메뉴 건너뛰기




Volumn 83, Issue , 2014, Pages 129-157

Demystifying heparan sulfate-protein interactions

Author keywords

glycan protein interaction; glycosaminoglycan; heparan sulfate binding domain; heparin binding protein; oligomerization; proteoglycan

Indexed keywords

ADVANCED GLYCATION END PRODUCT RECEPTOR; AMYLOID PRECURSOR PROTEIN; ANTITHROMBIN; ARGININE; CHEMOKINE; FIBROBLAST GROWTH FACTOR; FIBROBLAST GROWTH FACTOR RECEPTOR; HEPARAN SULFATE; HEPARIN BINDING PROTEIN; LYSINE; PLASMINOGEN ACTIVATOR INHIBITOR 3; PROTEOHEPARAN SULFATE; THROMBIN; BETA GLUCURONIDASE; CARBOHYDRATE; HEPARANASE; LIGAND; MACROMOLECULE; OLIGOSACCHARIDE; PROTEIN; PROTEIN BINDING; PROTEOGLYCAN;

EID: 84902215812     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060713-035314     Document Type: Review
Times cited : (608)

References (148)
  • 1
    • 2442557306 scopus 로고    scopus 로고
    • Molecular fingerprinting of carbohydrate structure phenotypes of three Porifera proteoglycan-like glyconectins
    • GuerardelY,Czeszak X, Sumanovski LT,Karamanos Y, PopescuO, et al. 2004. Molecular fingerprinting of carbohydrate structure phenotypes of three Porifera proteoglycan-like glyconectins. J. Biol. Chem. 279:15591-603
    • (2004) J. Biol. Chem , vol.279 , pp. 15591-15603
    • Guerardel, Y.1    Czeszak, X.2    Sumanovski, L.T.3    Karamanos, Y.4    Popescu, O.5
  • 2
    • 34547838399 scopus 로고    scopus 로고
    • Glycosaminoglycans in Hydra magnipapillata (Hydrozoa, Cnidaria): Demonstration of chondroitin in the developing nematocyst, sting organelle, and structural characterization of glycosaminoglycans
    • Yamada S, Morimoto H, Fujisawa T, Sugahara K. 2007. Glycosaminoglycans in Hydra magnipapillata (Hydrozoa, Cnidaria): demonstration of chondroitin in the developing nematocyst, sting organelle, and structural characterization of glycosaminoglycans. Glycobiology 17:886-94
    • (2007) Glycobiology , vol.17 , pp. 886-894
    • Yamada, S.1    Morimoto, H.2    Fujisawa, T.3    Sugahara, K.4
  • 3
    • 57749107717 scopus 로고    scopus 로고
    • Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling
    • Lawrence R, Olson SK, Steele RE, Wang L, Warrior R, et al. 2008. Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J. Biol. Chem. 283:33674-84
    • (2008) J. Biol. Chem , vol.283 , pp. 33674-33684
    • Lawrence, R.1    Olson, S.K.2    Steele, R.E.3    Wang, L.4    Warrior, R.5
  • 4
    • 79957592466 scopus 로고    scopus 로고
    • A systems biology approach for the investigation of the heparin/heparan sulfate interactome
    • Ori A, Wilkinson MC, Fernig DG. 2011. A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J. Biol. Chem. 286:19892-904
    • (2011) J. Biol. Chem , vol.286 , pp. 19892-19904
    • Ori, A.1    Wilkinson, M.C.2    Fernig, D.G.3
  • 5
    • 34247610845 scopus 로고    scopus 로고
    • Heparan sulphate proteoglycans fine-Tunemammalian physiology
    • Bishop JR, Schuksz M, Esko JD. 2007. Heparan sulphate proteoglycans fine-Tunemammalian physiology. Nature 446:1030-37
    • (2007) Nature , vol.446 , pp. 1030-1037
    • Bishop, J.R.1    Schuksz, M.2    Esko, J.D.3
  • 6
    • 0034663225 scopus 로고    scopus 로고
    • Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice
    • Lin X, Wei G, Shi ZZ, Dryer L, Esko JD, et al. 2000. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol. 224:299-311
    • (2000) Dev. Biol , vol.224 , pp. 299-311
    • Lin, X.1    Wei, G.2    Shi, Z.Z.3    Dryer, L.4    Esko, J.D.5
  • 7
    • 28844450108 scopus 로고    scopus 로고
    • Mice deficient in Ext2 lack heparan sulfate and develop exostoses
    • Stickens D, Zak BM, Rougier N, Esko JD, Werb Z. 2005. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132:5055-68
    • (2005) Development , vol.132 , pp. 5055-5068
    • Stickens, D.1    Zak, B.M.2    Rougier, N.3    Esko, J.D.4    Werb, Z.5
  • 10
    • 0035997376 scopus 로고    scopus 로고
    • Order out of chaos: Assembly of ligand binding sites in heparan sulfate
    • Esko JD, Selleck SB. 2002. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71:435-71
    • (2002) Annu. Rev. Biochem , vol.71 , pp. 435-471
    • Esko, J.D.1    Selleck, S.B.2
  • 11
  • 13
    • 84873024385 scopus 로고    scopus 로고
    • Heparan sulfate biosyn thesis: Regulation and variability
    • Kreuger J, Kjelleacute;n L. 2012. Heparan sulfate biosynthesis: regulation and variability. J. Histochem. Cytochem. 60:898-907
    • (2012) J. Histochem. Cytochem , vol.60 , pp. 898-907
    • Kreuger, J.1    Kjelleacute, L.N.2
  • 14
    • 80053022354 scopus 로고    scopus 로고
    • Microbial lectins: Hemagglutinins, adhesins, and toxins
    • ed. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, et al. Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab
    • Esko JD, Sharon N. 2009. Microbial lectins: hemagglutinins, adhesins, and toxins. In Essentials of Glycobiology, ed. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, et al., pp. 489-500. Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab.
    • (2009) Essentials of Glycobiology , pp. 489-500
    • Esko, J.D.1    Sharon, N.2
  • 15
    • 79952174904 scopus 로고    scopus 로고
    • Proteins that bind sulfated glyocosaminoglycans
    • ed. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, et al. Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab
    • Esko JD, Linhardt RJ. 2009. Proteins that bind sulfated glyocosaminoglycans. In Essentials of Glycobiology, ed. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, et al., pp. 501-12. Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab.
