메뉴 건너뛰기




Volumn 510, Issue 7503, 2014, Pages 76-83

The different shades of fat

Author keywords

[No Author keywords available]

Indexed keywords

FAT;

EID: 84901929133     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature13477     Document Type: Review
Times cited : (359)

References (125)
  • 1
    • 12444334643 scopus 로고    scopus 로고
    • Lipotoxicity an imbalance between lipogenesis de novo and fatty acid oxidation
    • Lelliott, C. & Vidal-Puig, A. J. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int. J. Obes. Relat. Metab. Disord. 28, S22-S28 (2004).
    • (2004) Int. J. Obes. Relat. Metab. Disord. , vol.28
    • Lelliott, C.1    Vidal-Puig, A.J.2
  • 2
    • 33747356154 scopus 로고    scopus 로고
    • Adipose tissue: From lipid storage compartment to endocrine organ
    • Scherer, P. E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537-1545 (2006).
    • (2006) Diabetes , vol.55 , pp. 1537-1545
    • Scherer, P.E.1
  • 3
    • 0036384894 scopus 로고    scopus 로고
    • Brown adipose tissue: A factor to consider in symmetrical tracer uptake in the neck and upper chest region
    • Hany, T. F. et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 29, 1393-1398 (2002).
    • (2002) Eur. J. Nucl. Med. Mol. Imaging , vol.29 , pp. 1393-1398
    • Hany, T.F.1
  • 4
    • 34547631960 scopus 로고    scopus 로고
    • Unexpected evidence for active brown adipose tissue in adult humans
    • Nedergaard, J. et al. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444-E452 (2007).
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293
    • Nedergaard, J.1
  • 5
    • 64349123664 scopus 로고    scopus 로고
    • Functional brown adipose tissue in healthy adults
    • Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518-1525 (2009).
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1518-1525
    • Virtanen, K.A.1
  • 6
    • 64349095231 scopus 로고    scopus 로고
    • Cold-activated brown adipose tissue in healthy men
    • van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500-1508 (2009).
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1500-1508
    • Van Marken Lichtenbelt, W.D.1
  • 7
    • 64349105205 scopus 로고    scopus 로고
    • Identification and importance of brown adipose tissue in adult humans
    • Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509-1517 (2009).
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1509-1517
    • Cypess, A.M.1
  • 8
    • 67650242165 scopus 로고    scopus 로고
    • High incidence of metabolically active brown adipose effects of cold exposure and adiposity
    • Saito, M. et al. High incidence of metabolically active brown adipose effects of cold exposure and adiposity. Diabetes 58, 1526-1531 (2009).
    • (2009) Diabetes , vol.58 , pp. 1526-1531
    • Saito, M.1
  • 9
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: Function and physiological significance
    • Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277-359 (2004).
    • (2004) Physiol. Rev. , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 10
    • 77949328118 scopus 로고    scopus 로고
    • Thermogenesis challenges the adipostat hypothesis for body-weight control
    • Cannon, B. & Nedergaard, J. Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc. Nutr. Soc. 68, 401-407 (2009).
    • (2009) Proc. Nutr. Soc. , vol.68 , pp. 401-407
    • Cannon, B.1    Nedergaard, J.2
  • 11
    • 58749091645 scopus 로고    scopus 로고
    • UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality
    • Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203-209 (2009).
    • (2009) Cell Metab. , vol.9 , pp. 203-209
    • Feldmann, H.M.1    Golozoubova, V.2    Cannon, B.3    Nedergaard, J.4
  • 12
    • 0027731309 scopus 로고
    • Development of obesity in transgenic mice after genetic ablation of adipose tissue
    • Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of adipose tissue. Nature 366, 740-742 (1993).
    • (1993) Nature , vol.366 , pp. 740-742
    • Lowell, B.B.1
  • 13
    • 79751503329 scopus 로고    scopus 로고
    • Brown adipose tissue activity controls triglyceride clearance
    • Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nature Med. 17, 200-205 (2011).
    • (2011) Nature Med. , vol.17 , pp. 200-205
    • Bartelt, A.1
  • 14
    • 0028945818 scopus 로고
    • Metabolic alterations associated with the antidiabetic effect of β 3-adrenergic receptor agonists in obese mice
    • Arbeeny, C. M., Meyers, D. S., Hillyer, D. E. & Bergquist, K. E. Metabolic alterations associated with the antidiabetic effect of β 3-adrenergic receptor agonists in obese mice. Am. J. Physiol. 268, E678-E684 (1995).
