메뉴 건너뛰기




Volumn 1, Issue 1, 2014, Pages 101-118

Apoptosome and inflammasome: Conserved machineries for caspase activation

Author keywords

Apoptosis; Apoptosome; Caspase activation; Inflammasome; Inflammation

Indexed keywords


EID: 84901254102     PISSN: 20955138     EISSN: 2053714X     Source Type: Journal    
DOI: 10.1093/nsr/nwt025     Document Type: Review
Times cited : (45)

References (133)
  • 1
    • 0842281645 scopus 로고    scopus 로고
    • Cell death: critical control points
    • Danial, NN and Korsmeyer, SJ. Cell death: critical control points. Cell 2004; 116: 205-19.
    • (2004) Cell , vol.116 , pp. 205-219
    • Danial, N.N.1    Korsmeyer, S.J.2
  • 2
    • 0042469295 scopus 로고    scopus 로고
    • Worms, life, and death (nobel lecture)
    • Horvitz, HR. Worms, life, and death (nobel lecture). Chembiochem 2003; 4: 697-711.
    • (2003) Chembiochem , vol.4 , pp. 697-711
    • Horvitz, H.R.1
  • 3
    • 45449093594 scopus 로고    scopus 로고
    • Regulation of apoptosis in Drosophila
    • Steller, H. Regulation of apoptosis in Drosophila. Cell Death Differ 2008; 15: 1132-8.
    • (2008) Cell Death Differ , vol.15 , pp. 1132-1138
    • Steller, H.1
  • 4
    • 0032575750 scopus 로고    scopus 로고
    • Caspases: enemies within
    • Thornberry, NA and Lazebnik, Y. Caspases: enemies within. Science 1998; 281: 1312-6.
    • (1998) Science , vol.281 , pp. 1312-1316
    • Thornberry, N.A.1    Lazebnik, Y.2
  • 5
    • 0036205587 scopus 로고    scopus 로고
    • Mechanisms of caspase inhibition and activation during apoptosis
    • Shi, Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol Cell 2002; 9: 459-70.
    • (2002) Mol Cell , vol.9 , pp. 459-470
    • Shi, Y.1
  • 6
    • 0347601880 scopus 로고    scopus 로고
    • A decade of caspases
    • Degterev, A, Boyce, M and Yuan, J. A decade of caspases. Oncogene 2003; 22: 8543-67.
    • (2003) Oncogene , vol.22 , pp. 8543-8567
    • Degterev, A.1    Boyce, M.2    Yuan, J.3
  • 7
    • 8444220527 scopus 로고    scopus 로고
    • Molecular mechanisms of caspase regulation during apoptosis
    • Riedl, SJ and Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nature Review Mol Cell Biol 2004; 5: 897-907.
    • (2004) Nature Review Mol Cell Biol , vol.5 , pp. 897-907
    • Riedl, S.J.1    Shi, Y.2
  • 8
    • 0026507126 scopus 로고
    • A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes
    • Thornberry, NA, Bull, HG and Calaycay, JR et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 76874.
    • (1992) Nature , vol.356 , pp. 76874
    • Thornberry, N.A.1    Bull, H.G.2    Calaycay, J.R.3
  • 9
    • 0026517239 scopus 로고
    • Molecular cloning of the interleukin-1 beta converting enzyme
    • Cerreti, DP, Kozlosky, CJ and Mosley, B et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science 1992; 256: 97-100.
    • (1992) Science , vol.256 , pp. 97-100
    • Cerreti, D.P.1    Kozlosky, C.J.2    Mosley, B.3
  • 10
    • 33749576792 scopus 로고    scopus 로고
    • Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages
    • Fink, SL and Cookson, BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 2005; 8: 1812-25.
    • (2005) Cell Microbiol , vol.8 , pp. 1812-1825
    • Fink, S.L.1    Cookson, B.T.2
  • 11
    • 16244362671 scopus 로고    scopus 로고
    • Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells
    • Fink, SL and Cookson, BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73: 1907-16.
    • (2005) Infect Immun , vol.73 , pp. 1907-1916
    • Fink, S.L.1    Cookson, B.T.2
  • 12
    • 33845497181 scopus 로고    scopus 로고
    • Inflammatory caspases and inflammasomes: master switches of inflammation
    • Martinon, F and Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 2007; 14: 10-22.
