메뉴 건너뛰기




Volumn 24, Issue 9, 2013, Pages 442-450

MicroRNA networks regulate development of brown adipocytes

Author keywords

Adipocyte; Adipogenesis; Beige; Brown; MicroRNA

Indexed keywords

MICRORNA; MICRORNA 133A; MICRORNA 133B; MICRORNA 155; MICRORNA 196A; MICRORNA193B 365; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 84883149316     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2013.05.002     Document Type: Review
Times cited : (60)

References (83)
  • 1
    • 0028139089 scopus 로고
    • Positional cloning of the mouse obese gene and its human homologue
    • Zhang Y., et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372:425-432.
    • (1994) Nature , vol.372 , pp. 425-432
    • Zhang, Y.1
  • 2
    • 0029118124 scopus 로고
    • Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus
    • Maffei M., et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:6957-6960.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 6957-6960
    • Maffei, M.1
  • 3
    • 0029066265 scopus 로고
    • Effects of the obese gene product on body weight regulation in ob/ob mice
    • Pelleymounter M.A., et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269:540-543.
    • (1995) Science , vol.269 , pp. 540-543
    • Pelleymounter, M.A.1
  • 4
    • 0028787490 scopus 로고
    • A novel serum protein similar to C1q, produced exclusively in adipocytes
    • Scherer P.E., et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270:26746-26749.
    • (1995) J. Biol. Chem. , vol.270 , pp. 26746-26749
    • Scherer, P.E.1
  • 5
    • 17544382289 scopus 로고    scopus 로고
    • AdipoQ is a novel adipose-specific gene dysregulated in obesity
    • Hu E., et al. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 1996, 271:10697-10703.
    • (1996) J. Biol. Chem. , vol.271 , pp. 10697-10703
    • Hu, E.1
  • 6
    • 0030878110 scopus 로고    scopus 로고
    • Congenital leptin deficiency is associated with severe early-onset obesity in humans
    • Montague C.T., et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997, 387:903-908.
    • (1997) Nature , vol.387 , pp. 903-908
    • Montague, C.T.1
  • 7
    • 0035905758 scopus 로고    scopus 로고
    • The hormone resistin links obesity to diabetes
    • Steppan C.M., et al. The hormone resistin links obesity to diabetes. Nature 2001, 409:307-312.
    • (2001) Nature , vol.409 , pp. 307-312
    • Steppan, C.M.1
  • 8
    • 14644439938 scopus 로고    scopus 로고
    • The mitochondrial uncoupling-protein homologues
    • Krauss S., et al. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 2005, 6:248-261.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 248-261
    • Krauss, S.1
  • 9
    • 27844484309 scopus 로고    scopus 로고
    • The efficiency and plasticity of mitochondrial energy transduction
    • Brand M.D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 2005, 33:897-904.
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 897-904
    • Brand, M.D.1
  • 10
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: function and physiological significance
    • Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84:277-359.
    • (2004) Physiol. Rev. , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 11
    • 0033825933 scopus 로고    scopus 로고
    • Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes
    • Himms-Hagen J., et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 2000, 279:C670-C681.
    • (2000) Am. J. Physiol. Cell Physiol. , vol.279
    • Himms-Hagen, J.1
  • 12
    • 0021319695 scopus 로고
    • Brown adipose tissue in the parametrial fat pad of the mouse
    • Young P., et al. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 1984, 167:10-14.
    • (1984) FEBS Lett. , vol.167 , pp. 10-14
    • Young, P.1
  • 13
    • 0023119510 scopus 로고
    • Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue
    • Bianco A.C., Silva J.E. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J. Clin. Invest. 1987, 79:295-300.
    • (1987) J. Clin. Invest. , vol.79 , pp. 295-300
    • Bianco, A.C.1    Silva, J.E.2
  • 14
    • 0023773290 scopus 로고
    • Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine
    • Silva J.E. Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine. Mol. Endocrinol. 1988, 2:706-713.
    • (1988) Mol. Endocrinol. , vol.2 , pp. 706-713
    • Silva, J.E.1
  • 15
    • 0036384894 scopus 로고    scopus 로고
    • Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region
    • Hany T.F., et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 2002, 29:1393-1398.