    • (1995) Am. J. Physiol. , vol.268
    • Arbeeny, C.M.1    Meyers, D.S.2    Hillyer, D.E.3    Bergquist, K.E.4
  • 15
    • 0020693920 scopus 로고
    • Luxuskonsumption diet-induced thermogenesis and brown fat: The case in favour
    • Rothwell, N. J. & Stock, M. J. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin. Sci. 64, 19-23 (1983).
    • (1983) Clin. Sci. , vol.64 , pp. 19-23
    • Rothwell, N.J.1    Stock, M.J.2
  • 16
    • 0024162042 scopus 로고
    • Epididymal white adipose tissue after cold stress in rats. I. Nonmitochondrial changes
    • Loncar, D., Afzelius, B. A. & Cannon, B. Epididymal white adipose tissue after cold stress in rats. I. Nonmitochondrial changes. J. Ultrastruct. Mol. Struct. Res. 101, 109-122 (1988).
    • (1988) J. Ultrastruct. Mol. Struct. Res. , vol.101 , pp. 109-122
    • Loncar, D.1    Afzelius, B.A.2    Cannon, B.3
  • 17
    • 0021319695 scopus 로고
    • Brown adipose tissue in the parametrial fat pad of the mouse
    • Young, P., Arch, J. R. & Ashwell, M. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 167, 10-14 (1984).
    • (1984) FEBS Lett. , vol.167 , pp. 10-14
    • Young, P.1    Arch, J.R.2    Ashwell, M.3
  • 18
    • 84864287504 scopus 로고    scopus 로고
    • Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
    • Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376 (2012).
    • (2012) Cell , vol.150 , pp. 366-376
    • Wu, J.1
  • 19
    • 83455198397 scopus 로고    scopus 로고
    • Recruited vs. Nonrecruited molecular signatures of brown, "brite," and white adipose tissues
    • Waldén, T. B. et al. Recruited vs. nonrecruited molecular signatures of brown,"brite," and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19-E31 (2012).
    • (2012) Am. J. Physiol. Endocrinol. Metab. , vol.302
    • Waldén, T.B.1
  • 20
    • 84869233588 scopus 로고    scopus 로고
    • Human BAT possesses molecular signatures that resemble beige/brite cells
    • Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452 (2012).
    • (2012) PLoS ONE , vol.7
    • Sharp, L.Z.1
  • 21
    • 77950226740 scopus 로고    scopus 로고
    • Chronic peroxisome proliferator-activated receptor γ (PPAR-γ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent UCP1-containing adipocytes molecularly distinct from classic brown adipocyt
    • Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPAR-γ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocyt. J. Biol. Chem. 285, 7153-7164 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 7153-7164
    • Petrovic, N.1
  • 22
    • 84890234667 scopus 로고    scopus 로고
    • UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic
    • Shabalina, I. G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196-1203 (2013).
    • (2013) Cell Rep. , vol.5 , pp. 1196-1203
    • Shabalina, I.G.1
  • 23
    • 76049099665 scopus 로고    scopus 로고
    • Adipose tissue expandability, lipotoxicity and the metabolic syndrome-an allostatic perspective
    • Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome-an allostatic perspective. Biochim. Biophys. Acta 1801, 338-349 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1801 , pp. 338-349
    • Virtue, S.1    Vidal-Puig, A.2
  • 24
    • 53549134683 scopus 로고    scopus 로고
    • Identification of white adipocyte progenitor cells in vivo
    • Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240-249 (2008).
    • (2008) Cell , vol.135 , pp. 240-249
    • Rodeheffer, M.S.1    Birsoy, K.2    Friedman, J.M.3
  • 25
    • 53549130485 scopus 로고    scopus 로고
    • White fat progenitor cells reside in the adipose vasculature
    • Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583-586 (2008).
    • (2008) Science , vol.322 , pp. 583-586
    • Tang, W.1
  • 26
    • 84888359805 scopus 로고    scopus 로고
    • Adipogenesis: New insights into brown adipose tissue differentiation
    • Carobbio, S., Rosen, B. & Vidal-Puig, A. Adipogenesis: new insights into brown adipose tissue differentiation. J. Mol. Endocrinol. 51, T75-T85 (2013).
