메뉴 건너뛰기




Volumn 385, Issue 3, 2009, Pages 761-778

Insights from Xanthine and Uracil DNA Glycosylase Activities of Bacterial and Human SMUG1: Switching SMUG1 to UDG

Author keywords

deamination; DNA glycosylase; Geobacter; molecular dynamics; SMUG1

Indexed keywords

BACTERIAL ENZYME; DOUBLE STRANDED DNA; GLYCOSIDASE; MUTANT PROTEIN; OXYGEN; PROLINE; SINGLE STRAND SELECTIVE MONOFUNCTIONAL URACIL DNA GLYCOSYLASE; SINGLE STRANDED DNA; UNCLASSIFIED DRUG; URACIL; URACIL DNA GLYCOSIDASE; XANTHINE; XANTHINE DNA GLYCOSIDASE;

EID: 58149110763     PISSN: 00222836     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmb.2008.09.038     Document Type: Article
Times cited : (26)

References (65)
  • 1
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 362 (1993) 709-715
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 2
    • 0034029512 scopus 로고    scopus 로고
    • Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells
    • Spencer J.P., Whiteman M., Jenner A., and Halliwell B. Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic. Biol. Med. 28 (2000) 1039-1050
    • (2000) Free Radic. Biol. Med. , vol.28 , pp. 1039-1050
    • Spencer, J.P.1    Whiteman, M.2    Jenner, A.3    Halliwell, B.4
  • 4
    • 0001773702 scopus 로고
    • Damage to DNA caused by hydrolysis
    • Seeberg E., and Kleppe K. (Eds), Plenum Press, New York, NY
    • Shapiro R. Damage to DNA caused by hydrolysis. In: Seeberg E., and Kleppe K. (Eds). Chromosome Damage and Repair (1981), Plenum Press, New York, NY 3-18
    • (1981) Chromosome Damage and Repair , pp. 3-18
    • Shapiro, R.1
  • 6
    • 1042298162 scopus 로고    scopus 로고
    • Reactive nitrogen species in the chemical biology of inflammation
    • Dedon P.C., and Tannenbaum S.R. Reactive nitrogen species in the chemical biology of inflammation. Arch. Biochem. Biophys. 423 (2004) 12-22
    • (2004) Arch. Biochem. Biophys. , vol.423 , pp. 12-22
    • Dedon, P.C.1    Tannenbaum, S.R.2
  • 7
    • 0032171420 scopus 로고    scopus 로고
    • Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide
    • Wink D.A., and Mitchell J.B. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25 (1998) 434-456
    • (1998) Free Radic. Biol. Med. , vol.25 , pp. 434-456
    • Wink, D.A.1    Mitchell, J.B.2
  • 8
    • 0029989276 scopus 로고    scopus 로고
    • Isolation and characterization of a novel product, 2′-deoxyoxanosine, from 2′-deoxyguanosine, oligodeoxynucleotide and calf thymus DNA treated by nitrous-acid and nitric-oxide
    • Suzuki T., Yamaoka R., Nishi M., Ide H., and Makino K. Isolation and characterization of a novel product, 2′-deoxyoxanosine, from 2′-deoxyguanosine, oligodeoxynucleotide and calf thymus DNA treated by nitrous-acid and nitric-oxide. J. Am. Chem. Soc. 118 (1996) 2515-2516
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 2515-2516
    • Suzuki, T.1    Yamaoka, R.2    Nishi, M.3    Ide, H.4    Makino, K.5
  • 9
    • 0033603420 scopus 로고    scopus 로고
    • Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2′-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity
    • Lucas L.T., Gatehouse D., and Shuker D.E. Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2′-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity. J. Biol. Chem. 274 (1999) 18319-18326
    • (1999) J. Biol. Chem. , vol.274 , pp. 18319-18326
    • Lucas, L.T.1    Gatehouse, D.2    Shuker, D.E.3
  • 10
    • 0019198357 scopus 로고
    • Mutagenic deamination of cytosine residues in DNA