    • (2009) Essentials of Glycobiology , pp. 501-512
    • Esko, J.D.1    Linhardt, R.J.2
  • 16
    • 0023001195 scopus 로고
    • Transport of heparan sulfate into the nuclei of hepatocytes
    • IshiharaM, Fedarko NS, Conrad HE. 1986. Transport of heparan sulfate into the nuclei of hepatocytes. J. Biol. Chem. 261:13575-80
    • (1986) J. Biol. Chem , vol.261 , pp. 13575-13580
    • Ishihara, M.1    Fedarko, N.S.2    Conrad, H.E.3
  • 17
    • 0034995996 scopus 로고    scopus 로고
    • Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin
    • Richardson TP, Trinkaus-Randall V, Nugent MA. 2001. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J. Cell Sci. 114:1613-23
    • (2001) J. Cell Sci , vol.114 , pp. 1613-1623
    • Richardson, T.P.1    Trinkaus-Randall, V.2    Nugent, M.A.3
  • 18
    • 63349092054 scopus 로고    scopus 로고
    • Heparanase regulates levels of syndecan-1 in the nucleus
    • Chen L, Sanderson RD. 2009. Heparanase regulates levels of syndecan-1 in the nucleus. PLoS ONE 4:e4947
    • (2009) PLoS ONE , vol.4
    • Chen, L.1    Sanderson, R.D.2
  • 19
    • 70350038068 scopus 로고    scopus 로고
    • Syndecan-1 and FGF-2, but not FGF receptor-1, share a commontransport route and co-localize with heparanase in the nuclei ofmesenchymal tumor cells
    • Zong F, Fthenou E, Wolmer N, Holl ösi P,Kovalszky I, et al. 2009. Syndecan-1 and FGF-2, but not FGF receptor-1, share a commontransport route and co-localize with heparanase in the nuclei ofmesenchymal tumor cells. PLoS ONE 4:e7346
    • (2009) PLoS ONE , vol.4
    • Zong, F.1    Fthenou, E.2    Wolmer, N.3    Holl Ösi, P.4    Kovalszky, I.5
  • 20
    • 70449590867 scopus 로고    scopus 로고
    • Discovery and classification of glycan-binding proteins
    • ed. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, et al. Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab
    • Varki A, Etzler ME, Cummings RD, Esko JD. 2009. Discovery and classification of glycan-binding proteins. In Essentials of Glycobiology, ed. A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley, et al., pp. 375-86. Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab.
    • (2009) Essentials of Glycobiology , pp. 375-386
    • Varki, A.1    Etzler, M.E.2    Cummings, R.D.3    Esko, J.D.4
  • 21
    • 58449097021 scopus 로고    scopus 로고
    • FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation
    • Radek KA, Taylor KR,Gallo RL. 2009. FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen. 17:118-26
    • (2009) Wound Repair Regen , vol.17 , pp. 118-126
    • Radek, K.A.1    Taylor, K.R.2    Gallo, R.L.3
  • 22
    • 14044263531 scopus 로고    scopus 로고
    • Structural and sequencemotifs in dermatan sulfate for promoting fibroblast growth factor 2 (FGF-2) and FGF-7 activity
    • Taylor KR,Rudisill JA, Gallo RL. 2005. Structural and sequencemotifs in dermatan sulfate for promoting fibroblast growth factor 2 (FGF-2) and FGF-7 activity. J. Biol. Chem. 280:5300-6
    • (2005) J. Biol. Chem , vol.280 , pp. 5300-5306
    • Taylor, K.R.1    Rudisill, J.A.2    Gallo, R.L.3
  • 23
    • 0037044757 scopus 로고    scopus 로고
    • Dermatan sulfate binds and potentiates activity of keratinocyte growth factor (FGF-7)
    • Trowbridge JM, Rudisill JA, Ron D, Gallo RL. 2002. Dermatan sulfate binds and potentiates activity of keratinocyte growth factor (FGF-7). J. Biol. Chem. 277:42815-20
    • (2002) J. Biol. Chem , vol.277 , pp. 42815-42820
    • Trowbridge, J.M.1    Rudisill, J.A.2    Ron, D.3    Gallo, R.L.4
  • 24
    • 0036744549 scopus 로고    scopus 로고
    • Dermatan sulfate: New functions from an old glycosaminoglycan
    • Trowbridge JM, Gallo RL. 2002. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12:R117-25
    • (2002) Glycobiology , vol.12
    • Trowbridge, J.M.1    Gallo, R.L.2
  • 25
    • 42649106868 scopus 로고    scopus 로고
    • The heparanome and regulation of cell function: Structures, functions and challenges
    • Ori A, Wilkinson MC, Fernig DG. 2008. The heparanome and regulation of cell function: structures, functions and challenges. Front. Biosci. 13:4309-38
    • (2008) Front. Biosci , vol.13 , pp. 4309-4338
    • Ori, A.1    Wilkinson, M.C.2    Fernig, D.G.3
  • 26
    • 0026657360 scopus 로고
    • Heparin-induced conformational change and activation of mucus proteinase inhibitor
    • Faller B, Mely Y, Gerard D, Bieth JG. 1992. Heparin-induced conformational change and activation of mucus proteinase inhibitor. Biochemistry 31:8285-90
    • (1992) Biochemistry , vol.31 , pp. 8285-8290
    • Faller, B.1    Mely, Y.2    Gerard, D.3    Bieth, J.G.4
  • 27
    • 0025730441 scopus 로고
    • Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models
    • Olson ST, Halvorson HR, Björk I. 1991. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J. Biol. Chem. 266:6342-52
    • (1991) J. Biol. Chem , vol.266 , pp. 6342-6352
    • Olson, S.T.1    Halvorson, H.R.2    Björk, I.3
  • 28
    • 0035968239 scopus 로고    scopus 로고
    • Structural and energetic characteristics of the heparin-binding site in antithrombotic protein C
    • Friedrich U, Blom AM, Dahlbck B, Villoutreix BO. 2001. Structural and energetic characteristics of the heparin-binding site in antithrombotic protein C. J. Biol. Chem. 276:24122-28
    • (2001) J. Biol. Chem , vol.276 , pp. 24122-24128
    • Friedrich, U.1    Blom, A.M.2    Dahlbck, B.3    Villoutreix, B.O.4
  • 29
    • 0028218987 scopus 로고
    • Energetic characterization of the basic fibroblast growth factor-heparin interaction: Identification of the heparin binding domain
    • Thompson LD, Pantoliano MW, Springer BA. 1994. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 33:3831-40
    • (1994) Biochemistry , vol.33 , pp. 3831-3840
    • Thompson, L.D.1    Pantoliano, M.W.2    Springer, B.A.3
  • 30
    • 70449408083 scopus 로고    scopus 로고
    • Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice
    • Stanford KI, Bishop JR, Foley EM, Gonzales JC, Niesman IR, et al. 2009. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Investig. 119:3236-45
    • (2009) J. Clin. Investig , vol.119 , pp. 3236-3245
    • Stanford, K.I.1    Bishop, J.R.2    Foley, E.M.3    Gonzales, J.C.4    Niesman, I.R.5
  • 31
    • 0028923498 scopus 로고
    • Thermodynamics of charged oligopeptide-heparin interactions
    • Mascotti DP, Lohman TM. 1995. Thermodynamics of charged oligopeptide-heparin interactions. Biochemistry 34:2908-15
    • (1995) Biochemistry , vol.34 , pp. 2908-2915
    • Mascotti, D.P.1    Lohman, T.M.2
  • 33
    • 84864472945 scopus 로고    scopus 로고
    • Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate
    • Duchesne L, Octeau V, Bearon RN, Beckett A, Prior IA, et al. 2012. Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol. 10:e1001361
    • (2012) PLoS Biol , vol.10
    • Duchesne, L.1    Octeau, V.2    Bearon, R.N.3    Beckett, A.4    Prior, I.A.5
  • 34
    • 6344284808 scopus 로고    scopus 로고
    • Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor 1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV
    • Sadir R, Imberty A, Baleux F, Lortat-Jacob H. 2004. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor 1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J. Biol. Chem. 279:43854-60
    • (2004) J. Biol. Chem , vol.279 , pp. 43854-43860
    • Sadir, R.1    Imberty, A.2    Baleux, F.3    Lortat-Jacob, H.4
  • 35
    • 0030055212 scopus 로고    scopus 로고
    • Heparin decreases the blood clearance of interferon-γ and increases its activity by limiting the processing of its carboxyl-Terminal sequence
    • Lortat-Jacob H, Baltzer F, Grimaud JA. 1996. Heparin decreases the blood clearance of interferon-γ and increases its activity by limiting the processing of its carboxyl-Terminal sequence. J. Biol. Chem. 271:16139-43
    • (1996) J. Biol. Chem , vol.271 , pp. 16139-16143
    • Lortat-Jacob, H.1    Baltzer, F.2    Grimaud, J.A.3
  • 37
    • 0032474837 scopus 로고    scopus 로고
    • Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion
    • Bellaiche Y, The I, Perrimon N. 1998. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394:85-88
    • (1998) Nature , vol.394 , pp. 85-88
    • Bellaiche, Y.1    The, I.2    Perrimon, N.3
  • 38
    • 0035152025 scopus 로고    scopus 로고
    • Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution ofWingless
    • Baeg GH, Lin X, KhareN, Baumgartner S, PerrimonN. 2001. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution ofWingless. Development 128:87-94
    • (2001) Development , vol.128 , pp. 87-94
    • Baeg, G.H.1    Lin, X.2    Khare, N.3    Baumgartner, S.4    Perrimon, N.5
  • 39
    • 1342341864 scopus 로고    scopus 로고
    • Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans
    • Takei Y,Ozawa Y, SatoM,Watanabe A,TabataT. 2004. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73-82
    • (2004) Development , vol.131 , pp. 73-82
    • Takei, Y.1    Ozawa, Y.2    Sato, M.3    Watanabe, A.4    Tabata, T.5
  • 40
    • 14844365003 scopus 로고    scopus 로고
    • Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc
    • Han C, Yan D, Belenkaya TY, Lin X. 2005. Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132:667-79
    • (2005) Development , vol.132 , pp. 667-679
    • Han, C.1    Yan, D.2    Belenkaya, T.Y.3    Lin, X.4
  • 41
  • 42
    • 0032925156 scopus 로고    scopus 로고
    • Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188
    • Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, et al. 1999. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat. Med. 5:495-502
    • (1999) Nat. Med , vol.5 , pp. 495-502
    • Carmeliet, P.1    Ng, Y.S.2    Nuyens, D.3    Theilmeier, G.4    Brusselmans, K.5
  • 43
    • 33751187897 scopus 로고    scopus 로고
    • Themolecular diversity of glycosaminoglycans shapes animal development
    • BulowHE, Hobert O. 2006. Themolecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell Dev. Biol. 22:375-407
    • (2006) Annu. Rev. Cell Dev. Biol , vol.22 , pp. 375-407
    • Bulow, H.E.1    Hobert, O.2
  • 44
    • 70349876852 scopus 로고    scopus 로고
    • The molecular basis and functional implications of chemokine interactions with heparan sulphate
    • Lortat-Jacob H. 2009. The molecular basis and functional implications of chemokine interactions with heparan sulphate. Curr. Opin. Struct. Biol. 19:543-48
    • (2009) Curr. Opin. Struct. Biol , vol.19 , pp. 543-548
    • Lortat-Jacob, H.1
  • 45
    • 84886859740 scopus 로고    scopus 로고
    • Live cell imaging of chemotactic dendritic cell migration in explanted mouse ear preparations
    • Weber M, Sixt M. 2013. Live cell imaging of chemotactic dendritic cell migration in explanted mouse ear preparations. Methods Mol. Biol. 1013:215-26
    • (2013) Methods Mol. Biol , vol.1013 , pp. 215-226
    • Weber, M.1    Sixt, M.2
  • 47
    • 84878942800 scopus 로고    scopus 로고
    • Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology
    • Belov AA, Mohammadi M. 2013. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb. Perspect. Biol. 5:a015958
    • (2013) Cold Spring Harb. Perspect. Biol , vol.5
    • Belov, A.A.1    Mohammadi, M.2
  • 48
  • 49
    • 0032566048 scopus 로고    scopus 로고
    • Structure of a heparin-linked biologically active dimer of fibroblast growth factor
    • DiGabriele AD, Lax I,Chen DI, SvahnCM, Jaye M, et al. 1998. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393:812-17
    • (1998) Nature , vol.393 , pp. 812-817
    • Digabriele, A.D.1    Lax, I.2    Chen, D.I.3    Svahn, C.M.4    Jaye, M.5
  • 50
    • 84876372433 scopus 로고    scopus 로고
    • Cooperative heparin-mediated oligomerization of fibroblast growth factor 1 (FGF1) precedes recruitment of FGFR2 to ternary complexes
    • Brown A, Robinson CJ, Gallagher JT, Blundell TL. 2013. Cooperative heparin-mediated oligomerization of fibroblast growth factor 1 (FGF1) precedes recruitment of FGFR2 to ternary complexes. Biophys. J. 104:1720-30
    • (2013) Biophys. J , vol.104 , pp. 1720-1730
    • Brown, A.1    Robinson, C.J.2    Gallagher, J.T.3    Blundell, T.L.4
  • 51
    • 0034718796 scopus 로고    scopus 로고
    • Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin
    • Pellegrini L, Burke DF,Von Delft F,Mulloy B, BlundellTL. 2000. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029-34
    • (2000) Nature , vol.407 , pp. 1029-1034
    • Pellegrini, L.1    Burke, D.F.2    Von Delft, F.3    Mulloy, B.4    Blundell, T.L.5
  • 52
    • 84856301540 scopus 로고    scopus 로고
    • Plasticity in interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors underlies promiscuity of FGF1
    • Beenken A, Eliseenkova AV, Ibrahimi OA, Olsen SK, Mohammadi M. 2012. Plasticity in interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors underlies promiscuity of FGF1. J. Biol. Chem. 287:3067-78
    • (2012) J. Biol. Chem , vol.287 , pp. 3067-3078
    • Beenken, A.1    Eliseenkova, A.V.2    Ibrahimi, O.A.3    Olsen, S.K.4    Mohammadi, M.5
  • 53
  • 54
    • 82355181520 scopus 로고    scopus 로고
    • Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE)
    • Xu D, Young J, Song D, Esko JD. 2011. Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J. Biol. Chem. 286:41736-44