    • (2007) Cell Death Differ , vol.14 , pp. 10-22
    • Martinon, F.1    Tschopp, J.2
  • 13
    • 0027525104 scopus 로고
    • The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme
    • Yuan, J, Shaham, S and Ledoux, S et al. The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641-52.
    • (1993) Cell , vol.75 , pp. 641-652
    • Yuan, J.1    Shaham, S.2    Ledoux, S.3
  • 14
    • 0029880987 scopus 로고    scopus 로고
    • The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease
    • Xue, D, Shaham, S and Horvitz, HR. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 1996; 10: 1073-83.
    • (1996) Genes Dev , vol.10 , pp. 1073-1083
    • Xue, D.1    Shaham, S.2    Horvitz, H.R.3
  • 15
    • 84876003933 scopus 로고    scopus 로고
    • Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans
    • Denning, DP, Hatch, V and Horvitz, HR. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans. PLoS Genet 2013; 9: e1003341.
    • (2013) PLoS Genet , vol.9
    • Denning, D.P.1    Hatch, V.2    Horvitz, H.R.3
  • 16
    • 0033613143 scopus 로고    scopus 로고
    • Caspase activation: the inducedproximity model
    • Salvesen, GS and Dixit, VM. Caspase activation: the inducedproximity model. Proc Natl Acad Sci USA 1999; 96: 10964-7.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 10964-10967
    • Salvesen, G.S.1    Dixit, V.M.2
  • 17
    • 0035798361 scopus 로고    scopus 로고
    • Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding
    • Chai, J, Wu, Q and Shiozaki, E et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 2001; 107: 399-407.
    • (2001) Cell , vol.107 , pp. 399-407
    • Chai, J.1    Wu, Q.2    Shiozaki, E.3
  • 18
    • 0035909889 scopus 로고    scopus 로고
    • Structural basis for the activation of human procaspase-7
    • Riedl, SJ, Fuentes-Prior, P and Renatus, M et al. Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 2001; 98: 14790-5.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 14790-14795
    • Riedl, S.J.1    Fuentes-Prior, P.2    Renatus, M.3
  • 19
    • 84878145247 scopus 로고    scopus 로고
    • Structural snapshots reveal distinct mechanisms of procaspase-3 and-7 activation
    • Thomsen, ND, Koerber, JT and Wells, JA. Structural snapshots reveal distinct mechanisms of procaspase-3 and-7 activation. Proc Natl Acad Sci USA 2013; 110: 8477-82.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 8477-8482
    • Thomsen, N.D.1    Koerber, J.T.2    Wells, J.A.3
  • 20
    • 0033596980 scopus 로고    scopus 로고
    • An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9
    • Zou, H, Li, Y and Liu, X et al. An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274: 11549-56.
    • (1999) J Biol Chem , vol.274 , pp. 11549-11556
    • Zou, H.1    Li, Y.2    Liu, X.3
  • 21
    • 0028883850 scopus 로고
    • Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor
    • Kischkel, FC, Hellbardt, S and Behrmann, I et al. Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579-88.
    • (1995) EMBO J , vol.14 , pp. 5579-5588
    • Kischkel, F.C.1    Hellbardt, S.2    Behrmann, I.3
  • 22
    • 0037077283 scopus 로고    scopus 로고
    • The PYRINCARD protein ASC is an activating adaptor for caspase-1
    • Srinivasula, SM, Poyet, JL and Razmara, M et al. The PYRINCARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 2002; 277: 21119-22.
    • (2002) J Biol Chem , vol.277 , pp. 21119-21122
    • Srinivasula, S.M.1    Poyet, J.L.2    Razmara, M.3
  • 23
    • 0036671894 scopus 로고    scopus 로고
    • The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
    • Martinon, F, Burns, K and Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417-26.
    • (2002) Mol Cell , vol.10 , pp. 417-426
    • Martinon, F.1    Burns, K.2    Tschopp, J.3
  • 24
    • 0033605722 scopus 로고    scopus 로고
    • Caspase-9 can be activated without proteolytic processing
    • Stennicke, HR, Deveraux, QL and Humke, EW et al. Caspase-9 can be activated without proteolytic processing. J Biol Chem 1999; 274: 8359-62.