    • Duncan B.K., and Miller J.H. Mutagenic deamination of cytosine residues in DNA. Nature 287 (1980) 560-561
    • (1980) Nature , vol.287 , pp. 560-561
    • Duncan, B.K.1    Miller, J.H.2
  • 11
    • 0018185292 scopus 로고
    • Molecular basis of base substitution hotspots in Escherichia coli
    • Coulondre C., Miller J.H., Farabaugh P.J., and Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274 (1978) 775-780
    • (1978) Nature , vol.274 , pp. 775-780
    • Coulondre, C.1    Miller, J.H.2    Farabaugh, P.J.3    Gilbert, W.4
  • 12
    • 0344061031 scopus 로고    scopus 로고
    • Stability, miscoding potential, and repair of 2′-deoxyxanthosine in DNA: implications for nitric oxide-induced mutagenesis
    • Wuenschell G.E., O'Connor T.R., and Termini J. Stability, miscoding potential, and repair of 2′-deoxyxanthosine in DNA: implications for nitric oxide-induced mutagenesis. Biochemistry 42 (2003) 3608-3616
    • (2003) Biochemistry , vol.42 , pp. 3608-3616
    • Wuenschell, G.E.1    O'Connor, T.R.2    Termini, J.3
  • 14
    • 0026321495 scopus 로고
    • DNA deaminating ability and genotoxicity of nitric oxide and its progenitors
    • Wink D.A., Kasprzak K.S., Maragos C.M., Elespuru R.K., Misra M., Dunams T.M., et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254 (1991) 1001-1003
    • (1991) Science , vol.254 , pp. 1001-1003
    • Wink, D.A.1    Kasprzak, K.S.2    Maragos, C.M.3    Elespuru, R.K.4    Misra, M.5    Dunams, T.M.6
  • 15
    • 0032544198 scopus 로고    scopus 로고
    • Misincorporation of 2′-deoxyoxanosine 5′-triphosphate by DNA polymerases and its implication for mutagenesis
    • Suzuki T., Yoshida M., Yamada M., Ide H., Kobayashi M., Kanaori K., Tajima K., and Makino K. Misincorporation of 2′-deoxyoxanosine 5′-triphosphate by DNA polymerases and its implication for mutagenesis. Biochemistry 37 (1998) 11592-11598
    • (1998) Biochemistry , vol.37 , pp. 11592-11598
    • Suzuki, T.1    Yoshida, M.2    Yamada, M.3    Ide, H.4    Kobayashi, M.5    Kanaori, K.6    Tajima, K.7    Makino, K.8
  • 17
    • 3242875178 scopus 로고    scopus 로고
    • Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V
    • Hitchcock T.M., Gao H., and Cao W. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic Acids Res. 32 (2004) 4071-4080
    • (2004) Nucleic Acids Res. , vol.32 , pp. 4071-4080
    • Hitchcock, T.M.1    Gao, H.2    Cao, W.3
  • 18
    • 0037115911 scopus 로고    scopus 로고
    • Uracil in DNA-occurrence, consequences and repair
    • Krokan H.E., Drablos F., and Slupphaug G. Uracil in DNA-occurrence, consequences and repair. Oncogene 21 (2002) 8935-8948
    • (2002) Oncogene , vol.21 , pp. 8935-8948
    • Krokan, H.E.1    Drablos, F.2    Slupphaug, G.3
  • 19
    • 0034734383 scopus 로고    scopus 로고
    • Structure and function in the uracil-DNA glycosylase superfamily
    • Pearl L.H. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460 (2000) 165-181
    • (2000) Mutat. Res. , vol.460 , pp. 165-181
    • Pearl, L.H.1
  • 20
    • 24044460415 scopus 로고    scopus 로고
    • DNA base damage recognition and removal: new twists and grooves
    • Huffman J.L., Sundheim O., and Tainer J.A. DNA base damage recognition and removal: new twists and grooves. Mutat. Res. 577 (2005) 55-76
    • (2005) Mutat. Res. , vol.577 , pp. 55-76
    • Huffman, J.L.1    Sundheim, O.2    Tainer, J.A.3
  • 21
    • 0038074420 scopus 로고    scopus 로고
    • The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs
    • Hardeland U., Bentele M., Jiricny J., and Schar P. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res. 31 (2003) 2261-2271
    • (2003) Nucleic Acids Res. , vol.31 , pp. 2261-2271
    • Hardeland, U.1    Bentele, M.2    Jiricny, J.3    Schar, P.4
  • 22
    • 55149093638 scopus 로고    scopus 로고
    • Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase
    • Dong L., Mi R., Glass R.A., Barry J.N., and Cao W. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase. DNA Repair 7 (2008) 1962-1972
    • (2008) DNA Repair , vol.7 , pp. 1962-1972
    • Dong, L.1    Mi, R.2    Glass, R.A.3    Barry, J.N.4    Cao, W.5
  • 24
    • 0037052965 scopus 로고    scopus 로고
    • A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus
    • Starkuviene V., and Fritz H.J. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 30 (2002) 2097-2102
    • (2002) Nucleic Acids Res. , vol.30 , pp. 2097-2102
    • Starkuviene, V.1    Fritz, H.J.2
  • 25
    • 0035804794 scopus 로고    scopus 로고
    • Characterization of the full length uracil-DNA glycosylase in the extreme thermophile Thermotoga maritima
    • Sandigursky M., Faje A., and Franklin W.A. Characterization of the full length uracil-DNA glycosylase in the extreme thermophile Thermotoga maritima. Mutat. Res. 485 (2001) 187-195
    • (2001) Mutat. Res. , vol.485 , pp. 187-195
    • Sandigursky, M.1    Faje, A.2    Franklin, W.A.3
  • 26
    • 0033587149 scopus 로고    scopus 로고
    • Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes
    • Sandigursky M., and Franklin W.A. Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes. Curr. Biol. 9 (1999) 531-534
    • (1999) Curr. Biol. , vol.9 , pp. 531-534
    • Sandigursky, M.1    Franklin, W.A.2
  • 27
    • 0037124349 scopus 로고    scopus 로고
    • A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site
    • Sartori A.A., Fitz-Gibbon S., Yang H., Miller J.H., and Jiricny J. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J. 21 (2002) 3182-3191
    • (2002) EMBO J. , vol.21 , pp. 3182-3191
    • Sartori, A.A.1    Fitz-Gibbon, S.2    Yang, H.3    Miller, J.H.4    Jiricny, J.5
  • 29
    • 0141848395 scopus 로고    scopus 로고
    • Absence of 2′-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations
    • Dong M., Wang C., Deen W.M., and Dedon P.C. Absence of 2′-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations. Chem. Res. Toxicol. 16 (2003) 1044-1055
    • (2003) Chem. Res. Toxicol. , vol.16 , pp. 1044-1055
    • Dong, M.1    Wang, C.2    Deen, W.M.3    Dedon, P.C.4
  • 30
    • 31844444034 scopus 로고    scopus 로고
    • Relatively small increases in the steady-state levels of nucleobase deamination products in DNA from human TK6 cells exposed to toxic levels of nitric oxide
    • Dong M., and Dedon P.C. Relatively small increases in the steady-state levels of nucleobase deamination products in DNA from human TK6 cells exposed to toxic levels of nitric oxide. Chem. Res. Toxicol. 19 (2006) 50-57
    • (2006) Chem. Res. Toxicol. , vol.19 , pp. 50-57
    • Dong, M.1    Dedon, P.C.2
  • 31
    • 0032557570 scopus 로고    scopus 로고
    • Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides
    • Caulfield J.L., Wishnok J.S., and Tannenbaum S.R. Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J. Biol. Chem. 273 (1998) 12689-12695
    • (1998) J. Biol. Chem. , vol.273 , pp. 12689-12695
    • Caulfield, J.L.1    Wishnok, J.S.2    Tannenbaum, S.R.3
  • 32
