-
1
-
-
0028139089
-
Positional cloning of the mouse obese gene and its human homologue
-
Zhang Y., et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372:425-432.
-
(1994)
Nature
, vol.372
, pp. 425-432
-
-
Zhang, Y.1
-
2
-
-
0029118124
-
Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus
-
Maffei M., et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:6957-6960.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 6957-6960
-
-
Maffei, M.1
-
3
-
-
0029066265
-
Effects of the obese gene product on body weight regulation in ob/ob mice
-
Pelleymounter M.A., et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269:540-543.
-
(1995)
Science
, vol.269
, pp. 540-543
-
-
Pelleymounter, M.A.1
-
4
-
-
0028787490
-
A novel serum protein similar to C1q, produced exclusively in adipocytes
-
Scherer P.E., et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270:26746-26749.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 26746-26749
-
-
Scherer, P.E.1
-
5
-
-
17544382289
-
AdipoQ is a novel adipose-specific gene dysregulated in obesity
-
Hu E., et al. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 1996, 271:10697-10703.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 10697-10703
-
-
Hu, E.1
-
6
-
-
0030878110
-
Congenital leptin deficiency is associated with severe early-onset obesity in humans
-
Montague C.T., et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997, 387:903-908.
-
(1997)
Nature
, vol.387
, pp. 903-908
-
-
Montague, C.T.1
-
7
-
-
0035905758
-
The hormone resistin links obesity to diabetes
-
Steppan C.M., et al. The hormone resistin links obesity to diabetes. Nature 2001, 409:307-312.
-
(2001)
Nature
, vol.409
, pp. 307-312
-
-
Steppan, C.M.1
-
8
-
-
14644439938
-
The mitochondrial uncoupling-protein homologues
-
Krauss S., et al. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 2005, 6:248-261.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 248-261
-
-
Krauss, S.1
-
9
-
-
27844484309
-
The efficiency and plasticity of mitochondrial energy transduction
-
Brand M.D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 2005, 33:897-904.
-
(2005)
Biochem. Soc. Trans.
, vol.33
, pp. 897-904
-
-
Brand, M.D.1
-
10
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84:277-359.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
11
-
-
0033825933
-
Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes
-
Himms-Hagen J., et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 2000, 279:C670-C681.
-
(2000)
Am. J. Physiol. Cell Physiol.
, vol.279
-
-
Himms-Hagen, J.1
-
12
-
-
0021319695
-
Brown adipose tissue in the parametrial fat pad of the mouse
-
Young P., et al. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 1984, 167:10-14.
-
(1984)
FEBS Lett.
, vol.167
, pp. 10-14
-
-
Young, P.1
-
13
-
-
0023119510
-
Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue
-
Bianco A.C., Silva J.E. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J. Clin. Invest. 1987, 79:295-300.
-
(1987)
J. Clin. Invest.
, vol.79
, pp. 295-300
-
-
Bianco, A.C.1
Silva, J.E.2
-
14
-
-
0023773290
-
Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine
-
Silva J.E. Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine. Mol. Endocrinol. 1988, 2:706-713.
-
(1988)
Mol. Endocrinol.
, vol.2
, pp. 706-713
-
-
Silva, J.E.1
-
15
-
-
0036384894
-
Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region
-
Hany T.F., et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 2002, 29:1393-1398.
-
(2002)
Eur. J. Nucl. Med. Mol. Imaging
, vol.29
, pp. 1393-1398
-
-
Hany, T.F.1
-
16
-
-
34547631960
-
Unexpected evidence for active brown adipose tissue in adult humans
-
Nedergaard J., et al. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E444-E452.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
-
-
Nedergaard, J.1
-
17
-
-
64349105205
-
Identification and importance of brown adipose tissue in adult humans
-
Cypess A.M., et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360:1509-1517.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1509-1517
-
-
Cypess, A.M.1
-
18
-
-
64349123664
-
Functional brown adipose tissue in healthy adults
-
Virtanen K.A., et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 2009, 360:1518-1525.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1518-1525
-
-
Virtanen, K.A.1
-
19
-
-
64349095231
-
Cold-activated brown adipose tissue in healthy men
-
van Marken Lichtenbelt W.D., et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360:1500-1508.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1500-1508
-
-
Van Marken Lichtenbelt, W.D.1
-
20
-
-
0027731309
-
Development of obesity in transgenic mice after genetic ablation of brown adipose tissue
-
Lowell B.B., et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993, 366:740-742.