    • (2002) Eur. J. Nucl. Med. Mol. Imaging , vol.29 , pp. 1393-1398
    • Hany, T.F.1
  • 16
    • 34547631960 scopus 로고    scopus 로고
    • Unexpected evidence for active brown adipose tissue in adult humans
    • Nedergaard J., et al. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E444-E452.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293
    • Nedergaard, J.1
  • 17
    • 64349105205 scopus 로고    scopus 로고
    • Identification and importance of brown adipose tissue in adult humans
    • Cypess A.M., et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360:1509-1517.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1509-1517
    • Cypess, A.M.1
  • 18
    • 64349123664 scopus 로고    scopus 로고
    • Functional brown adipose tissue in healthy adults
    • Virtanen K.A., et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 2009, 360:1518-1525.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1518-1525
    • Virtanen, K.A.1
  • 19
    • 64349095231 scopus 로고    scopus 로고
    • Cold-activated brown adipose tissue in healthy men
    • van Marken Lichtenbelt W.D., et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360:1500-1508.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1500-1508
    • Van Marken Lichtenbelt, W.D.1
  • 20
    • 0027731309 scopus 로고
    • Development of obesity in transgenic mice after genetic ablation of brown adipose tissue
    • Lowell B.B., et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993, 366:740-742.
    • (1993) Nature , vol.366 , pp. 740-742
    • Lowell, B.B.1
  • 21
    • 0032528169 scopus 로고    scopus 로고
    • Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity
    • Guerra C., et al. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 1998, 102:412-420.
    • (1998) J. Clin. Invest. , vol.102 , pp. 412-420
    • Guerra, C.1
  • 22
    • 0030745159 scopus 로고    scopus 로고
    • Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist
    • Ghorbani M., et al. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem. Pharmacol. 1997, 54:121-131.
    • (1997) Biochem. Pharmacol. , vol.54 , pp. 121-131
    • Ghorbani, M.1
  • 23
    • 0028865142 scopus 로고
    • Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity
    • Kopecky J., et al. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 1995, 96:2914-2923.
    • (1995) J. Clin. Invest. , vol.96 , pp. 2914-2923
    • Kopecky, J.1
  • 24
    • 0027051199 scopus 로고
    • Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization
    • Cousin B., et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 1992, 103:931-942.
    • (1992) J. Cell Sci. , vol.103 , pp. 931-942
    • Cousin, B.1
  • 25
    • 84864287504 scopus 로고    scopus 로고
    • Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
    • Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
    • (2012) Cell , vol.150 , pp. 366-376
    • Wu, J.1
  • 26
    • 70350759666 scopus 로고    scopus 로고
    • MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta
    • He M., et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell. Mol. Immunol. 2009, 6:343-352.
    • (2009) Cell. Mol. Immunol. , vol.6 , pp. 343-352
    • He, M.1
  • 27
    • 50049122271 scopus 로고    scopus 로고
    • PRDM16 controls a brown fat/skeletal muscle switch
    • Seale P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961-967.
    • (2008) Nature , vol.454 , pp. 961-967
    • Seale, P.1
  • 28
    • 78650945931 scopus 로고    scopus 로고
    • Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
    • Seale P., et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 2011, 121:96-105.
    • (2011) J. Clin. Invest. , vol.121 , pp. 96-105
    • Seale, P.1
  • 29
    • 0033213637 scopus 로고    scopus 로고
    • PPAR gamma is required for placental, cardiac, and adipose tissue development
    • Barak Y., et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 1999, 4:585-595.
    • (1999) Mol. Cell , vol.4 , pp. 585-595
    • Barak, Y.1
  • 30
    • 0036007024 scopus 로고    scopus 로고
    • C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway
    • Rosen E.D., et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 2002, 16:22-26.
    • (2002) Genes Dev. , vol.16 , pp. 22-26
    • Rosen, E.D.1
  • 31
    • 0033213631 scopus 로고    scopus 로고
    • PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro
    • Rosen E.D., et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 1999, 4:611-617.
    • (1999) Mol. Cell , vol.4 , pp. 611-617
    • Rosen, E.D.1
  • 32
    • 0031435337 scopus 로고    scopus 로고
    • Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene
    • Tanaka T., et al. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997, 16:7432-7443.