    • (2011) J. Biol. Chem , vol.286 , pp. 41736-41744
    • Xu, D.1    Young, J.2    Song, D.3    Esko, J.D.4
  • 55
    • 57649221135 scopus 로고    scopus 로고
    • Amyloid precursor protein trafficking, processing, and function
    • Thinakaran G, Koo EH. 2008. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283:29615-19
    • (2008) J. Biol. Chem , vol.283 , pp. 29615-29619
    • Thinakaran, G.1    Koo, E.H.2
  • 56
    • 8144230876 scopus 로고    scopus 로고
    • Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members
    • Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, et al. 2004. Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J. 23:4106-15
    • (2004) EMBO J , vol.23 , pp. 4106-4115
    • Herms, J.1    Anliker, B.2    Heber, S.3    Ring, S.4    Fuhrmann, M.5
  • 57
    • 27144547977 scopus 로고    scopus 로고
    • Homo- and heterodimerization of APP family members promotes intercellular adhesion
    • Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, et al. 2005. Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J. 24:3624-34
    • (2005) EMBO J , vol.24 , pp. 3624-3634
    • Soba, P.1    Eggert, S.2    Wagner, K.3    Zentgraf, H.4    Siehl, K.5
  • 58
    • 0023987430 scopus 로고
    • Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimers disease
    • Dyrks T, Weidemann A, Multhaup G, Salbaum JM, Lemaire HG, et al. 1988. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimers disease. EMBO J. 7:949-57
    • (1988) EMBO J , vol.7 , pp. 949-957
    • Dyrks, T.1    Weidemann, A.2    Multhaup, G.3    Salbaum, J.M.4    Lemaire, H.G.5
  • 59
    • 80051937835 scopus 로고    scopus 로고
    • Crystal structure of the E2 domain of amyloid precursor protein-like protein 1 in complex with sucrose octasulfate
    • Xue Y, Lee S, Wang Y, Ha Y. 2011. Crystal structure of the E2 domain of amyloid precursor protein-like protein 1 in complex with sucrose octasulfate. J. Biol. Chem. 286:29748-57
    • (2011) J. Biol. Chem , vol.286 , pp. 29748-29757
    • Xue, Y.1    Lee, S.2    Wang, Y.3    Ha, Y.4
  • 60
    • 67649366042 scopus 로고    scopus 로고
    • Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers
    • Gralle M, BotelhoMG, Wouters FS. 2009. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J. Biol. Chem. 284:15016-25
    • (2009) J. Biol. Chem , vol.284 , pp. 15016-15025
    • Gralle, M.1    Botelho, M.G.2    Wouters, F.S.3
  • 61
    • 18844473445 scopus 로고    scopus 로고
    • Expression and analysis of heparinbinding regions of the amyloid precursor protein of Alzheimers disease
    • Mok SS, Sberna G, Heffernan D, Cappai R, Galatis D, et al. 1997. Expression and analysis of heparinbinding regions of the amyloid precursor protein of Alzheimers disease. FEBS Lett. 415:303-7
    • (1997) FEBS Lett , vol.415 , pp. 303-307
    • Mok, S.S.1    Sberna, G.2    Heffernan, D.3    Cappai, R.4    Galatis, D.5
  • 62
    • 79959284264 scopus 로고    scopus 로고
    • The E2 domains of APP and APLP1 share a conserved mode of dimerization
    • Lee S, Xue Y, Hu J, Wang Y, Liu X, et al. 2011. The E2 domains of APP and APLP1 share a conserved mode of dimerization. Biochemistry 50:5453-64
    • (2011) Biochemistry , vol.50 , pp. 5453-5464
    • Lee, S.1    Xue, Y.2    Hu, J.3    Wang, Y.4    Liu, X.5
  • 63
    • 0032945805 scopus 로고    scopus 로고
    • Crystal structure of theN-Terminal, growth factor-like domain of Alzheimer amyloid precursor protein
    • Rossjohn J, Cappai R, Feil SC, Henry A,McKinstry WJ, et al. 1999. Crystal structure of theN-Terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat. Struct. Biol. 6:327-31
    • (1999) Nat. Struct. Biol , vol.6 , pp. 327-331
    • Rossjohn, J.1    Cappai, R.2    Feil, S.C.3    Henry, A.4    McKinstry, W.J.5
  • 65
    • 80053620192 scopus 로고    scopus 로고
    • Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization
    • Xue Y, Lee S, Ha Y. 2011. Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization. Proc. Natl. Acad. Sci. USA 108:16229-34
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 16229-16234
    • Xue, Y.1    Lee, S.2    Ha, Y.3
  • 66
    • 0037452728 scopus 로고    scopus 로고
    • Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines
    • Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, et al. 2003. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100:1885-90
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 1885-1890
    • Proudfoot, A.E.1    Handel, T.M.2    Johnson, Z.3    Lau, E.K.4    Liwang, P.5
  • 67
    • 79952105330 scopus 로고    scopus 로고
    • Chemokine oligomerization and interactions with receptors and glycosaminoglycans: The role of structural dynamics in function
    • Salanga CL, Handel TM. 2011. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp. Cell Res. 317:590-601
    • (2011) Exp. Cell Res , vol.317 , pp. 590-601
    • Salanga, C.L.1    Handel, T.M.2
  • 69
    • 0037022280 scopus 로고    scopus 로고
    • Structural diversity of heparan sulfate binding domains in chemokines
    • Lortat-Jacob H, Grosdidier A, Imberty A. 2002. Structural diversity of heparan sulfate binding domains in chemokines. Proc. Natl. Acad. Sci. USA 99:1229-34
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 1229-1234
    • Lortat-Jacob, H.1    Grosdidier, A.2    Imberty, A.3
  • 72
    • 84872066189 scopus 로고    scopus 로고
    • Heparin oligosaccharides inhibit chemokine (CXC motif ) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif ) receptor 4 (CXCR4) N terminus
    • Ziarek JJ, Veldkamp CT, Zhang F, Murray NJ, Kartz GA, et al. 2013. Heparin oligosaccharides inhibit chemokine (CXC motif ) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif ) receptor 4 (CXCR4) N terminus. J. Biol. Chem. 288:737-46
    • (2013) J. Biol. Chem , vol.288 , pp. 737-746
    • Ziarek, J.J.1    Veldkamp, C.T.2    Zhang, F.3    Murray, N.J.4    Kartz, G.A.5
  • 73
    • 2542498611 scopus 로고    scopus 로고
    • Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: Implications for structure and function in vivo
    • Lau EK, Paavola CD, Johnson Z, Gaudry JP, Geretti E, et al. 2004. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J. Biol. Chem. 279:22294-305
    • (2004) J. Biol. Chem , vol.279 , pp. 22294-22305
    • Lau, E.K.1    Paavola, C.D.2    Johnson, Z.3    Gaudry, J.P.4    Geretti, E.5
  • 74
    • 45149083078 scopus 로고    scopus 로고
    • Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms
    • Goodger SJ, Robinson CJ, Murphy KJ, Gasiunas N, Harmer NJ, et al. 2008. Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J. Biol. Chem. 283:13001-8