-
(1993)
Nature
, vol.366
, pp. 740-742
-
-
Lowell, B.B.1
-
21
-
-
0032528169
-
Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity
-
Guerra C., et al. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 1998, 102:412-420.
-
(1998)
J. Clin. Invest.
, vol.102
, pp. 412-420
-
-
Guerra, C.1
-
22
-
-
0030745159
-
Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist
-
Ghorbani M., et al. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem. Pharmacol. 1997, 54:121-131.
-
(1997)
Biochem. Pharmacol.
, vol.54
, pp. 121-131
-
-
Ghorbani, M.1
-
23
-
-
0028865142
-
Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity
-
Kopecky J., et al. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 1995, 96:2914-2923.
-
(1995)
J. Clin. Invest.
, vol.96
, pp. 2914-2923
-
-
Kopecky, J.1
-
24
-
-
0027051199
-
Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization
-
Cousin B., et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 1992, 103:931-942.
-
(1992)
J. Cell Sci.
, vol.103
, pp. 931-942
-
-
Cousin, B.1
-
25
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
-
26
-
-
70350759666
-
MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta
-
He M., et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell. Mol. Immunol. 2009, 6:343-352.
-
(2009)
Cell. Mol. Immunol.
, vol.6
, pp. 343-352
-
-
He, M.1
-
27
-
-
50049122271
-
PRDM16 controls a brown fat/skeletal muscle switch
-
Seale P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961-967.
-
(2008)
Nature
, vol.454
, pp. 961-967
-
-
Seale, P.1
-
28
-
-
78650945931
-
Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
-
Seale P., et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 2011, 121:96-105.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 96-105
-
-
Seale, P.1
-
29
-
-
0033213637
-
PPAR gamma is required for placental, cardiac, and adipose tissue development
-
Barak Y., et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 1999, 4:585-595.
-
(1999)
Mol. Cell
, vol.4
, pp. 585-595
-
-
Barak, Y.1
-
30
-
-
0036007024
-
C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway
-
Rosen E.D., et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 2002, 16:22-26.
-
(2002)
Genes Dev.
, vol.16
, pp. 22-26
-
-
Rosen, E.D.1
-
31
-
-
0033213631
-
PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro
-
Rosen E.D., et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 1999, 4:611-617.
-
(1999)
Mol. Cell
, vol.4
, pp. 611-617
-
-
Rosen, E.D.1
-
32
-
-
0031435337
-
Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene
-
Tanaka T., et al. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997, 16:7432-7443.
-
(1997)
EMBO J.
, vol.16
, pp. 7432-7443
-
-
Tanaka, T.1
-
33
-
-
0029160028
-
Impaired energy homeostasis in C/EBP alpha knockout mice
-
Wang N.D., et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995, 269:1108-1112.
-
(1995)
Science
, vol.269
, pp. 1108-1112
-
-
Wang, N.D.1
-
34
-
-
0033083803
-
Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity
-
Wu Z., et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 1999, 3:151-158.
-
(1999)
Mol. Cell
, vol.3
, pp. 151-158
-
-
Wu, Z.1
-
35
-
-
69349088117
-
Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex
-
Kajimura S., et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009, 460:1154-1158.
-
(2009)
Nature
, vol.460
, pp. 1154-1158
-
-
Kajimura, S.1
-
36
-
-
83355163350
-
Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16
-
Hondares E., et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 2011, 286:43112-43122.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 43112-43122
-
-
Hondares, E.1
-
37
-
-
17944377509
-
FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance
-
Cederberg A., et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001, 106:563-573.
-
(2001)
Cell
, vol.106
, pp. 563-573
-
-
Cederberg, A.1
-
38
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
39
-
-
77950245008
-
Transcriptional control of brown fat development
-
Kajimura S., et al. Transcriptional control of brown fat development. Cell Metab. 2010, 11:257-262.
-
(2010)
Cell Metab.
, vol.11
, pp. 257-262
-
-
Kajimura, S.1
-
40
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H., et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840.
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
-
41
-
-
33644768174
-
Control of translation and mRNA degradation by miRNAs and siRNAs
-
Valencia-Sanchez M.A., et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006, 20:515-524.
-
(2006)
Genes Dev.
, vol.20
, pp. 515-524
-
-
Valencia-Sanchez, M.A.1
-
42
-
-
28044471565
-
MicroRNA functions in animal development and human disease
-
Alvarez-Garcia I., Miska E.A. MicroRNA functions in animal development and human disease. Development 2005, 132:4653-4662.