    • (1997) EMBO J. , vol.16 , pp. 7432-7443
    • Tanaka, T.1
  • 33
    • 0029160028 scopus 로고
    • Impaired energy homeostasis in C/EBP alpha knockout mice
    • Wang N.D., et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995, 269:1108-1112.
    • (1995) Science , vol.269 , pp. 1108-1112
    • Wang, N.D.1
  • 34
    • 0033083803 scopus 로고    scopus 로고
    • Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity
    • Wu Z., et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 1999, 3:151-158.
    • (1999) Mol. Cell , vol.3 , pp. 151-158
    • Wu, Z.1
  • 35
    • 69349088117 scopus 로고    scopus 로고
    • Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex
    • Kajimura S., et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009, 460:1154-1158.
    • (2009) Nature , vol.460 , pp. 1154-1158
    • Kajimura, S.1
  • 36
    • 83355163350 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16
    • Hondares E., et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 2011, 286:43112-43122.
    • (2011) J. Biol. Chem. , vol.286 , pp. 43112-43122
    • Hondares, E.1
  • 37
    • 17944377509 scopus 로고    scopus 로고
    • FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance
    • Cederberg A., et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001, 106:563-573.
    • (2001) Cell , vol.106 , pp. 563-573
    • Cederberg, A.1
  • 38
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 39
    • 77950245008 scopus 로고    scopus 로고
    • Transcriptional control of brown fat development
    • Kajimura S., et al. Transcriptional control of brown fat development. Cell Metab. 2010, 11:257-262.
    • (2010) Cell Metab. , vol.11 , pp. 257-262
    • Kajimura, S.1
  • 40
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • Guo H., et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840.
    • (2010) Nature , vol.466 , pp. 835-840
    • Guo, H.1
  • 41
    • 33644768174 scopus 로고    scopus 로고
    • Control of translation and mRNA degradation by miRNAs and siRNAs
    • Valencia-Sanchez M.A., et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006, 20:515-524.
    • (2006) Genes Dev. , vol.20 , pp. 515-524
    • Valencia-Sanchez, M.A.1
  • 42
    • 28044471565 scopus 로고    scopus 로고
    • MicroRNA functions in animal development and human disease
    • Alvarez-Garcia I., Miska E.A. MicroRNA functions in animal development and human disease. Development 2005, 132:4653-4662.
    • (2005) Development , vol.132 , pp. 4653-4662
    • Alvarez-Garcia, I.1    Miska, E.A.2
  • 43
    • 35148819250 scopus 로고    scopus 로고
    • MicroRNAs and the regulation of glucose and lipid metabolism
    • Poy M.N., et al. MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes. Metab. 2007, 9(Suppl. 2):67-73.
    • (2007) Diabetes Obes. Metab. , vol.9 , Issue.SUPPL. 2 , pp. 67-73
    • Poy, M.N.1
  • 44
    • 77955902024 scopus 로고    scopus 로고
    • The widespread regulation of microRNA biogenesis, function and decay
    • Krol J., et al. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11:597-610.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 597-610
    • Krol, J.1
  • 45
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: contributions of translational repression and mRNA decay
    • Huntzinger E., Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011, 12:99-110.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 46
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 47
    • 78651293534 scopus 로고    scopus 로고
    • MiRBase: integrating microRNA annotation and deep-sequencing data
    • Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39:D152-D157.
    • (2011) Nucleic Acids Res. , vol.39
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 48
    • 10344243662 scopus 로고    scopus 로고
    • MicroRNA-143 regulates adipocyte differentiation
    • Esau C., et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 2004, 279:52361-52365.
    • (2004) J. Biol. Chem. , vol.279 , pp. 52361-52365
    • Esau, C.1
  • 49
    • 65549144017 scopus 로고    scopus 로고
    • MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
    • Xie H., et al. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58:1050-1057.
    • (2009) Diabetes , vol.58 , pp. 1050-1057
    • Xie, H.1
  • 50
    • 79959845414 scopus 로고    scopus 로고
    • MicroRNAs 103 and 107 regulate insulin sensitivity
    • Trajkovski M., et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474:649-653.