    • (2013) J. Mol. Endocrinol. , vol.51
    • Carobbio, S.1    Rosen, B.2    Vidal-Puig, A.3
  • 27
    • 0034664770 scopus 로고    scopus 로고
    • Pax7 is required for the specification of myogenic satellite cells
    • Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777-786 (2000).
    • (2000) Cell , vol.102 , pp. 777-786
    • Seale, P.1
  • 28
    • 77954741222 scopus 로고    scopus 로고
    • Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells
    • Lepper, C. & Fan, C. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48, 424-436 (2010)
    • (2010) Genesis , vol.48 , pp. 424-436
    • Lepper, C.1    Fan, C.2
  • 29
    • 84873327762 scopus 로고    scopus 로고
    • MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
    • Yin, H. et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 17, 210-224 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 210-224
    • Yin, H.1
  • 30
    • 50049122271 scopus 로고    scopus 로고
    • PRDM16 controls a brown fat/skeletal muscle switch
    • Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967 (2008).
    • (2008) Nature , vol.454 , pp. 961-967
    • Seale, P.1
  • 31
    • 34248372084 scopus 로고    scopus 로고
    • Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages
    • Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401-4406 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 4401-4406
    • Timmons, J.A.1
  • 32
    • 58149217061 scopus 로고    scopus 로고
    • Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes
    • Walden, T. B., Timmons, J. A., Keller, P., Nedergaard, J. & Cannon, B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell. Physiol. 218, 444-449 (2009).
    • (2009) J. Cell. Physiol. , vol.218 , pp. 444-449
    • Walden, T.B.1    Timmons, J.A.2    Keller, P.3    Nedergaard, J.4    Cannon, B.5
  • 33
    • 84865792944 scopus 로고    scopus 로고
    • PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors
    • Sanchez-Gurmaches, J. et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348-362 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 348-362
    • Sanchez-Gurmaches, J.1
  • 34
    • 84881259220 scopus 로고    scopus 로고
    • Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues
    • Shan, T. et al. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J. Lipid Res. 54, 2214-2224 (2013).
    • (2013) J. Lipid Res. , vol.54 , pp. 2214-2224
    • Shan, T.1
  • 35
    • 84856954303 scopus 로고    scopus 로고
    • The vascular endothelium of the adipose tissue give rise to both white and brown fat cells
    • Tran, K. V. et al. The vascular endothelium of the adipose tissue give rise to both white and brown fat cells. Cell Metab. 15, 222-229 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 222-229
    • Tran, K.V.1
  • 36
    • 84856970831 scopus 로고    scopus 로고
    • Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial perivascular cells
    • Gupta, R. K. et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial perivascular cells. Cell Metab. 15, 230-239 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 230-239
    • Gupta, R.K.1
  • 37
    • 84874657953 scopus 로고    scopus 로고
    • Characterization of the adipocyte cellular lineage in vivo
    • Berry, R. & Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nature Cell Biol. 15, 302-308 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 302-308
    • Berry, R.1    Rodeheffer, M.S.2
  • 38
    • 0031985802 scopus 로고    scopus 로고
    • Thiazolidinedione exposure increases the expression of uncoupling protein 1 in cultured human preadipocytes
    • Digby, J. E. et al. Thiazolidinedione exposure increases the expression of uncoupling protein 1 in cultured human preadipocytes. Diabetes 47, 138-141 (1998).
    • (1998) Diabetes , vol.47 , pp. 138-141
    • Digby, J.E.1
  • 40
  • 41
    • 84887502374 scopus 로고    scopus 로고
    • Tracking adipogenesis during white adipose tissue development, expansion and regeneration
    • Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Med. 19, 1338-1344 (2013).
    • (2013) Nature Med. , vol.19 , pp. 1338-1344
    • Wang, Q.A.1    Tao, C.2    Gupta, R.K.3    Scherer, P.E.4
  • 42
    • 84859465056 scopus 로고    scopus 로고
    • In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding
    • Lee, Y.-H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480-491 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 480-491
    • Lee, Y.-H.1    Petkova, A.P.2    Mottillo, E.P.3    Granneman, J.G.4
  • 43
    • 84883354892 scopus 로고    scopus 로고
    • A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes
    • Liu, W. et al. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J. Cell Sci. 126, 3527-3532 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 3527-3532
    • Liu, W.1
  • 44
    • 33748366392 scopus 로고    scopus 로고
    • Regulatory circuits controlling white versus brown adipocyte differentiation
    • Hansen, J. B. & Kristiansen, K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem. J. 398, 153-168 (2006).
