McCann, J. A., and Berti, P. J. (2008) Transition-state analysis of the DNA repair enzyme MutY. J. Am. Chem. Soc. 130, 5789-5797
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 5789-5797
    • McCann, J.A.1    Berti, P.J.2
  • 51
    • 0032877155 scopus 로고    scopus 로고
    • The active site of the Escherichia coli MutY DNA adenine glycosylase
    • Wright, P. M., Yu, J., Cillo, J., and Lu, A. L. (1999) The active site of the Escherichia coli MutY DNA adenine glycosylase. J. Biol. Chem. 274, 29011-29018
    • (1999) J. Biol. Chem. , vol.274 , pp. 29011-29018
    • Wright, P.M.1    Yu, J.2    Cillo, J.3    Lu, A.L.4
  • 52
    • 84857560198 scopus 로고    scopus 로고
    • Catalytic contributions of key residues in the adenine glycosylase MutY revealed by pHdependent kinetics and cellular repair assays
    • Brinkmeyer, M. K., Pope, M. A., and David, S. S. (2012) Catalytic contributions of key residues in the adenine glycosylase MutY revealed by pHdependent kinetics and cellular repair assays. Chem. Biol. 19, 276-286
    • (2012) Chem. Biol. , vol.19 , pp. 276-286
    • Brinkmeyer, M.K.1    Pope, M.A.2    David, S.S.3
  • 53
    • 1342304229 scopus 로고    scopus 로고
    • Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase
    • Fromme, J. C., Banerjee, A., Huang, S. J., and Verdine, G. L. (2004) Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 427, 652-656
    • (2004) Nature , vol.427 , pp. 652-656
    • Fromme, J.C.1    Banerjee, A.2    Huang, S.J.3    Verdine, G.L.4
  • 54
    • 73249131232 scopus 로고    scopus 로고
    • Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenineDNA glycosylase
    • Lee, S., and Verdine, G. L. (2009) Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenineDNA glycosylase. Proc. Natl. Acad. Sci. U. S. A. 106, 18497-18502
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 18497-18502
    • Lee, S.1    Verdine, G.L.2
  • 55
    • 0031763884 scopus 로고    scopus 로고
    • MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily
    • Guan, Y., Manuel, R. C., Arvai, A. S., Parikh, S. S., Mol, C. D., Miller, J. H., Lloyd, S., and Tainer, J. A. (1998) MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Struct. Biol. 5, 1058-1064
    • (1998) Nature Struct. Biol. , vol.5 , pp. 1058-1064
    • Guan, Y.1    Manuel, R.C.2    Arvai, A.S.3    Parikh, S.S.4    Mol, C.D.5    Miller, J.H.6    Lloyd, S.7    Tainer, J.A.8
  • 56
    • 84861398910 scopus 로고    scopus 로고
    • Role of environment for catalysis of the DNA repair enzyme MutY
    • Brunk, E., Arey, J. S., and Rothlisberger, U. (2012) Role of environment for catalysis of the DNA repair enzyme MutY. J. Am. Chem. Soc. 134, 8608-8616
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 8608-8616
    • Brunk, E.1    Arey, J.S.2    Rothlisberger, U.3
  • 57
    • 0033554395 scopus 로고    scopus 로고
    • Heteronuclear NMR and crystallographic studies of wild-type and H187Q Escherichia coli uracil DNA glycosylase: Electrophilic catalysis of uracil expulsion by a neutral histidine 187
    • Drohat, A. C., Xiao, G., Tordova, M., Jagadeesh, J., Pankiewicz, K. W., Watanabe, K. A., Gilliland, G. L., and Stivers, J. T. (1999) Heteronuclear NMR and crystallographic studies of wild-type and H187Q Escherichia coli uracil DNA glycosylase: electrophilic catalysis of uracil expulsion by a neutral histidine 187. Biochemistry 38, 11876-11886
    • (1999) Biochemistry , vol.38 , pp. 11876-11886
    • Drohat, A.C.1    Xiao, G.2    Tordova, M.3    Jagadeesh, J.4    Pankiewicz, K.W.5    Watanabe, K.A.6    Gilliland, G.L.7    Stivers, J.T.8
  • 58
    • 5144220241 scopus 로고    scopus 로고
    • Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase
    • Matsubara, M., Tanaka, T., Terato, H., Ohmae, E., Izumi, S., Katayanagi, K., and Ide, H. (2004) Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res. 32, 5291-5302
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5291-5302
    • Matsubara, M.1    Tanaka, T.2    Terato, H.3    Ohmae, E.4    Izumi, S.5    Katayanagi, K.6    Ide, H.7
  • 59
    • 0346434114 scopus 로고    scopus 로고
    • Probing the requirements for recognition and catalysis in Fpg and MutY with nonpolar adenine isosteres
    • Francis, A. W., Helquist, S. A., Kool, E. T., and David, S. S. (2003) Probing the requirements for recognition and catalysis in Fpg and MutY with nonpolar adenine isosteres. J. Am. Chem. Soc. 125, 16235-16242
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 16235-16242
    • Francis, A.W.1    Helquist, S.A.2    Kool, E.T.3    David, S.S.4
  • 60
    • 3242798107 scopus 로고    scopus 로고
    • Xanthine, xanthosine and its nucleotides: Solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways
    • Kulikowska, E., Kierdaszuk, B., and Shugar, D. (2004) Xanthine, xanthosine and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways. Acta Biochim. Pol. 51, 493-531
    • (2004) Acta Biochim. Pol. , vol.51 , pp. 493-531
    • Kulikowska, E.1    Kierdaszuk, B.2    Shugar, D.3
  • 61
    • 0038284111 scopus 로고    scopus 로고
    • Structural properties of the neutral and monoanionic forms of xanthosine, highly relevant to their substrate properties with various enzyme systems
    • Poznanski, J., Kierdaszuk, B., and Shugar, D. (2003) Structural properties of the neutral and monoanionic forms of xanthosine, highly relevant to their substrate properties with various enzyme systems. Nucleosides Nucleotides Nucleic Acids 22, 249-263
    • (2003) Nucleosides Nucleotides Nucleic Acids , vol.22 , pp. 249-263
    • Poznanski, J.1    Kierdaszuk, B.2    Shugar, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.