    • (2011) Nature , vol.474 , pp. 649-653
    • Trajkovski, M.1
  • 51
    • 79951776196 scopus 로고    scopus 로고
    • Dicer is required for the formation of white but not brown adipose tissue
    • Mudhasani R., et al. Dicer is required for the formation of white but not brown adipose tissue. J. Cell. Physiol. 2011, 226:1399-1406.
    • (2011) J. Cell. Physiol. , vol.226 , pp. 1399-1406
    • Mudhasani, R.1
  • 52
    • 79954532462 scopus 로고    scopus 로고
    • MicroRNAs in adipogenesis and as therapeutic targets for obesity
    • Alexander R., et al. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin. Ther. Targets 2011, 15:623-636.
    • (2011) Expert Opin. Ther. Targets , vol.15 , pp. 623-636
    • Alexander, R.1
  • 53
    • 79960984113 scopus 로고    scopus 로고
    • Mir193b-365 is essential for brown fat differentiation
    • Sun L., et al. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 2011, 13:958-965.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 958-965
    • Sun, L.1
  • 54
    • 0012956403 scopus 로고    scopus 로고
    • CDO, a robo-related cell surface protein that mediates myogenic differentiation
    • Kang J.S., et al. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J. Cell Biol. 1998, 143:403-413.
    • (1998) J. Cell Biol. , vol.143 , pp. 403-413
    • Kang, J.S.1
  • 55
    • 8444240141 scopus 로고    scopus 로고
    • Positive regulation of myogenic bHLH factors and skeletal muscle development by the cell surface receptor CDO
    • Cole F., et al. Positive regulation of myogenic bHLH factors and skeletal muscle development by the cell surface receptor CDO. Dev. Cell 2004, 7:843-854.
    • (2004) Dev. Cell , vol.7 , pp. 843-854
    • Cole, F.1
  • 56
    • 49749125994 scopus 로고    scopus 로고
    • A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation
    • Kang J.S., et al. A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation. J. Cell Biol. 2008, 182:497-507.
    • (2008) J. Cell Biol. , vol.182 , pp. 497-507
    • Kang, J.S.1
  • 57
    • 51649125241 scopus 로고    scopus 로고
    • IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop
    • Ren H., et al. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. J. Cell Biol. 2008, 182:979-991.
    • (2008) J. Cell Biol. , vol.182 , pp. 979-991
    • Ren, H.1
  • 58
    • 58149217061 scopus 로고    scopus 로고
    • Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes
    • Walden T.B., et al. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell. Physiol. 2009, 218:444-449.
    • (2009) J. Cell. Physiol. , vol.218 , pp. 444-449
    • Walden, T.B.1
  • 59
    • 39749140336 scopus 로고    scopus 로고
    • MicroRNA regulation of cell lineages in mouse and human embryonic stem cells
    • Ivey K.N., et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008, 2:219-229.
    • (2008) Cell Stem Cell , vol.2 , pp. 219-229
    • Ivey, K.N.1
  • 60
    • 31744432337 scopus 로고    scopus 로고
    • The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
    • Chen J.F., et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38:228-233.
    • (2006) Nat. Genet. , vol.38 , pp. 228-233
    • Chen, J.F.1
  • 61
    • 57749121689 scopus 로고    scopus 로고
    • MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
    • Liu N., et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008, 22:3242-3254.
    • (2008) Genes Dev. , vol.22 , pp. 3242-3254
    • Liu, N.1
  • 62
    • 33845317603 scopus 로고    scopus 로고
    • A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
    • van Rooij E., et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18255-18260.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18255-18260
    • van Rooij, E.1
  • 63
    • 34249279050 scopus 로고    scopus 로고
    • MicroRNA-133 controls cardiac hypertrophy
    • Care A., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007, 13:613-618.
    • (2007) Nat. Med. , vol.13 , pp. 613-618
    • Care, A.1
  • 64
    • 84870595878 scopus 로고    scopus 로고
    • MyomiR-133 regulates brown fat differentiation through Prdm16
    • Trajkovski M., et al. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 2012, 14:1330-1335.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1330-1335
    • Trajkovski, M.1
  • 65
    • 38049156025 scopus 로고    scopus 로고
    • An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133
    • Liu N., et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:20844-20849.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 20844-20849
    • Liu, N.1
  • 66
    • 84873327762 scopus 로고    scopus 로고
    • MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
    • Yin H., et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 2013, 17:210-224.