    • (2006) Biochem. J. , vol.398 , pp. 153-168
    • Hansen, J.B.1    Kristiansen, K.2
  • 45
    • 14844328611 scopus 로고    scopus 로고
    • Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α
    • Puigserver, P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α. Int. J. Obes. 29, S5-S9 (2005).
    • (2005) Int. J. Obes. , vol.29
    • Puigserver, P.1
  • 46
    • 34347326271 scopus 로고    scopus 로고
    • Transcriptional control of brown fat determination by PRDM16
    • Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38-54 (2007).
    • (2007) Cell Metab. , vol.6 , pp. 38-54
    • Seale, P.1
  • 47
    • 78650945931 scopus 로고    scopus 로고
    • Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
    • Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96-105 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 96-105
    • Seale, P.1
  • 48
    • 84892702771 scopus 로고    scopus 로고
    • Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
    • Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304-316 (2014).
    • (2014) Cell , vol.156 , pp. 304-316
    • Cohen, P.1
  • 49
    • 84889604511 scopus 로고    scopus 로고
    • EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex
    • Ohno, H., Shinoda, K., Ohyama, K., Sharp, L. Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167 (2013).
    • (2013) Nature , vol.504 , pp. 163-167
    • Ohno, H.1    Shinoda, K.2    Ohyama, K.3    Sharp, L.Z.4    Kajimura, S.5
  • 50
    • 20144365700 scopus 로고    scopus 로고
    • Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
    • Frescas, D., Valenti, L. & Accili, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280, 20589-20595 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 20589-20595
    • Frescas, D.1    Valenti, L.2    Accili, D.3
  • 51
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113-118 (2005).
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 52
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109-1122 (2006).
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 53
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco, M. et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12, 51-62 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 51-62
    • Fulco, M.1
  • 54
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ
    • Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620-632 (2012).
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1
  • 55
    • 84883149316 scopus 로고    scopus 로고
    • MicroRNA networks regulate development of brown adipocytes
    • Trajkovski, M. & Lodish, H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol. Metab. 24, 442-450 (2013).
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 442-450
    • Trajkovski, M.1    Lodish, H.2
  • 56
    • 84877747920 scopus 로고    scopus 로고
    • MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
    • Chen, Y. et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nature Commun. 4, 1769 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1769
    • Chen, Y.1
  • 57
    • 84892678138 scopus 로고    scopus 로고
    • MiR-27 orchestrates the transcriptional regulation of brown adipogenesis
    • Sun, L. & Trajkovski, M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism 63, 272-282 (2014).
    • (2014) Metabolism , vol.63 , pp. 272-282
    • Sun, L.1    Trajkovski, M.2
  • 58
    • 84860009214 scopus 로고    scopus 로고
    • Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
    • Mori, M., Nakagami, H., Rodriguez-Araujo, G., Nimura, K. & Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314 (2012).
    • (2012) PLoS Biol. , vol.10
    • Mori, M.1    Nakagami, H.2    Rodriguez-Araujo, G.3    Nimura, K.4    Kaneda, Y.5
  • 59
    • 79960984113 scopus 로고    scopus 로고
    • MiR-193b-365, a brown fat enriched microRNA cluster, is essential for brown fat differentiation
    • Sun, L. et al. MiR-193b-365, a brown fat enriched microRNA cluster, is essential for brown fat differentiation. Nature Cell Biol. 13, 958-965 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 958-965
    • Sun, L.1
  • 60
    • 84870595878 scopus 로고    scopus 로고
    • MyomiR-133 regulates brown fat differentiation through Prdm16
    • Trajkovski, M., Ahmed, K., Esau, C. C. & Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nature Cell Biol. 14, 1330-1335 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 1330-1335
    • Trajkovski, M.1    Ahmed, K.2    Esau, C.C.3    Stoffel, M.4
  • 61
    • 84880812042 scopus 로고    scopus 로고
    • MiR-133a regulates adipocyte browning in vivo
    • Liu, W. et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 9, e1003626 (2013).