    • (1999) J Biol Chem , vol.274 , pp. 8359-8362
    • Stennicke, H.R.1    Deveraux, Q.L.2    Humke, E.W.3
  • 25
    • 0035282570 scopus 로고    scopus 로고
    • A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO mediates opposing effects on caspase activity and apoptosis
    • Srinivasula, SM, Saleh, A and Hedge, R et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO mediates opposing effects on caspase activity and apoptosis. Nature 2001; 409: 112-6.
    • (2001) Nature , vol.409 , pp. 112-116
    • Srinivasula, S.M.1    Saleh, A.2    Hedge, R.3
  • 26
    • 84878242246 scopus 로고    scopus 로고
    • Proteolytic processing of the caspase-9 zymogen is required for apoptosome-mediated activation of caspase-9
    • Hu, Q, Wu, D and Chen, W et al. Proteolytic processing of the caspase-9 zymogen is required for apoptosome-mediated activation of caspase-9. J Biol Chem 2013; 288: 15142-7.
    • (2013) J Biol Chem , vol.288 , pp. 15142-15147
    • Hu, Q.1    Wu, D.2    Chen, W.3
  • 27
    • 0036187036 scopus 로고    scopus 로고
    • Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding and activation
    • Acehan, D, Jiang, X and Morgan, DG et al. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding and activation. Mol Cell 2002; 9: 423-32.
    • (2002) Mol Cell , vol.9 , pp. 423-432
    • Acehan, D.1    Jiang, X.2    Morgan, D.G.3
  • 28
    • 0033580926 scopus 로고    scopus 로고
    • Cytochrome c and dATPmediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation
    • Saleh, A, Srinivasula, SM and Acharya, S et al. Cytochrome c and dATPmediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999; 274: 17941-5.
    • (1999) J Biol Chem , vol.274 , pp. 17941-17945
    • Saleh, A.1    Srinivasula, S.M.2    Acharya, S.3
  • 29
    • 0344348821 scopus 로고    scopus 로고
    • Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis
    • Hu, Y, Benedict, MA and Ding, L et al. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 1999; 18: 3586-95.
    • (1999) EMBO J , vol.18 , pp. 3586-3595
    • Hu, Y.1    Benedict, M.A.2    Ding, L.3
  • 30
    • 0033573020 scopus 로고    scopus 로고
    • Caspase-9 and Apaf-1 form an active holoenzyme
    • Rodriguez, J and Lazebnik, Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev 1999; 13: 3179-84.
    • (1999) Genes Dev , vol.13 , pp. 3179-3184
    • Rodriguez, J.1    Lazebnik, Y.2
  • 31
    • 0033529634 scopus 로고    scopus 로고
    • Caspase activation involves the formation of the aposome, a large (~700 kDa) caspase-activating complex
    • Cain, K, Brown, DG and Langlais, C et al. Caspase activation involves the formation of the aposome, a large (~700 kDa) caspase-activating complex. J Biol Chem 1999; 274: 22686-92.
    • (1999) J Biol Chem , vol.274 , pp. 22686-22692
    • Cain, K.1    Brown, D.G.2    Langlais, C.3
  • 32
    • 0033193863 scopus 로고    scopus 로고
    • Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway
    • Rodriguez, A, Oliver, H and Zou, H et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1999; 1: 272-9.
    • (1999) Nat Cell Biol , vol.1 , pp. 272-279
    • Rodriguez, A.1    Oliver, H.2    Zou, H.3
  • 33
    • 0033231548 scopus 로고    scopus 로고
    • HAC-1, a Drosophila homolog of Apaf-1 and CED-4 functions in developmental and radiation-induced apoptosis
    • Zhou, L, Song, Z and Tittel, J et al. HAC-1, a Drosophila homolog of Apaf-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol Cell 1999; 4: 745-55.
    • (1999) Mol Cell , vol.4 , pp. 745-755
    • Zhou, L.1    Song, Z.2    Tittel, J.3
  • 34
    • 0033231614 scopus 로고    scopus 로고
    • Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator
    • Kanuka, H, Sawamoto, K and Inohara, N et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol Cell 1999; 4: 757-69.