    • (2008) J. Biol. Chem , vol.283 , pp. 13001-13008
    • Goodger, S.J.1    Robinson, C.J.2    Murphy, K.J.3    Gasiunas, N.4    Harmer, N.J.5
  • 75
    • 42949124644 scopus 로고    scopus 로고
    • Heparin-induced cisand trans-dimerization modes of the thrombospondin-1N-Terminal domain
    • Tan K, Duquette M, Liu JH, Shanmugasundaram K, Joachimiak A, et al. 2008. Heparin-induced cisand trans-dimerization modes of the thrombospondin-1N- Terminal domain. J. Biol. Chem. 283:3932-41
    • (2008) J. Biol. Chem , vol.283 , pp. 3932-3941
    • Tan, K.1    Duquette, M.2    Liu, J.H.3    Shanmugasundaram, K.4    Joachimiak, A.5
  • 76
    • 0035887033 scopus 로고    scopus 로고
    • Crystal structures ofNK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor
    • Lietha D, Chirgadze DY, Mulloy B, Blundell TL, Gherardi E. 2001. Crystal structures ofNK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J. 20:5543-55
    • (2001) EMBO J , vol.20 , pp. 5543-5555
    • Lietha, D.1    Chirgadze, D.Y.2    Mulloy, B.3    Blundell, T.L.4    Gherardi, E.5
  • 78
    • 79955470793 scopus 로고    scopus 로고
    • Proteoglycan-specific molecular switch for RPTPclustering and neuronal extension
    • Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, et al. 2011. Proteoglycan-specific molecular switch for RPTPclustering and neuronal extension. Science 332:484-88
    • (2011) Science , vol.332 , pp. 484-488
    • Coles, C.H.1    Shen, Y.2    Tenney, A.P.3    Siebold, C.4    Sutton, G.C.5
  • 79
    • 58149083028 scopus 로고    scopus 로고
    • Scaffold proteins and immune-cell signalling
    • Shaw AS, Filbert EL. 2009. Scaffold proteins and immune-cell signalling. Nat. Rev. Immunol. 9:47-56
    • (2009) Nat. Rev. Immunol , vol.9 , pp. 47-56
    • Shaw, A.S.1    Filbert, E.L.2
  • 82
    • 0020457447 scopus 로고
    • Mechanism of the anticoagulant action of heparin
    • Björk I, Lindahl U. 1982. Mechanism of the anticoagulant action of heparin. Mol. Cell Biochem. 48:161-82
    • (1982) Mol. Cell Biochem , vol.48 , pp. 161-182
    • Björk, I.1    Lindahl, U.2
  • 83
    • 0025831251 scopus 로고
    • Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-Thrombin reaction. Elucidation from salt concentration effects
    • Olson ST, Björk I. 1991. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-Thrombin reaction. Elucidation from salt concentration effects. J. Biol. Chem. 266:6353-64
    • (1991) J. Biol. Chem , vol.266 , pp. 6353-6364
    • Olson, S.T.1    Björk, I.2
  • 84
    • 4344590703 scopus 로고    scopus 로고
    • Structure of the antithrombin-Thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin
    • Li W, Johnson DJ, Esmon CT, Huntington JA. 2004. Structure of the antithrombin-Thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat. Struct. Mol. Biol. 11:857-62
    • (2004) Nat. Struct. Mol. Biol , vol.11 , pp. 857-862
    • Li, W.1    Johnson, D.J.2    Esmon, C.T.3    Huntington, J.A.4
  • 85
    • 0024456056 scopus 로고
    • Anti-Thrombin activities of heparin. Effect of saccharide chain length on thrombin inhibition by heparin cofactor II and by antithrombin
    • Bray B, Lane DA, Freyssinet JM, Pejler G, Lindahl U. 1989. Anti-Thrombin activities of heparin. Effect of saccharide chain length on thrombin inhibition by heparin cofactor II and by antithrombin. Biochem. J. 262:225-32
    • (1989) Biochem. J , vol.262 , pp. 225-232
    • Bray, B.1    Lane, D.A.2    Freyssinet, J.M.3    Pejler, G.4    Lindahl, U.5
  • 86
    • 33646581724 scopus 로고    scopus 로고
    • Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation
    • Johnson DJ, Li W, Adams TE, Huntington JA. 2006. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. EMBO J. 25:2029-37
    • (2006) EMBO J , vol.25 , pp. 2029-2037
    • Johnson, D.J.1    Li, W.2    Adams, T.E.3    Huntington, J.A.4
  • 87
    • 13244270050 scopus 로고    scopus 로고
    • Crystal structure of thrombin bound to heparin
    • Carter WJ, Cama E, Huntington JA. 2005. Crystal structure of thrombin bound to heparin. J. Biol. Chem. 280:2745-49
    • (2005) J. Biol. Chem , vol.280 , pp. 2745-2749
    • Carter, W.J.1    Cama, E.2    Huntington, J.A.3
  • 88
    • 4344710558 scopus 로고    scopus 로고
    • The ternary complex of antithrombin- anhydrothrombin-heparin reveals the basis of inhibitor specificity
    • Dementiev A, Petitou M, Herbert JM, Gettins PG. 2004. The ternary complex of antithrombin- anhydrothrombin-heparin reveals the basis of inhibitor specificity. Nat. Struct. Mol. Biol. 11:863-67
    • (2004) Nat. Struct. Mol. Biol , vol.11 , pp. 863-867
    • Dementiev, A.1    Petitou, M.2    Herbert, J.M.3    Gettins, P.G.4
  • 89
    • 0032126936 scopus 로고    scopus 로고
    • Contribution of basic residues of theDandHhelices in heparin binding to protein C inhibitor
    • Neese LL, Wolfe CA, Church FC. 1998. Contribution of basic residues of theDandHhelices in heparin binding to protein C inhibitor. Arch. Biochem. Biophys. 355:101-8
    • (1998) Arch. Biochem. Biophys , vol.355 , pp. 101-108
    • Neese, L.L.1    Wolfe, C.A.2    Church, F.C.3
  • 90
    • 42449150052 scopus 로고    scopus 로고
    • Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-Astructure of the heparin-bridged complex
    • LiW,AdamsTE, Nangalia J, EsmonCT, Huntington JA. 2008. Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-Astructure of the heparin-bridged complex. Proc. Natl. Acad. Sci. USA 105:4661-66
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 4661-4666
    • Li, W.1    Adams, T.E.2    Nangalia, J.3    Esmon, C.T.4    Huntington, J.A.5
  • 91
    • 0037076527 scopus 로고    scopus 로고
    • Contribution of basic residues of the 70-80-loop to heparin binding and anticoagulant function of activated protein C
    • Yang L, Manithody C, Rezaie AR. 2002. Contribution of basic residues of the 70-80-loop to heparin binding and anticoagulant function of activated protein C. Biochemistry 41:6149-57
    • (2002) Biochemistry , vol.41 , pp. 6149-6157
    • Yang, L.1    Manithody, C.2    Rezaie, A.R.3
  • 92
    • 58149104094 scopus 로고    scopus 로고
    • The heparin binding site of protein C inhibitor is protease-dependent
    • Li W, Huntington JA. 2008. The heparin binding site of protein C inhibitor is protease-dependent. J. Biol. Chem. 283:36039-45
    • (2008) J. Biol. Chem , vol.283 , pp. 36039-36045
    • Li, W.1    Huntington, J.A.2
  • 93
    • 1942470528 scopus 로고    scopus 로고
    • Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly
    • Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ. 2004. Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly. Biochemistry 43:4724-30