    • (2013) PLoS Genet. , vol.9
    • Liu, W.1
  • 62
    • 33846049659 scopus 로고    scopus 로고
    • Insulin and insulin resistance
    • Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 26, 19-39 (2005).
    • (2005) Clin. Biochem. Rev. , vol.26 , pp. 19-39
    • Wilcox, G.1
  • 63
    • 84893428884 scopus 로고    scopus 로고
    • Sympathetic nervous system control of triglyceride metabolism: Novel concepts derived from recent studies
    • Geerling, J. J. et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J. Lipid Res. 55, 180-189 (2014).
    • (2014) J. Lipid Res. , vol.55 , pp. 180-189
    • Geerling, J.J.1
  • 64
    • 0035787319 scopus 로고    scopus 로고
    • The β-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis
    • Collins, S. & Surwit, R. S. The β-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res. 56, 309-328 (2001).
    • (2001) Recent Prog. Horm. Res. , vol.56 , pp. 309-328
    • Collins, S.1    Surwit, R.S.2
  • 65
    • 84879590350 scopus 로고    scopus 로고
    • Brown adipose tissue: Development, metabolism and beyond
    • Schulz, T. J. & Tseng, Y.-H. Brown adipose tissue: development, metabolism and beyond. Biochem. J. 453, 167-178 (2013).
    • (2013) Biochem. J. , vol.453 , pp. 167-178
    • Schulz, T.J.1    Tseng, Y.-H.2
  • 66
    • 84875367849 scopus 로고    scopus 로고
    • Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat
    • Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379-383 (2013).
    • (2013) Nature , vol.495 , pp. 379-383
    • Schulz, T.J.1
  • 67
    • 36849095595 scopus 로고    scopus 로고
    • Cardiovascular responses to weight management and sibutramine in high-risk subjects: An analysis from the SCOUT trial
    • Torp-Pedersen, C. et al. Cardiovascular responses to weight management and sibutramine in high-risk subjects: an analysis from the SCOUT trial. Eur. Heart J. 28, 2915-2923 (2007).
    • (2007) Eur. Heart J. , vol.28 , pp. 2915-2923
    • Torp-Pedersen, C.1
  • 68
    • 0037066575 scopus 로고    scopus 로고
    • β3-adrenoceptor agonists: Potential, pitfalls and progress
    • Arch, J. R. S. β3-adrenoceptor agonists: potential, pitfalls and progress. Eur. J. Pharmacol. 440, 99-107 (2002).
    • (2002) Eur. J. Pharmacol. , vol.440 , pp. 99-107
    • Arch, J.R.S.1
  • 69
    • 17944377509 scopus 로고    scopus 로고
    • FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance
    • Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563-573 (2001).
    • (2001) Cell , vol.106 , pp. 563-573
    • Cederberg, A.1
  • 70
    • 33745965635 scopus 로고    scopus 로고
    • Reduced PDE4 expression and activity contributes to enhanced catecholamine-induced cAMP accumulation in adipocytes from FOXC2 transgenic mice
    • Grønning, L. M. et al. Reduced PDE4 expression and activity contributes to enhanced catecholamine-induced cAMP accumulation in adipocytes from FOXC2 transgenic mice. FEBS Lett. 580, 4126-4130 (2006).
    • (2006) FEBS Lett. , vol.580 , pp. 4126-4130
    • Grønning, L.M.1
  • 71
    • 79551610057 scopus 로고    scopus 로고
    • The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function
    • Lidell, M. E. et al. The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes 60, 427-435 (2011).
    • (2011) Diabetes , vol.60 , pp. 427-435
    • Lidell, M.E.1
  • 72
    • 84860850964 scopus 로고    scopus 로고
    • BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions
    • Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871-885 (2012).
    • (2012) Cell , vol.149 , pp. 871-885
    • Whittle, A.J.1
  • 73
    • 50049127055 scopus 로고    scopus 로고
    • New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure
    • Tseng, Y.-H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000-1004 (2008).
    • (2008) Nature , vol.454 , pp. 1000-1004
    • Tseng, Y.-H.1
  • 74
    • 84884183691 scopus 로고    scopus 로고
    • BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality
    • Boon, M. R. et al. BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS ONE 8, e74083 (2013).