    • (1999) Mol Cell , vol.4 , pp. 757-769
    • Kanuka, H.1    Sawamoto, K.2    Inohara, N.3
  • 35
    • 0026448963 scopus 로고
    • The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death
    • Yuan, J and Horvitz, HR. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 1992; 116: 309-20.
    • (1992) Development , vol.116 , pp. 309-320
    • Yuan, J.1    Horvitz, H.R.2
  • 36
    • 0030951345 scopus 로고    scopus 로고
    • Direct physical interaction between the Caenorhabditis elegans 'death proteins' CED-3 and CED-4
    • Irmler, M, Hofmann, K and Vaux, D et al. Direct physical interaction between the Caenorhabditis elegans 'death proteins' CED-3 and CED-4. FEBS Lett 1997; 406: 189-90.
    • (1997) FEBS Lett , vol.406 , pp. 189-190
    • Irmler, M.1    Hofmann, K.2    Vaux, D.3
  • 37
    • 0031194404 scopus 로고    scopus 로고
    • Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis
    • Seshagiri, S and Miller, LK. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr Biol 1997; 7: 455-60.
    • (1997) Curr Biol , vol.7 , pp. 455-460
    • Seshagiri, S.1    Miller, L.K.2
  • 38
    • 0031034997 scopus 로고    scopus 로고
    • Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death
    • Chinnaiyan, AM, O'Rourke, K and Lane, BR et al. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997; 275: 1122-6.
    • (1997) Science , vol.275 , pp. 1122-1126
    • Chinnaiyan, A.M.1    O'Rourke, K.2    Lane, B.R.3
  • 39
    • 0031020227 scopus 로고    scopus 로고
    • Interaction and regulation of subcellular localization of CED-4 by CED-9
    • Wu, D, Wallen, HD and Nunez, G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 1997; 275: 1126-9.
    • (1997) Science , vol.275 , pp. 1126-1129
    • Wu, D.1    Wallen, H.D.2    Nunez, G.3
  • 40
    • 0032575723 scopus 로고    scopus 로고
    • Essential role of CED-4 oligomerization in CED-3 activation and apoptosis
    • Yang, X, Chang, HY and Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 1998; 281: 1355-7.
    • (1998) Science , vol.281 , pp. 1355-1357
    • Yang, X.1    Chang, H.Y.2    Baltimore, D.3
  • 41
    • 84869504451 scopus 로고    scopus 로고
    • Inflammasomes and their roles in health and disease
    • Lamkanfi, M and Dixit, VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012; 28: 137-61.
    • (2012) Annu Rev Cell Dev Biol , vol.28 , pp. 137-161
    • Lamkanfi, M.1    Dixit, V.M.2
  • 42
    • 84875542536 scopus 로고    scopus 로고
    • Chavarría-Smith J, RE V, recognition of bacteria by inflammasomes
    • von Moltke, J, Ayres, JS and Kofoed, EM. Chavarría-Smith J, RE V, recognition of bacteria by inflammasomes. Annu Rev Immunol 2013; 31: 73-106.
    • (2013) Annu Rev Immunol , vol.31 , pp. 73-106
    • von Moltke, J.1    Ayres, J.S.2    Kofoed, E.M.3
  • 43
    • 4644247731 scopus 로고    scopus 로고
    • STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer
    • Leipe, DD, Koonin, EV and Aravind, L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 2004; 343: 1-28.
    • (2004) J Mol Biol , vol.343 , pp. 1-28
    • Leipe, D.D.1    Koonin, E.V.2    Aravind, L.3
  • 44
    • 2442453730 scopus 로고    scopus 로고
    • The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress
    • Tinel, A and Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304: 843-6.
    • (2004) Science , vol.304 , pp. 843-846
    • Tinel, A.1    Tschopp, J.2
  • 45
    • 84875876273 scopus 로고    scopus 로고
    • Apoptosome structure, assembly, and procaspase activation
    • Yuan, S and Akey, CW. Apoptosome structure, assembly, and procaspase activation. Structure 2013; 21: 501-15.
    • (2013) Structure , vol.21 , pp. 501-515
    • Yuan, S.1    Akey, C.W.2
  • 46
    • 77956908962 scopus 로고    scopus 로고
    • Regulation of the Apaf-1-caspase-9 apoptosome
    • Bratton, SB and Salvesen, GS. Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci 2010; 123: 3209-14.