    • (2004) Biochemistry , vol.43 , pp. 4724-4730
    • Ibrahimi, O.A.1    Zhang, F.2    Hrstka, S.C.3    Mohammadi, M.4    Linhardt, R.J.5
  • 94
    • 84855775666 scopus 로고    scopus 로고
    • The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition
    • Kalinina J,Dutta K, IlghariD, Beenken A,Goetz R, et al. 2012. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 20:77-88
    • (2012) Structure , vol.20 , pp. 77-88
    • Kalinina, J.1    Dutta, K.2    Ilghari, D.3    Beenken, A.4    Goetz, R.5
  • 95
    • 0037047348 scopus 로고    scopus 로고
    • Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate: Implications for dynamic assembly of a ternary signaling complex
    • Powell AK, Fernig DG, Turnbull JE. 2002. Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate: implications for dynamic assembly of a ternary signaling complex. J. Biol. Chem. 277:28554-63
    • (2002) J. Biol. Chem , vol.277 , pp. 28554-28563
    • Powell, A.K.1    Fernig, D.G.2    Turnbull, J.E.3
  • 96
    • 0033635299 scopus 로고    scopus 로고
    • Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization
    • Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, et al. 2000. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6:743-50
    • (2000) Mol. Cell , vol.6 , pp. 743-750
    • Schlessinger, J.1    Plotnikov, A.N.2    Ibrahimi, O.A.3    Eliseenkova, A.V.4    Yeh, B.K.5
  • 97
    • 29644438840 scopus 로고    scopus 로고
    • Cooperative dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1FGFR2cheparin ternary complexes
    • Robinson CJ, Harmer NJ, Goodger SJ, Blundell TL, Gallagher JT. 2005. Cooperative dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1FGFR2cheparin ternary complexes. J. Biol. Chem. 280:42274-82
    • (2005) J. Biol. Chem , vol.280 , pp. 42274-42282
    • Robinson, C.J.1    Harmer, N.J.2    Goodger, S.J.3    Blundell, T.L.4    Gallagher, J.T.5
  • 98
    • 30944448671 scopus 로고    scopus 로고
    • Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain
    • Olsen SK, Li JY, Bromleigh C, Eliseenkova AV, Ibrahimi OA, et al. 2006. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. 20:185-98
    • (2006) Genes Dev , vol.20 , pp. 185-198
    • Olsen, S.K.1    Li, J.Y.2    Bromleigh, C.3    Eliseenkova, A.V.4    Ibrahimi, O.A.5
  • 99
    • 47049089676 scopus 로고    scopus 로고
    • Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo
    • Fukuhara N, Howitt JA, Hussain SA, Hohenester E. 2008. Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J. Biol. Chem. 283:16226-34
    • (2008) J. Biol. Chem , vol.283 , pp. 16226-16234
    • Fukuhara, N.1    Howitt, J.A.2    Hussain, S.A.3    Hohenester, E.4
  • 100
    • 68149157248 scopus 로고    scopus 로고
    • The origin of allosteric functional modulation: Multiple pre-existing pathways
    • del Sol A, Tsai CJ, Ma B, Nussinov R. 2009. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17:1042-50
    • (2009) Structure , vol.17 , pp. 1042-1050
    • Del Sol, A.1    Tsai, C.J.2    Ma, B.3    Nussinov, R.4
  • 101
    • 41149104308 scopus 로고    scopus 로고
    • Allostery: Absence of a change in shape does not imply that allostery is not at play
    • Tsai CJ, del Sol A,Nussinov R. 2008. Allostery: Absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378:1-11
    • (2008) J. Mol. Biol , vol.378 , pp. 1-11
    • Tsai, C.J.1    Del Sol, A.2    Nussinov, R.3
  • 102
    • 60849096635 scopus 로고    scopus 로고
    • The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin
    • Langdown J, Belzar KJ, SavoryWJ, Baglin TP, Huntington JA. 2009. The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin. J. Mol. Biol. 386:1278-89
    • (2009) J. Mol. Biol , vol.386 , pp. 1278-1289
    • Langdown, J.1    Belzar, K.J.2    Savory, W.J.3    Baglin, T.P.4    Huntington, J.A.5
  • 104
    • 76249089297 scopus 로고    scopus 로고
    • Molecular basis of factor IXa recognition by heparinactivated antithrombin revealed by a 1.7-Astructure of the ternary complex
    • Johnson DJ, Langdown J, Huntington JA. 2010. Molecular basis of factor IXa recognition by heparinactivated antithrombin revealed by a 1.7-Astructure of the ternary complex. Proc. Natl. Acad. Sci. USA 107:645-50
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 645-650
    • Johnson, D.J.1    Langdown, J.2    Huntington, J.A.3
  • 105
    • 0035957188 scopus 로고    scopus 로고
    • Vaccinia virus complement control protein is capable of protecting xenoendothelial cells from antibody binding and killing by human complement and cytotoxic cells
    • Al-Mohanna F, Parhar R, Kotwal GJ. 2001. Vaccinia virus complement control protein is capable of protecting xenoendothelial cells from antibody binding and killing by human complement and cytotoxic cells. Transplantation 71:796-801
    • (2001) Transplantation , vol.71 , pp. 796-801
    • Al-Mohanna, F.1    Parhar, R.2    Kotwal, G.J.3
  • 106
    • 84862183665 scopus 로고    scopus 로고
    • Bivalent and co-operative binding of complement factor H to heparan sulfate and heparin
    • Khan S, Nan R, Gor J, Mulloy B, Perkins SJ. 2012. Bivalent and co-operative binding of complement factor H to heparan sulfate and heparin. Biochem. J. 444:417-28
    • (2012) Biochem. J , vol.444 , pp. 417-428
    • Khan, S.1    Nan, R.2    Gor, J.3    Mulloy, B.4    Perkins, S.J.5
  • 107
    • 2942650136 scopus 로고    scopus 로고
    • Structure of Vaccinia complement protein in complex with heparin and potential implications for complement regulation
    • Ganesh VK, Smith SA, Kotwal GJ, Murthy KH. 2004. Structure of Vaccinia complement protein in complex with heparin and potential implications for complement regulation. Proc. Natl. Acad. Sci. USA 101:8924-29
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 8924-8929
    • Ganesh, V.K.1    Smith, S.A.2    Kotwal, G.J.3    Murthy, K.H.4
  • 108
    • 0035951426 scopus 로고    scopus 로고
    • Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans
    • Murthy KHM, Smith SA, Ganesh VK, Judge KW,Mullin N, et al. 2001. Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans. Cell 104:301-11
    • (2001) Cell , vol.104 , pp. 301-311
    • Khm, M.1    Smith, S.A.2    Ganesh, V.K.3    Judge, K.W.4    Mullin, N.5
  • 109
    • 0025314311 scopus 로고
    • Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via a sialic acid/polyanion binding site on factor H
    • Meri S, Pangburn MK. 1990. Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc. Natl. Acad. Sci. USA 87:3982-86
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 3982-3986
    • Meri, S.1    Pangburn, M.K.2