    • (2013) PLoS ONE , vol.8
    • Boon, M.R.1
  • 75
    • 84877585823 scopus 로고    scopus 로고
    • Beyond the sympathetic tone: The new brown fat activators
    • Villarroya, F. & Vidal-Puig, A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17, 638-643 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 638-643
    • Villarroya, F.1    Vidal-Puig, A.2
  • 76
    • 79953886306 scopus 로고    scopus 로고
    • Thermogenic activation induces FGF21 expression and release in brown adipose tissue
    • Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286, 12983-12990 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 12983-12990
    • Hondares, E.1
  • 77
    • 84863012022 scopus 로고    scopus 로고
    • FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
    • Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271-281 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 271-281
    • Fisher, F.M.1
  • 78
    • 42949109612 scopus 로고    scopus 로고
    • Control of lipolysis by natriuretic peptides and cyclic GMP
    • Lafontan, M. et al. Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol. Metab. 19, 130-137 (2008).
    • (2008) Trends Endocrinol. Metab. , vol.19 , pp. 130-137
    • Lafontan, M.1
  • 79
    • 84863229962 scopus 로고    scopus 로고
    • Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes
    • Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022-1036 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 1022-1036
    • Bordicchia, M.1
  • 80
    • 79960955885 scopus 로고    scopus 로고
    • Cardiotrophin-1 is a key regulator of glucose and lipid metabolism
    • Moreno-Aliaga, M. J. et al. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab. 14, 242-253 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 242-253
    • Moreno-Aliaga, M.J.1
  • 81
    • 84862776702 scopus 로고    scopus 로고
    • A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
    • Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463-468 (2012).
    • (2012) Nature , vol.481 , pp. 463-468
    • Boström, P.1
  • 82
    • 80052358980 scopus 로고    scopus 로고
    • Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling
    • Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375-3383 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 3375-3383
    • Jones, S.A.1    Scheller, J.2    Rose-John, S.3
  • 83
    • 84876133911 scopus 로고    scopus 로고
    • FNDC5/irisin is not only a myokine but also an adipokine
    • Roca-Rivada, A. et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS ONE 8, e60563 (2013).
    • (2013) PLoS ONE , vol.8
    • Roca-Rivada, A.1
  • 84
    • 84893064752 scopus 로고    scopus 로고
    • Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling
    • Zhang, Y. et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63, 514-525 (2014).
    • (2014) Diabetes , vol.63 , pp. 514-525
    • Zhang, Y.1
  • 85
    • 84898648553 scopus 로고    scopus 로고
    • Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure
    • Wikstrom, J. D. et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418-436 (2014).
    • (2014) EMBO J. , vol.33 , pp. 418-436
    • Wikstrom, J.D.1
  • 86
    • 82555186955 scopus 로고    scopus 로고
    • Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
    • Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108 (2011).
    • (2011) Nature , vol.480 , pp. 104-108
    • Nguyen, K.D.1
  • 87
    • 57849153917 scopus 로고    scopus 로고
    • Hypoxia-independent angiogenesis in adipose tissues during cold acclimation
    • Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99-109 (2009).
    • (2009) Cell Metab. , vol.9 , pp. 99-109
    • Xue, Y.1
  • 88
    • 84859410604 scopus 로고    scopus 로고
    • The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes
    • Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619-629 (2012).
    • (2012) J. Lipid Res. , vol.53 , pp. 619-629
    • Vitali, A.1
  • 89
    • 48249143579 scopus 로고    scopus 로고
    • FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue
    • Xue, Y. et al. FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc. Natl Acad. Sci. USA 105, 10167-10172 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 10167-10172
    • Xue, Y.1
  • 90
    • 84863198909 scopus 로고    scopus 로고
    • Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance
    • Elias, I. et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61, 1801-1813 (2012).
    • (2012) Diabetes , vol.61 , pp. 1801-1813
    • Elias, I.1
  • 91
    • 84859615812 scopus 로고    scopus 로고
    • Dichotomous effects of VEGF-A on adipose tissue dysfunction
    • Sun, K. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl Acad. Sci. USA 109, 5874-5879 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 5874-5879
    • Sun, K.1
  • 92
    • 54349124582 scopus 로고    scopus 로고
    • Hypoxia and the endocrine and signalling role of white adipose tissue
    • Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia and the endocrine and signalling role of white adipose tissue. Arch. Physiol. Biochem. 114, 267-276 (2008).