    • (2010) J Cell Sci , vol.123 , pp. 3209-3214
    • Bratton, S.B.1    Salvesen, G.S.2
  • 47
    • 52049114400 scopus 로고    scopus 로고
    • Apoptosome assembly
    • Shi, Y. Apoptosome assembly. Methods Enzymol 2008; 442: 141-56.
    • (2008) Methods Enzymol , vol.442 , pp. 141-156
    • Shi, Y.1
  • 48
    • 0030581151 scopus 로고    scopus 로고
    • Induction of apoptosis program in cell-free extracts: requirement for dATP and cytochrome c
    • Liu, X, Kim, CN and Yang, J et al. Induction of apoptosis program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147-57.
    • (1996) Cell , vol.86 , pp. 147-157
    • Liu, X.1    Kim, C.N.2    Yang, J.3
  • 49
    • 0030745646 scopus 로고    scopus 로고
    • Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3
    • Zou, H, Henzel, WJ and Liu, X et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405-13.
    • (1997) Cell , vol.90 , pp. 405-413
    • Zou, H.1    Henzel, W.J.2    Liu, X.3
  • 50
    • 0030715323 scopus 로고    scopus 로고
    • Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade
    • Li, P, Nijhawan, D and Budihardjo, I et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-89.
    • (1997) Cell , vol.91 , pp. 479-489
    • Li, P.1    Nijhawan, D.2    Budihardjo, I.3
  • 51
    • 0033542482 scopus 로고    scopus 로고
    • Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1
    • Qin, H, Srinivasula, SM and Wu, G et al. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 1999; 399: 547-55.
    • (1999) Nature , vol.399 , pp. 547-555
    • Qin, H.1    Srinivasula, S.M.2    Wu, G.3
  • 52
    • 0034708504 scopus 로고    scopus 로고
    • Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9
    • Benedict, MA, Hu, Y and Inohara, N et al. Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J Biol Chem 2000; 275: 8461-8.
    • (2000) J Biol Chem , vol.275 , pp. 8461-8468
    • Benedict, M.A.1    Hu, Y.2    Inohara, N.3
  • 53
    • 17244368276 scopus 로고    scopus 로고
    • Schwarzenbacher R, Shi Y, structure of the apoptotic protease activating factor 1 bound to ADP
    • Riedl, SJ, Li, W and Chao, Y. Schwarzenbacher R, Shi Y, structure of the apoptotic protease activating factor 1 bound to ADP. Nature 2005; 434: 926-33.
    • (2005) Nature , vol.434 , pp. 926-933
    • Riedl, S.J.1    Li, W.2    Chao, Y.3
  • 54
    • 80051534863 scopus 로고    scopus 로고
    • Crystal structure of fulllength Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis
    • Reubold, TF, Wohlgemuth, S and Eschenburg, S. Crystal structure of fulllength Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 2011; 19: 1074-83.
    • (2011) Structure , vol.19 , pp. 1074-1083
    • Reubold, T.F.1    Wohlgemuth, S.2    Eschenburg, S.3
  • 55
    • 77952652352 scopus 로고    scopus 로고
    • Structure of an apoptosome-procaspase-9 CARD complex
    • Yuan, S, Yu, X and Topf, M et al. Structure of an apoptosome-procaspase-9 CARD complex. Structure 2010; 18: 571-83.
    • (2010) Structure , vol.18 , pp. 571-583
    • Yuan, S.1    Yu, X.2    Topf, M.3
  • 56
    • 27644483812 scopus 로고    scopus 로고
    • A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform
    • Yu, X, Acehan, D and Menetret, JF et al. A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure 2005; 13: 1725-35.
    • (2005) Structure , vol.13 , pp. 1725-1735
    • Yu, X.1    Acehan, D.2    Menetret, J.F.3
  • 57
    • 80051519507 scopus 로고    scopus 로고
    • The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3
    • Yuan, S, Yu, X and Asara, JM et al. The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Structure 2011; 19: 1084-96.
    • (2011) Structure , vol.19 , pp. 1084-1096
    • Yuan, S.1    Yu, X.2    Asara, J.M.3
  • 58
    • 33846236461 scopus 로고    scopus 로고
    • Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1
    • Bao, Q, Lu, W and Rabinowitz, JD et al. Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell 2007; 25: 181-92.