    • 31744431923 scopus 로고    scopus 로고
    • Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species
    • Dong M., Vongchampa V., Gingipalli L., Cloutier J.F., Kow Y.W., O'Connor T., and Dedon P.C. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species. Mutat. Res. 594 (2006) 120-134
    • (2006) Mutat. Res. , vol.594 , pp. 120-134
    • Dong, M.1    Vongchampa, V.2    Gingipalli, L.3    Cloutier, J.F.4    Kow, Y.W.5    O'Connor, T.6    Dedon, P.C.7
  • 33
    • 0345814007 scopus 로고    scopus 로고
    • Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid
    • Terato H., Masaoka A., Asagoshi K., Honsho A., Ohyama Y., Suzuki T., et al. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Nucleic Acids Res. 30 (2002) 4975-4984
    • (2002) Nucleic Acids Res. , vol.30 , pp. 4975-4984
    • Terato, H.1    Masaoka, A.2    Asagoshi, K.3    Honsho, A.4    Ohyama, Y.5    Suzuki, T.6
  • 34
    • 12144256802 scopus 로고    scopus 로고
    • Active site plasticity of endonuclease V from Salmonella typhimurium
    • Feng H., Klutz A.M., and Cao W. Active site plasticity of endonuclease V from Salmonella typhimurium. Biochemistry 44 (2005) 675-683
    • (2005) Biochemistry , vol.44 , pp. 675-683
    • Feng, H.1    Klutz, A.M.2    Cao, W.3
  • 35
    • 0034689567 scopus 로고    scopus 로고
    • Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V
    • He B., Qing H., and Kow Y.W. Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat. Res. 459 (2000) 109-114
    • (2000) Mutat. Res. , vol.459 , pp. 109-114
    • He, B.1    Qing, H.2    Kow, Y.W.3
  • 36
    • 0029875519 scopus 로고    scopus 로고
    • Repair of products of oxidative DNA base damage in human cells
    • Jaruga P., and Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res. 24 (1996) 1389-1394
    • (1996) Nucleic Acids Res. , vol.24 , pp. 1389-1394
    • Jaruga, P.1    Dizdaroglu, M.2
  • 37
    • 0033602148 scopus 로고    scopus 로고
    • Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors
    • Haushalter K.A., Todd Stukenberg M.W., Kirschner M.W., and Verdine G.L. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 9 (1999) 174-185
    • (1999) Curr. Biol. , vol.9 , pp. 174-185
    • Haushalter, K.A.1    Todd Stukenberg, M.W.2    Kirschner, M.W.3    Verdine, G.L.4
  • 38
    • 0033636312 scopus 로고    scopus 로고
    • Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication
    • Nilsen H., Rosewell I., Robins P., Skjelbred C.F., Andersen S., Slupphaug G., et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5 (2000) 1059-1065
    • (2000) Mol. Cell , vol.5 , pp. 1059-1065
    • Nilsen, H.1    Rosewell, I.2    Robins, P.3    Skjelbred, C.F.4    Andersen, S.5    Slupphaug, G.6
  • 39
    • 0035421186 scopus 로고    scopus 로고
    • Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase
    • Nilsen H., Haushalter K.A., Robins P., Barnes D.E., Verdine G.L., and Lindahl T. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20 (2001) 4278-4286
    • (2001) EMBO J. , vol.20 , pp. 4278-4286
    • Nilsen, H.1    Haushalter, K.A.2    Robins, P.3    Barnes, D.E.4    Verdine, G.L.5    Lindahl, T.6
  • 40
    • 34547645005 scopus 로고    scopus 로고
    • Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms
    • Pettersen H.S., Sundheim O., Gilljam K.M., Slupphaug G., Krokan H.E., and Kavli B. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Res. 35 (2007) 3879-3892
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3879-3892