    • (2008) Arch. Physiol. Biochem. , vol.114 , pp. 267-276
    • Trayhurn, P.1    Wang, B.2    Wood, I.S.3
  • 94
    • 2942703809 scopus 로고    scopus 로고
    • Reversal of obesity by targeted ablation of adipose tissue
    • Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nature Med. 10, 625-632 (2004).
    • (2004) Nature Med. , vol.10 , pp. 625-632
    • Kolonin, M.G.1    Saha, P.K.2    Chan, L.3    Pasqualini, R.4    Arap, W.5
  • 95
    • 0036678477 scopus 로고    scopus 로고
    • Adipose tissue mass can be regulated through the vasculature
    • Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730-10735 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 10730-10735
    • Rupnick, M.A.1
  • 96
    • 0032520921 scopus 로고    scopus 로고
    • Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats
    • Okuno, A. et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest. 101, 1354-1361 (1998).
    • (1998) J. Clin. Invest. , vol.101 , pp. 1354-1361
    • Okuno, A.1
  • 97
    • 0035430576 scopus 로고    scopus 로고
    • Effects of pioplitazone on adipose tissue remodeling within the setting of obesity and insulin resistance
    • De Souza, C. J. et al. Effects of pioplitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50, 1863-1871 (2001).
    • (2001) Diabetes , vol.50 , pp. 1863-1871
    • De Souza, C.J.1
  • 98
    • 34848872799 scopus 로고    scopus 로고
    • Obesity-associated improvements in metabolic profile through expansion of adipose tissue
    • Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621-2637 (2007).
    • (2007) J. Clin. Invest. , vol.117 , pp. 2621-2637
    • Kim, J.Y.1
  • 99
    • 17944365228 scopus 로고    scopus 로고
    • The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
    • Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941-946 (2001).
    • (2001) Nature Med. , vol.7 , pp. 941-946
    • Yamauchi, T.1
  • 100
    • 0035430576 scopus 로고    scopus 로고
    • Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistence
    • De Souza, C. J. et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistence. Diabetes 50, 1863-1871 (2001).
    • (2001) Diabetes , vol.50 , pp. 1863-1871
    • De Souza, C.J.1
  • 101
    • 84870302181 scopus 로고    scopus 로고
    • MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity
    • Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nature Methods 18, 1539-1549 (2012).
    • (2012) Nature Methods , vol.18 , pp. 1539-1549
    • Kusminski, C.M.1
  • 102
    • 62849107819 scopus 로고    scopus 로고
    • Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI
    • Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575-1591 (2009).
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1575-1591
    • Khan, T.1
  • 103
    • 84877263632 scopus 로고    scopus 로고
    • A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans
    • Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798-805 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 798-805
    • Jespersen, N.Z.1
  • 104
    • 84877340732 scopus 로고    scopus 로고
    • Evidence for two types of brown adipose tissue in humans
    • Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nature Med. 19, 631-634 (2013).
    • (2013) Nature Med. , vol.19 , pp. 631-634
    • Lidell, M.E.1
  • 105
    • 84877331455 scopus 로고    scopus 로고
    • Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
    • Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Med. 19, 635-639 (2013).
    • (2013) Nature Med. , vol.19 , pp. 635-639
    • Cypess, A.M.1
  • 106
    • 0031053535 scopus 로고    scopus 로고
    • Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue
    • Cinti, S. et al. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology 138, 797-804 (1997).
    • (1997) Endocrinology , vol.138 , pp. 797-804
    • Cinti, S.1
  • 107
    • 84856529575 scopus 로고    scopus 로고
    • Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans
    • Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545-552 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 545-552
    • Ouellet, V.1
  • 108
    • 79961233289 scopus 로고    scopus 로고
    • High prevalence of brown adipose tissue in adult humans
    • Lee, P. et al. High prevalence of brown adipose tissue in adult humans. J. Clin. Endocrinol. Metab. 96, 2450-2455 (2011).
    • (2011) J. Clin. Endocrinol. Metab. , vol.96 , pp. 2450-2455
    • Lee, P.1
  • 109
    • 84875794383 scopus 로고    scopus 로고
    • 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat
    • Muzik, O. et al. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J. Nucl. Med. 54, 523-531 (2013).
    • (2013) J. Nucl. Med. , vol.54 , pp. 523-531
    • Muzik, O.1
  • 110
    • 78650676545 scopus 로고    scopus 로고
    • Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men
    • Yoneshiro, T. et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19, 13-16 (2011).