    • (2007) Mol Cell , vol.25 , pp. 181-192
    • Bao, Q.1    Lu, W.2    Rabinowitz, J.D.3
  • 59
    • 70450263353 scopus 로고    scopus 로고
    • A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome
    • Reubold, TF, Wohlgemuth, S and Eschenburg, S. A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. J Biol Chem 2009; 284: 32717-24.
    • (2009) J Biol Chem , vol.284 , pp. 32717-32724
    • Reubold, T.F.1    Wohlgemuth, S.2    Eschenburg, S.3
  • 60
    • 27644505459 scopus 로고    scopus 로고
    • Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1
    • Kim, HE, Du, F and Fang, M et al. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 2005; 102: 17545-50.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17545-17550
    • Kim, H.E.1    Du, F.2    Fang, M.3
  • 61
    • 0037428217 scopus 로고    scopus 로고
    • Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway
    • Jiang, X, Kim, HE and Shu, H et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003; 299: 223-6.
    • (2003) Science , vol.299 , pp. 223-226
    • Jiang, X.1    Kim, H.E.2    Shu, H.3
  • 62
    • 0035834691 scopus 로고    scopus 로고
    • Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome
    • Cain, K, Langlais, C and Sun, XM et al. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 2001; 276: 41985-90.
    • (2001) J Biol Chem , vol.276 , pp. 41985-41990
    • Cain, K.1    Langlais, C.2    Sun, X.M.3
  • 63
    • 36248979229 scopus 로고    scopus 로고
    • Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release
    • Karki, P, Seong, C and Kim, JE et al. Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ 2007; 14: 2068-75.
    • (2007) Cell Death Differ , vol.14 , pp. 2068-2075
    • Karki, P.1    Seong, C.2    Kim, J.E.3
  • 64
    • 33745246534 scopus 로고    scopus 로고
    • Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome c and inhibiting apoptosome
    • Chandra, D, Bratton, SB and Person, MD et al. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome c and inhibiting apoptosome. Cell 2006; 125: 1333-46.
    • (2006) Cell , vol.125 , pp. 1333-1346
    • Chandra, D.1    Bratton, S.B.2    Person, M.D.3
  • 65
    • 16344362141 scopus 로고    scopus 로고
    • A nucleotide binding site in caspase-9 regulates apoptosome activation
    • Chereau, D, Zou, H and Spada, AP et al. A nucleotide binding site in caspase-9 regulates apoptosome activation. Biochemistry 2005; 44: 4971-6.
    • (2005) Biochemistry , vol.44 , pp. 4971-4976
    • Chereau, D.1    Zou, H.2    Spada, A.P.3
  • 67
    • 0035807966 scopus 로고    scopus 로고
    • Dimer formation drives the activation of the cell death protease caspase 9
    • Renatus, M, Stennicke, HR and Scott, FL et al. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 2001; 98: 14250-5.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 14250-14255
    • Renatus, M.1    Stennicke, H.R.2    Scott, F.L.3
  • 68
    • 33646024628 scopus 로고    scopus 로고
    • The apoptosome activates caspase-9 by dimerization
    • Pop, C, Timmer, J and Sperandio, S et al. The apoptosome activates caspase-9 by dimerization. Mol Cell 2006; 22: 269-75.
    • (2006) Mol Cell , vol.22 , pp. 269-275
    • Pop, C.1    Timmer, J.2    Sperandio, S.3
  • 69
    • 0028107827 scopus 로고
    • Crystal structure of the cysteine protease interleukin-1b-converting enzyme: a (p20/p10)2 homodimer
    • Walker, NP, Talanian, RV and Brady, KD et al. Crystal structure of the cysteine protease interleukin-1b-converting enzyme: a (p20/p10)2 homodimer. Cell 1994; 78: 343-52.
    • (1994) Cell , vol.78 , pp. 343-352
    • Walker, N.P.1    Talanian, R.V.2    Brady, K.D.3
  • 70
    • 0028170376 scopus 로고
    • Structure and mechanism of interleukin-1b converting enzyme
    • Wilson, KP, Black, J-A and Thomson, JA et al. Structure and mechanism of interleukin-1b converting enzyme. Nature 1994; 370: 270-5.