    • (2013) Cell Metab , vol.17 , pp. 210-224
    • Yin, H.1
  • 67
    • 70350547780 scopus 로고    scopus 로고
    • Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway
    • Kozhemyakina E., et al. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol. Cell. Biol. 2009, 29:5751-5762.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5751-5762
    • Kozhemyakina, E.1
  • 68
    • 84860009214 scopus 로고    scopus 로고
    • Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
    • Mori M., et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012, 10:e1001314.
    • (2012) PLoS Biol. , vol.10
    • Mori, M.1
  • 69
    • 2142654329 scopus 로고    scopus 로고
    • MicroRNA-directed cleavage of HOXB8 mRNA
    • Yekta S., et al. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304:594-596.
    • (2004) Science , vol.304 , pp. 594-596
    • Yekta, S.1
  • 70
    • 84877747920 scopus 로고    scopus 로고
    • MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
    • Chen Y., et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 2013, 4:1769.
    • (2013) Nat. Commun. , vol.4 , pp. 1769
    • Chen, Y.1
  • 71
    • 55849123946 scopus 로고    scopus 로고
    • MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA
    • Kong W., et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 2008, 28:6773-6784.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 6773-6784
    • Kong, W.1
  • 72
    • 0342542810 scopus 로고
    • Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts
    • Ignotz R.A., Massague J. Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:8530-8534.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 8530-8534
    • Ignotz, R.A.1    Massague, J.2
  • 73
    • 80054918892 scopus 로고    scopus 로고
    • TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors
    • Liu S., et al. TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem. Biophys. Res. Commun. 2011, 414:618-624.
    • (2011) Biochem. Biophys. Res. Commun. , vol.414 , pp. 618-624
    • Liu, S.1
  • 74
    • 84859394657 scopus 로고    scopus 로고
    • Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222
    • Skarn M., et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012, 21:873-883.
    • (2012) Stem Cells Dev. , vol.21 , pp. 873-883
    • Skarn, M.1
  • 75
    • 68649086358 scopus 로고    scopus 로고
    • Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp beta and down-regulation of G-CSF
    • Worm J., et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp beta and down-regulation of G-CSF. Nucleic Acids Res. 2009, 37:5784-5792.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 5784-5792
    • Worm, J.1
  • 76
    • 84868475728 scopus 로고    scopus 로고
    • MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles
    • van Rooij E., Olson E.N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 2012, 11:860-872.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 860-872
    • van Rooij, E.1    Olson, E.N.2
  • 77
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12:861-874.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 861-874
    • Esteller, M.1
  • 78
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner K.J., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404-407.
    • (2011) Nature , vol.478 , pp. 404-407
    • Rayner, K.J.1
  • 79
    • 79953317808 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
    • Jordan S.D., et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 2011, 13:434-446.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 434-446
    • Jordan, S.D.1
  • 80
    • 0022943269 scopus 로고
    • The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue
    • Loncar D., et al. The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J. Ultrastruct. Mol. Struct. Res. 1986, 97:119-129.
    • (1986) J. Ultrastruct. Mol. Struct. Res. , vol.97 , pp. 119-129
    • Loncar, D.1
  • 81
    • 0036862318 scopus 로고    scopus 로고
    • Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ
    • Cinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J. Endocrinol. Invest. 2002, 25:823-835.
    • (2002) J. Endocrinol. Invest. , vol.25 , pp. 823-835
    • Cinti, S.1
  • 82
    • 84873518501 scopus 로고    scopus 로고
    • Adaptive thermogenesis in adipocytes: is beige the new brown
    • Wu J., et al. Adaptive thermogenesis in adipocytes: is beige the new brown?. Genes Dev. 2013, 27:234-250.
    • (2013) Genes Dev. , vol.27 , pp. 234-250
    • Wu, J.1
  • 83
    • 84877331455 scopus 로고    scopus 로고
    • Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
    • Cypess A.M., et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 2013, 19:635-639.
    • (2013) Nat. Med. , vol.19 , pp. 635-639
    • Cypess, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.