    • (2011) Obesity (Silver Spring) , vol.19 , pp. 13-16
    • Yoneshiro, T.1
  • 111
    • 77954303930 scopus 로고    scopus 로고
    • Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans
    • Pfannenberg, C. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 1789-1793 (2010).
    • (2010) Diabetes , vol.59 , pp. 1789-1793
    • Pfannenberg, C.1
  • 112
    • 78650098848 scopus 로고    scopus 로고
    • Outdoor temperture, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake of 18F-FDG-detected BAT in humans
    • Ouellet, V. et al. Outdoor temperture, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake of 18F-FDG-detected BAT in humans. J. Clin. Endocrinol. Metab. 96, 192-199 (2011).
    • (2011) J. Clin. Endocrinol. Metab. , vol.96 , pp. 192-199
    • Ouellet, V.1
  • 113
    • 80052139636 scopus 로고    scopus 로고
    • Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans
    • Yoneshiro, T. et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19, 1755-1760 (2011).
    • (2011) Obesity (Silver Spring) , vol.19 , pp. 1755-1760
    • Yoneshiro, T.1
  • 114
    • 84867877438 scopus 로고    scopus 로고
    • Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children
    • Symonds, M. E. et al. Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J. Pediatr. 161, 892-898 (2012).
    • (2012) J. Pediatr. , vol.161 , pp. 892-898
    • Symonds, M.E.1
  • 115
    • 84881260642 scopus 로고    scopus 로고
    • Cold acclimation recruits human brown fat and increases nonshivering thermogenesis
    • van der Lans, A. A. J. J. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395-3403 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 3395-3403
    • Van Der Lans, A.A.J.J.1
  • 116
    • 84881221754 scopus 로고    scopus 로고
    • Recruited brown adipose tissue as an antiobesity agent in humans
    • Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404-3408 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 3404-3408
    • Yoneshiro, T.1
  • 117
    • 84879896962 scopus 로고    scopus 로고
    • Increased oxygen consumption in human adipose tissue from the brown adipose tissue region
    • Vijgen, G. H. E. J. et al. Increased oxygen consumption in human adipose tissue from the "brown adipose tissue" region. J. Clin. Endocrinol. Metab. 98, E1230-E1234 (2013).
    • (2013) J. Clin. Endocrinol. Metab. , vol.98
    • Vijgen, G.H.E.J.1
  • 118
    • 84896710569 scopus 로고    scopus 로고
    • Functional thermogenic beige adipogenesis is inducible in human neck fat
    • Lee, P., Werner, C. D., Kebebew, E. & Celi, F. S. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int. J. Obes. 38, 170-176 (2014).
    • (2014) Int. J. Obes. , vol.38 , pp. 170-176
    • Lee, P.1    Werner, C.D.2    Kebebew, E.3    Celi, F.S.4
  • 120
    • 84893452569 scopus 로고    scopus 로고
    • Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans
    • Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302-309 (2014).
    • (2014) Cell Metab. , vol.19 , pp. 302-309
    • Lee, P.1
  • 121
    • 84872070199 scopus 로고    scopus 로고
    • Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: Relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis
    • Lee, P. et al. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J. Clin. Endocrinol. Metab. 98, E98-E102 (2013).
    • (2013) J. Clin. Endocrinol. Metab. , vol.98
    • Lee, P.1
  • 122
    • 84862777293 scopus 로고    scopus 로고
    • Programming human pluripotent stem cells into white and brown adipocytes
    • Ahfeldt, T. et al. Programming human pluripotent stem cells into white and brown adipocytes. Nature Cell Biol. 14, 209-219 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 209-219
    • Ahfeldt, T.1
  • 123
    • 84865747655 scopus 로고    scopus 로고
    • Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer
    • Nishio, M. et al. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16, 394-406 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 394-406
    • Nishio, M.1
  • 124
    • 84857408775 scopus 로고    scopus 로고
    • Reversal of type 1 diabetes in mice by brown adipose tissue transplant
    • Gunawardana, S. C. & Piston, D. W. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61, 674-682 (2012).
    • (2012) Diabetes , vol.61 , pp. 674-682
    • Gunawardana, S.C.1    Piston, D.W.2
  • 125
    • 84873854027 scopus 로고    scopus 로고
    • Brown adipose tissue regulates glucose homeostasis and insulin sensitivity
    • Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215-223 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 215-223
    • Stanford, K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.