-
(2005)
Development
, vol.132
, pp. 4653-4662
-
-
Alvarez-Garcia, I.1
Miska, E.A.2
-
43
-
-
35148819250
-
MicroRNAs and the regulation of glucose and lipid metabolism
-
Poy M.N., et al. MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes. Metab. 2007, 9(Suppl. 2):67-73.
-
(2007)
Diabetes Obes. Metab.
, vol.9
, Issue.SUPPL. 2
, pp. 67-73
-
-
Poy, M.N.1
-
44
-
-
77955902024
-
The widespread regulation of microRNA biogenesis, function and decay
-
Krol J., et al. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11:597-610.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 597-610
-
-
Krol, J.1
-
45
-
-
78751477191
-
Gene silencing by microRNAs: contributions of translational repression and mRNA decay
-
Huntzinger E., Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011, 12:99-110.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
-
46
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
47
-
-
78651293534
-
MiRBase: integrating microRNA annotation and deep-sequencing data
-
Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39:D152-D157.
-
(2011)
Nucleic Acids Res.
, vol.39
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
48
-
-
10344243662
-
MicroRNA-143 regulates adipocyte differentiation
-
Esau C., et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 2004, 279:52361-52365.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 52361-52365
-
-
Esau, C.1
-
49
-
-
65549144017
-
MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
-
Xie H., et al. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58:1050-1057.
-
(2009)
Diabetes
, vol.58
, pp. 1050-1057
-
-
Xie, H.1
-
50
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
Trajkovski M., et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474:649-653.
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
-
51
-
-
79951776196
-
Dicer is required for the formation of white but not brown adipose tissue
-
Mudhasani R., et al. Dicer is required for the formation of white but not brown adipose tissue. J. Cell. Physiol. 2011, 226:1399-1406.
-
(2011)
J. Cell. Physiol.
, vol.226
, pp. 1399-1406
-
-
Mudhasani, R.1
-
52
-
-
79954532462
-
MicroRNAs in adipogenesis and as therapeutic targets for obesity
-
Alexander R., et al. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin. Ther. Targets 2011, 15:623-636.
-
(2011)
Expert Opin. Ther. Targets
, vol.15
, pp. 623-636
-
-
Alexander, R.1
-
53
-
-
79960984113
-
Mir193b-365 is essential for brown fat differentiation
-
Sun L., et al. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 2011, 13:958-965.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 958-965
-
-
Sun, L.1
-
54
-
-
0012956403
-
CDO, a robo-related cell surface protein that mediates myogenic differentiation
-
Kang J.S., et al. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J. Cell Biol. 1998, 143:403-413.
-
(1998)
J. Cell Biol.
, vol.143
, pp. 403-413
-
-
Kang, J.S.1
-
55
-
-
8444240141
-
Positive regulation of myogenic bHLH factors and skeletal muscle development by the cell surface receptor CDO
-
Cole F., et al. Positive regulation of myogenic bHLH factors and skeletal muscle development by the cell surface receptor CDO. Dev. Cell 2004, 7:843-854.
-
(2004)
Dev. Cell
, vol.7
, pp. 843-854
-
-
Cole, F.1
-
56
-
-
49749125994
-
A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation
-
Kang J.S., et al. A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation. J. Cell Biol. 2008, 182:497-507.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 497-507
-
-
Kang, J.S.1
-
57
-
-
51649125241
-
IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop
-
Ren H., et al. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. J. Cell Biol. 2008, 182:979-991.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 979-991
-
-
Ren, H.1
-
58
-
-
58149217061
-
Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes
-
Walden T.B., et al. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell. Physiol. 2009, 218:444-449.
-
(2009)
J. Cell. Physiol.
, vol.218
, pp. 444-449
-
-
Walden, T.B.1
-
59
-
-
39749140336
-
MicroRNA regulation of cell lineages in mouse and human embryonic stem cells
-
Ivey K.N., et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008, 2:219-229.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 219-229
-
-
Ivey, K.N.1
-
60
-
-
31744432337
-
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
-
Chen J.F., et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38:228-233.
-
(2006)
Nat. Genet.
, vol.38
, pp. 228-233
-
-
Chen, J.F.1
-
61
-
-
57749121689
-
MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
Liu N., et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008, 22:3242-3254.
-
(2008)
Genes Dev.
, vol.22
, pp. 3242-3254
-
-
Liu, N.1
-
62
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
van Rooij E., et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18255-18260.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 18255-18260
-
-
van Rooij, E.1
-
63
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care A., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007, 13:613-618.