  • 110
    • 33746614761 scopus 로고    scopus 로고
    • Interactions between heparan sulfate and proteins: The concept of specificity
    • Kreuger J, Spillmann D, Li JP, Lindahl U. 2006. Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 174:323-27
    • (2006) J. Cell Biol , vol.174 , pp. 323-327
    • Kreuger, J.1    Spillmann, D.2    Li, J.P.3    Lindahl, U.4
  • 111
    • 70149088868 scopus 로고    scopus 로고
    • Interactions between heparan sulfate and proteins-design and functional implications
    • Lindahl U, Li JP. 2009. Interactions between heparan sulfate and proteins-design and functional implications. Int. Rev. Cell Mol. Biol. 276:105-59
    • (2009) Int. Rev. Cell Mol. Biol , vol.276 , pp. 105-159
    • Lindahl, U.1    Li, J.P.2
  • 112
    • 70350442571 scopus 로고    scopus 로고
    • The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation
    • Richard B, Swanson R, Olson ST. 2009. The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation. J. Biol. Chem. 284:27054-64
    • (2009) J. Biol. Chem , vol.284 , pp. 27054-27064
    • Richard, B.1    Swanson, R.2    Olson, S.T.3
  • 113
    • 0026727774 scopus 로고
    • Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate
    • Turnbull JE, Fernig DG, Ke Y, WilkinsonMC, Gallagher JT. 1992. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J. Biol. Chem. 267:10337-41
    • (1992) J. Biol. Chem , vol.267 , pp. 10337-10341
    • Turnbull, J.E.1    Fernig, D.G.2    Ke, Y.3    Wilkinson, M.C.4    Gallagher, J.T.5
  • 114
    • 0029051004 scopus 로고
    • Molecular organization of the interferon γ-binding domain in heparan sulphate
    • Lortat-Jacob H, Turnbull JE, Grimaud JA. 1995. Molecular organization of the interferon γ-binding domain in heparan sulphate. Biochem. J. 310:497-505
    • (1995) Biochem. J , vol.310 , pp. 497-505
    • Lortat-Jacob, H.1    Turnbull, J.E.2    Grimaud, J.A.3
  • 115
    • 0032546954 scopus 로고    scopus 로고
    • Defining the interleukin-8-binding domain of heparan sulfate
    • Spillmann D,Witt D, Lindahl U. 1998. Defining the interleukin-8-binding domain of heparan sulfate. J. Biol. Chem. 273:15487-93
    • (1998) J. Biol. Chem , vol.273 , pp. 15487-15493
    • Spillmann, D.1    Witt, D.2    Lindahl, U.3
  • 116
    • 33748527145 scopus 로고    scopus 로고
    • Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling
    • Kamimura K, Koyama T, Habuchi H, Ueda R, Masu M, et al. 2006. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J. Cell Biol. 174:773-78
    • (2006) J. Cell Biol , vol.174 , pp. 773-778
    • Kamimura, K.1    Koyama, T.2    Habuchi, H.3    Ueda, R.4    Masu, M.5
  • 117
    • 0033582432 scopus 로고    scopus 로고
    • Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities
    • Liu J, Shworak NW, Sinay P, Schwartz JJ, Zhang L, et al. 1999. Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J. Biol. Chem. 274:5185-92
    • (1999) J. Biol. Chem , vol.274 , pp. 5185-5192
    • Liu, J.1    Shworak, N.W.2    Sinay, P.3    Schwartz, J.J.4    Zhang, L.5
  • 119
    • 0037163107 scopus 로고    scopus 로고
    • Biosynthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs-exploring the structural diversity by screening for fibroblast growth factor (FGF) 1 and FGF2 binding
    • Jemth P, Kreuger J, Kusche-Gullberg M, Sturiale L, Gimnez-Gallego G, Lindahl U. 2002. Biosynthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs-exploring the structural diversity by screening for fibroblast growth factor (FGF) 1 and FGF2 binding. J. Biol. Chem. 277:30567-73
    • (2002) J. Biol. Chem , vol.277 , pp. 30567-30573
    • Jemth, P.1    Kreuger, J.2    Kusche-Gullberg, M.3    Sturiale, L.4    Gimnez-Gallego, G.5    Lindahl, U.6
  • 120
    • 0029866647 scopus 로고    scopus 로고
    • Heparin structure and interactions with basic fibroblast growth factor
    • Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. 1996. Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116-20
    • (1996) Science , vol.271 , pp. 1116-1120
    • Faham, S.1    Hileman, R.E.2    Fromm, J.R.3    Linhardt, R.J.4    Rees, D.C.5
  • 124
    • 84863879494 scopus 로고    scopus 로고
    • Strategies in synthesis of heparin/heparan sulfate oligosaccharides 2000- present
    • Dulaney SB, Huang X. 2012. Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000- present. Adv. Carbohydr. Chem. Biochem. 67:95-136
    • (2012) Adv. Carbohydr. Chem. Biochem , vol.67 , pp. 95-136
    • Dulaney, S.B.1    Huang, X.2
  • 125
    • 0025783711 scopus 로고
    • Sequence analysis of heparan sulphate indicates defined location of N-sulphated glucosamine and iduronate 2-sulphate residues proximal to the protein-linkage region
    • Turnbull JE, Gallagher JT. 1991. Sequence analysis of heparan sulphate indicates defined location of N-sulphated glucosamine and iduronate 2-sulphate residues proximal to the protein-linkage region. Biochem. J. 277:297-303
    • (1991) Biochem. J , vol.277 , pp. 297-303
    • Turnbull, J.E.1    Gallagher, J.T.2
  • 126
    • 0030796217 scopus 로고    scopus 로고
    • Specific binding of the chemokine platelet factor 4 to heparan sulfate
    • Stringer SE, Gallagher JT. 1997. Specific binding of the chemokine platelet factor 4 to heparan sulfate. J. Biol. Chem. 272:20508-14
    • (1997) J. Biol. Chem , vol.272 , pp. 20508-20514
    • Stringer, S.E.1    Gallagher, J.T.2
  • 127
    • 0036721004 scopus 로고    scopus 로고
    • Characterization of the binding site on heparan sulfate for macrophage inflammatory protein 1alpha;
    • Stringer SE, Forster MJ, Mulloy B, Bishop CR, Graham GJ, Gallagher JT. 2002. Characterization of the binding site on heparan sulfate for macrophage inflammatory protein 1alpha;. Blood 100:1543-50
    • (2002) Blood , vol.100 , pp. 1543-1550
    • Stringer, S.E.1    Forster, M.J.2    Mulloy, B.3    Bishop, C.R.4    Graham, G.J.5    Gallagher, J.T.6
  • 128
    • 84865440249 scopus 로고    scopus 로고
    • Inactivation of heparan sulfate 2- O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice
    • Axelsson J, XuD,Na Kang B,Nussbacher JK,Handel TM, et al. 2012. Inactivation of heparan sulfate 2- O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 120:1742-51
    • (2012) Blood , vol.120 , pp. 1742-1751
    • Axelsson, J.1    Xu, D.2    Na Kang, B.3    Nussbacher, J.K.4    Handel, T.M.5
  • 129
    • 0042829441 scopus 로고    scopus 로고
    • Endothelial inflammation: The role of differential expression of N-deacetylase/N-sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate
    • Carter NM, Ali S, Kirby JA. 2003. Endothelial inflammation: the role of differential expression of N-deacetylase/N-sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate. J. Cell Sci. 116:3591-600
    • (2003) J. Cell Sci , vol.116 , pp. 3591-3600
    • Carter, N.M.1    Ali, S.2    Kirby, J.A.3
  • 131
    • 41949105981 scopus 로고    scopus 로고
    • Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulfate density
    • Catlow KR,Deakin JA, Wei Z,Delehedde M, Fernig DG, et al. 2008. Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulfate density. J. Biol. Chem. 283:5235-48
    • (2008) J. Biol. Chem , vol.283 , pp. 5235-5248
    • Catlow, K.R.1    Deakin, J.A.2    Wei, Z.3    Delehedde, M.4    Fernig, D.G.5
  • 132
    • 70450208952 scopus 로고    scopus 로고
    • The heparin-binding domain confers diverse functions ofVEGF-A in development and disease: A structure-function study
    • Krilleke D, Ng YS, Shima DT. 2009. The heparin-binding domain confers diverse functions ofVEGF-A in development and disease: A structure-function study. Biochem. Soc. Trans. 37:1201-6
    • (2009) Biochem. Soc. Trans , vol.37 , pp. 1201-1206
    • Krilleke, D.1    Ng, Y.S.2    Shima, D.T.3
  • 133
    • 33845968160 scopus 로고    scopus 로고
    • Crystallographic analysis of calcium-dependent heparin binding to annexin A2
    • Shao C, Zhang F, Kemp MM, Linhardt RJ, Waisman DM, et al. 2006. Crystallographic analysis of calcium-dependent heparin binding to annexin A2. J. Biol. Chem. 281:31689-95
    • (2006) J. Biol. Chem , vol.281 , pp. 31689-31695
    • Shao, C.1    Zhang, F.2    Kemp, M.M.3    Linhardt, R.J.4    Waisman, D.M.5
  • 135
    • 0027248439 scopus 로고
    • Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells
    • Norgard-Sumnicht KE, Varki NM, Varki A. 1993. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science 261:480-83
    • (1993) Science , vol.261 , pp. 480-483
    • Norgard-Sumnicht, K.E.1    Varki, N.M.2    Varki, A.3
  • 136
    • 0032519957 scopus 로고    scopus 로고
    • Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents
    • Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. 1998. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J. Clin. Investig. 101:877-89
    • (1998) J. Clin. Investig , vol.101 , pp. 877-889
    • Koenig, A.1    Norgard-Sumnicht, K.2    Linhardt, R.3    Varki, A.4
  • 137
    • 33747162038 scopus 로고    scopus 로고
    • Structural requirements for heparin/heparan sulfate binding to type v collagen
    • Ricard-Blum S, Beraud M, Raynal N, Farndale RW, Ruggiero F. 2006. Structural requirements for heparin/heparan sulfate binding to type V collagen. J. Biol. Chem. 281:25195-204
    • (2006) J. Biol. Chem , vol.281 , pp. 25195-25204
    • Ricard-Blum, S.1    Beraud, M.2    Raynal, N.3    Farndale, R.W.4    Ruggiero, F.5
  • 138
    • 0032491615 scopus 로고    scopus 로고
    • Lysine 58 and histidine 66 at the C-Terminal alpha;-helix of monocyte chemoattractant protein 1 are essential for glycosaminoglycan binding
    • Chakravarty L, Rogers L, Quach T, Breckenridge S, Kolattukudy PE. 1998. Lysine 58 and histidine 66 at the C-Terminal alpha;-helix of monocyte chemoattractant protein 1 are essential for glycosaminoglycan binding. J. Biol. Chem. 273:29641-47
    • (1998) J. Biol. Chem , vol.273 , pp. 29641-29647
    • Chakravarty, L.1    Rogers, L.2    Quach, T.3    Breckenridge, S.4    Kolattukudy, P.E.5
  • 139
    • 84881081059 scopus 로고    scopus 로고
    • Tunable heparan sulfatemimetics formodulating chemokine activity
    • Sheng GJ, Oh YI, Chang SK, Hsieh-Wilson LC. 2013. Tunable heparan sulfatemimetics formodulating chemokine activity. J. Am. Chem. Soc. 135:10898-901
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 10898-10901
    • Sheng, G.J.1    Oh, Y.I.2    Chang, S.K.3    Hsieh-Wilson, L.C.4
  • 140
    • 36348962601 scopus 로고    scopus 로고
    • Structural and functional characterization of the interaction between cyclophilin B and a heparin-derived oligosaccharide
    • Hanoulle X, Melchior A, Sibille N, Parent B, Denys A, et al. 2007. Structural and functional characterization of the interaction between cyclophilin B and a heparin-derived oligosaccharide. J. Biol. Chem. 282:34148-58
    • (2007) J. Biol. Chem , vol.282 , pp. 34148-34158
    • Hanoulle, X.1    Melchior, A.2    Sibille, N.3    Parent, B.4    Denys, A.5
  • 141
    • 0024584913 scopus 로고
    • Molecular modeling of protein-glycosaminoglycan interactions
    • Cardin AD, Weintraub HJ. 1989. Molecular modeling of protein- glycosaminoglycan interactions. Arteriosclerosis 9:21-32
    • (1989) Arteriosclerosis , vol.9 , pp. 21-32
    • Cardin, A.D.1    Weintraub, H.J.2
  • 142
    • 0026806511 scopus 로고
    • Localization and characterization of a heparin binding domain peptide of human vonWillebrand factor
    • SobelM, Soler DF,Kermode JC,HarrisRB. 1992. Localization and characterization of a heparin binding domain peptide of human vonWillebrand factor. J. Biol. Chem. 267:8857-62
    • (1992) J. Biol. Chem , vol.267 , pp. 8857-8862
    • Sobel, M.1    Soler, D.F.2    Kermode, J.C.3    Harris, R.B.4
  • 143
    • 0027327277 scopus 로고
    • Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues
    • Margalit H, Fischer N, Ben-Sasson SA. 1993. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J. Biol. Chem. 268:19228-31
    • (1993) J. Biol. Chem , vol.268 , pp. 19228-19231
    • Margalit, H.1    Fischer, N.2    Ben-Sasson, S.A.3
  • 145
    • 84859467539 scopus 로고    scopus 로고
    • Dissecting the substrate recognition of 3-O-sulfotransferase for the biosynthesis of anticoagulant heparin
    • Moon AF, Xu Y,Woody SM, Krahn JM, Linhardt RJ, et al. 2012. Dissecting the substrate recognition of 3-O-sulfotransferase for the biosynthesis of anticoagulant heparin. Proc.Natl. Acad. Sci. USA109:5265-70
    • (2012) Proc.Natl. Acad. Sci. USA109 , pp. 5265-5270
    • Moon, A.F.1    Xu, Y.2    Woody, S.M.3    Krahn, J.M.4    Linhardt, R.J.5
  • 146
    • 80055084998 scopus 로고    scopus 로고
    • Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins
    • Xu Y, Masuko S, Takieddin M, Xu H, Liu R, et al. 2011. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498-501
    • (2011) Science , vol.334 , pp. 498-501
    • Xu, Y.1    Masuko, S.2    Takieddin, M.3    Xu, H.4    Liu, R.5
  • 147
    • 84879605819 scopus 로고    scopus 로고
    • Multi-faceted substrate specificity of heparanase
    • Peterson SB, Liu J. 2013. Multi-faceted substrate specificity of heparanase. Matrix Biol. 32:223-27
    • (2013) Matrix Biol , vol.32 , pp. 223-227
    • Peterson, S.B.1    Liu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.