    • Pettersen, H.S.1    Sundheim, O.2    Gilljam, K.M.3    Slupphaug, G.4    Krokan, H.E.5    Kavli, B.6
  • 41
    • 18644363009 scopus 로고    scopus 로고
    • hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
    • Kavli B., Sundheim O., Akbari M., Otterlei M., Nilsen H., Skorpen F., et al. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277 (2002) 39926-39936
    • (2002) J. Biol. Chem. , vol.277 , pp. 39926-39936
    • Kavli, B.1    Sundheim, O.2    Akbari, M.3    Otterlei, M.4    Nilsen, H.5    Skorpen, F.6
  • 42
    • 0037509930 scopus 로고    scopus 로고
    • Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions
    • Masaoka A., Matsubara M., Hasegawa R., Tanaka T., Kurisu S., Terato H., et al. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 42 (2003) 5003-5012
    • (2003) Biochemistry , vol.42 , pp. 5003-5012
    • Masaoka, A.1    Matsubara, M.2    Hasegawa, R.3    Tanaka, T.4    Kurisu, S.5    Terato, H.6
  • 43
    • 0038771139 scopus 로고    scopus 로고
    • Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1
    • Wibley J.E., Waters T.R., Haushalter K., Verdine G.L., and Pearl L.H. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 11 (2003) 1647-1659
    • (2003) Mol. Cell , vol.11 , pp. 1647-1659
    • Wibley, J.E.1    Waters, T.R.2    Haushalter, K.3    Verdine, G.L.4    Pearl, L.H.5
  • 44
    • 36549042510 scopus 로고    scopus 로고
    • Oxanine DNA glycosylase activities in mammalian systems
    • Dong L., Meira L.B., Hazra T.K., Samson L.D., and Cao W. Oxanine DNA glycosylase activities in mammalian systems. DNA Repair 7 (2008) 128-134
    • (2008) DNA Repair , vol.7 , pp. 128-134
    • Dong, L.1    Meira, L.B.2    Hazra, T.K.3    Samson, L.D.4    Cao, W.5
  • 45
    • 0034721829 scopus 로고    scopus 로고
    • Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis
    • Hardeland U., Bentele M., Jiricny J., and Schar P. Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis. J. Biol. Chem. 275 (2000) 33449-33456
    • (2000) J. Biol. Chem. , vol.275 , pp. 33449-33456
    • Hardeland, U.1    Bentele, M.2    Jiricny, J.3    Schar, P.4
  • 46
    • 5144220241 scopus 로고    scopus 로고
    • Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase
    • Matsubara M., Tanaka T., Terato H., Ohmae E., Izumi S., Katayanagi K., and Ide H. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res. 32 (2004) 5291-5302
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5291-5302
    • Matsubara, M.1    Tanaka, T.2    Terato, H.3    Ohmae, E.4    Izumi, S.5    Katayanagi, K.6    Ide, H.7
  • 47
    • 0025890073 scopus 로고
    • Dissimilatory Fe(III) and Mn(IV) reduction
    • Lovley D.R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55 (1991) 259-287
    • (1991) Microbiol. Rev. , vol.55 , pp. 259-287
    • Lovley, D.R.1
  • 48
    • 0034734380 scopus 로고    scopus 로고
    • Lessons learned from structural results on uracil-DNA glycosylase
    • Parikh S.S., Putnam C.D., and Tainer J.A. Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res. 460 (2000) 183-199
    • (2000) Mutat. Res. , vol.460 , pp. 183-199
    • Parikh, S.S.1    Putnam, C.D.2    Tainer, J.A.3
  • 49
    • 0028934537 scopus 로고
    • Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis
    • Mol C.D., Arvai A.S., Slupphaug G., Kavli B., Alseth I., Krokan H.E., and Tainer J.A. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80 (1995) 869-878
    • (1995) Cell , vol.80 , pp. 869-878