-
(2007)
Nat. Med.
, vol.13
, pp. 613-618
-
-
Care, A.1
-
64
-
-
84870595878
-
MyomiR-133 regulates brown fat differentiation through Prdm16
-
Trajkovski M., et al. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 2012, 14:1330-1335.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1330-1335
-
-
Trajkovski, M.1
-
65
-
-
38049156025
-
An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133
-
Liu N., et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:20844-20849.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 20844-20849
-
-
Liu, N.1
-
66
-
-
84873327762
-
MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
-
Yin H., et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 2013, 17:210-224.
-
(2013)
Cell Metab
, vol.17
, pp. 210-224
-
-
Yin, H.1
-
67
-
-
70350547780
-
Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway
-
Kozhemyakina E., et al. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol. Cell. Biol. 2009, 29:5751-5762.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5751-5762
-
-
Kozhemyakina, E.1
-
68
-
-
84860009214
-
Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
-
Mori M., et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012, 10:e1001314.
-
(2012)
PLoS Biol.
, vol.10
-
-
Mori, M.1
-
69
-
-
2142654329
-
MicroRNA-directed cleavage of HOXB8 mRNA
-
Yekta S., et al. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304:594-596.
-
(2004)
Science
, vol.304
, pp. 594-596
-
-
Yekta, S.1
-
70
-
-
84877747920
-
MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
-
Chen Y., et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 2013, 4:1769.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1769
-
-
Chen, Y.1
-
71
-
-
55849123946
-
MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA
-
Kong W., et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 2008, 28:6773-6784.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6773-6784
-
-
Kong, W.1
-
72
-
-
0342542810
-
Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts
-
Ignotz R.A., Massague J. Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:8530-8534.
-
(1985)
Proc. Natl. Acad. Sci. U.S.A.
, vol.82
, pp. 8530-8534
-
-
Ignotz, R.A.1
Massague, J.2
-
73
-
-
80054918892
-
TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors
-
Liu S., et al. TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem. Biophys. Res. Commun. 2011, 414:618-624.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.414
, pp. 618-624
-
-
Liu, S.1
-
74
-
-
84859394657
-
Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222
-
Skarn M., et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012, 21:873-883.
-
(2012)
Stem Cells Dev.
, vol.21
, pp. 873-883
-
-
Skarn, M.1
-
75
-
-
68649086358
-
Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp beta and down-regulation of G-CSF
-
Worm J., et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp beta and down-regulation of G-CSF. Nucleic Acids Res. 2009, 37:5784-5792.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 5784-5792
-
-
Worm, J.1
-
76
-
-
84868475728
-
MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles
-
van Rooij E., Olson E.N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 2012, 11:860-872.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 860-872
-
-
van Rooij, E.1
Olson, E.N.2
-
77
-
-
81355142141
-
Non-coding RNAs in human disease
-
Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12:861-874.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 861-874
-
-
Esteller, M.1
-
78
-
-
80054971110
-
Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
-
Rayner K.J., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404-407.
-
(2011)
Nature
, vol.478
, pp. 404-407
-
-
Rayner, K.J.1
-
79
-
-
79953317808
-
Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
-
Jordan S.D., et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 2011, 13:434-446.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 434-446
-
-
Jordan, S.D.1
-
80
-
-
0022943269
-
The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue
-
Loncar D., et al. The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J. Ultrastruct. Mol. Struct. Res. 1986, 97:119-129.
-
(1986)
J. Ultrastruct. Mol. Struct. Res.
, vol.97
, pp. 119-129
-
-
Loncar, D.1
-
81
-
-
0036862318
-
Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ
-
Cinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J. Endocrinol. Invest. 2002, 25:823-835.
-
(2002)
J. Endocrinol. Invest.
, vol.25
, pp. 823-835
-
-
Cinti, S.1
-
82
-
-
84873518501
-
Adaptive thermogenesis in adipocytes: is beige the new brown
-
Wu J., et al. Adaptive thermogenesis in adipocytes: is beige the new brown?. Genes Dev. 2013, 27:234-250.
-
(2013)
Genes Dev.
, vol.27
, pp. 234-250
-
-
Wu, J.1
-
83
-
-
84877331455
-
Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
-
Cypess A.M., et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 2013, 19:635-639.
-
(2013)
Nat. Med.
, vol.19
, pp. 635-639
-
-
Cypess, A.M.1
|