    • Mol, C.D.1    Arvai, A.S.2    Slupphaug, G.3    Kavli, B.4    Alseth, I.5    Krokan, H.E.6    Tainer, J.A.7
  • 51
    • 0032167424 scopus 로고    scopus 로고
    • Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA
    • Parikh S.S., Mol C.D., Slupphaug G., Bharati S., Krokan H.E., and Tainer J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17 (1998) 5214-5226
    • (1998) EMBO J. , vol.17 , pp. 5214-5226
    • Parikh, S.S.1    Mol, C.D.2    Slupphaug, G.3    Bharati, S.4    Krokan, H.E.5    Tainer, J.A.6
  • 54
    • 27744480205 scopus 로고    scopus 로고
    • Structural biology: proteins flex to function
    • Huang Y.J., and Montelione G.T. Structural biology: proteins flex to function. Nature 438 (2005) 36-37
    • (2005) Nature , vol.438 , pp. 36-37
    • Huang, Y.J.1    Montelione, G.T.2
  • 55
    • 27544462342 scopus 로고    scopus 로고
    • Role of protein dynamics in reaction rate enhancement by enzymes
    • Agarwal P.K. Role of protein dynamics in reaction rate enhancement by enzymes. J. Am. Chem. Soc. 127 (2005) 15248-15256
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 15248-15256
    • Agarwal, P.K.1
  • 56
    • 33748619206 scopus 로고    scopus 로고
    • An NMR perspective on enzyme dynamics
    • Boehr D.D., Dyson H.J., and Wright P.E. An NMR perspective on enzyme dynamics. Chem. Rev. 106 (2006) 3055-3079
    • (2006) Chem. Rev. , vol.106 , pp. 3055-3079
    • Boehr, D.D.1    Dyson, H.J.2    Wright, P.E.3
  • 59
    • 0024520745 scopus 로고
    • Site-directed mutagenesis by overlap extension using the polymerase chain reaction
    • Ho S.N., Hunt H.D., Horton R.M., Pullen J.K., and Pease L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77 (1989) 51-59
    • (1989) Gene , vol.77 , pp. 51-59
    • Ho, S.N.1    Hunt, H.D.2    Horton, R.M.3    Pullen, J.K.4    Pease, L.R.5
  • 60
    • 0035979334 scopus 로고    scopus 로고
    • Multiple cleavage activities of endonuclease V from Thermotoga maritima: recognition and strand nicking mechanism
    • Huang J., Lu J., Barany F., and Cao W. Multiple cleavage activities of endonuclease V from Thermotoga maritima: recognition and strand nicking mechanism. Biochemistry 40 (2001) 8738-8748
    • (2001) Biochemistry , vol.40 , pp. 8738-8748
    • Huang, J.1    Lu, J.2    Barany, F.3    Cao, W.4
  • 61
    • 10744220076 scopus 로고    scopus 로고
    • Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling
    • Petrey D., Xiang Z., Tang C.L., Xie L., Gimpelev M., Mitros T., et al. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins 53 (2003) 430-435
    • (2003) Proteins , vol.53 , pp. 430-435
    • Petrey, D.1    Xiang, Z.2    Tang, C.L.3    Xie, L.4    Gimpelev, M.5    Mitros, T.6
  • 64
    • 1942423619 scopus 로고    scopus 로고
    • MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology
    • Feig M., Karanicolas J., and Brooks III C.L. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. Mol. Graphics Model 22 (2004) 377-395
    • (2004) J. Mol. Graphics Model , vol.22 , pp. 377-395
    • Feig, M.1    Karanicolas, J.2    Brooks III, C.L.3
  • 65
    • 0033468737 scopus 로고    scopus 로고
    • Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects
    • Srinivasan J., Trevathan M.W., Beroza P., and Case D.A. Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects. Theor. Chem. Acc. 101 (1999) 426-434
    • (1999) Theor. Chem. Acc. , vol.101 , pp. 426-434
    • Srinivasan, J.1    Trevathan, M.W.2    Beroza, P.3    Case, D.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.