    • (1994) Nature , vol.370 , pp. 270-275
    • Wilson, K.P.1    Black, J.-A.2    Thomson, J.A.3
  • 71
    • 15844393657 scopus 로고    scopus 로고
    • The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis
    • Rotonda, J, Nicholson, DW and Fazil, KM et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 1996; 3: 619-25.
    • (1996) Nat Struct Biol , vol.3 , pp. 619-625
    • Rotonda, J.1    Nicholson, D.W.2    Fazil, K.M.3
  • 72
    • 33646068739 scopus 로고    scopus 로고
    • Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine
    • Yin, Q, Park, HH and Chung, JY et al. Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol Cell 2006; 22: 259-68.
    • (2006) Mol Cell , vol.22 , pp. 259-268
    • Yin, Q.1    Park, H.H.2    Chung, J.Y.3
  • 73
    • 2942746419 scopus 로고    scopus 로고
    • Caspase activation: revisiting the induced proximity model
    • Shi, Y. Caspase activation: revisiting the induced proximity model. Cell 2004; 117: 855-8.
    • (2004) Cell , vol.117 , pp. 855-858
    • Shi, Y.1
  • 74
    • 22744436580 scopus 로고    scopus 로고
    • Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation
    • Chao, Y, Shiozaki, EN and Srinivasula, SM et al. Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol 2005; 3: e183.
    • (2005) PLoS Biol , vol.3
    • Chao, Y.1    Shiozaki, E.N.2    Srinivasula, S.M.3
  • 75
  • 76
    • 10644290827 scopus 로고    scopus 로고
    • The apical caspase Dronc governs programmed and unprogrammed cell death in Drosophila
    • Chew, SK, Akdemir, F and Chen, P et al. The apical caspase Dronc governs programmed and unprogrammed cell death in Drosophila. Dev Cell 2004; 7: 897-907.
    • (2004) Dev Cell , vol.7 , pp. 897-907
    • Chew, S.K.1    Akdemir, F.2    Chen, P.3
  • 77
    • 10644288480 scopus 로고    scopus 로고
    • Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis
    • Daish, TJ, Mills, K and Kumar, S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev Cell 2004; 7: 909-15.
    • (2004) Dev Cell , vol.7 , pp. 909-915
    • Daish, T.J.1    Mills, K.2    Kumar, S.3
  • 78
    • 8744227977 scopus 로고    scopus 로고
    • Mechanism of Dronc activation in Drosophila cells
    • Muro, I, Monser, K and Clem, RJ. Mechanism of Dronc activation in Drosophila cells. J Cell Sci 2004; 117: 5035-41.
    • (2004) J Cell Sci , vol.117 , pp. 5035-5041
    • Muro, I.1    Monser, K.2    Clem, R.J.3
  • 79
    • 28944443033 scopus 로고    scopus 로고
    • Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer
    • Yu, X, Wang, L and Acehan, D et al. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J Mol Biol 2006; 355: 577-89.
    • (2006) J Mol Biol , vol.355 , pp. 577-589
    • Yu, X.1    Wang, L.2    Acehan, D.3
  • 80
    • 33749234149 scopus 로고    scopus 로고
    • Modeling AAA + ring complexes from monomeric structures
    • Diemand, AV and Lupas, AN. Modeling AAA + ring complexes from monomeric structures. J Struct Biol 2006; 156(1): 230-43.
    • (2006) J Struct Biol , vol.156 , Issue.1 , pp. 230-243
    • Diemand, A.V.1    Lupas, A.N.2
  • 81
    • 78651241652 scopus 로고    scopus 로고
    • Structure of the Drosophila apoptosome at 6.9 °A resolution
    • Yuan, S, Yu, X and Topf, M et al. Structure of the Drosophila apoptosome at 6.9 °A resolution. Structure 2011; 19: 128-40.
    • (2011) Structure , vol.19 , pp. 128-140
    • Yuan, S.1    Yu, X.2    Topf, M.3
  • 82
    • 39449094293 scopus 로고    scopus 로고
    • A biochemical analysis of the activation of the Drosophila caspase DRONC
    • Dorstyn, L and Kumar, S. A biochemical analysis of the activation of the Drosophila caspase DRONC. Cell Death Differ 2008; 15: 461-70.
    • (2008) Cell Death Differ , vol.15 , pp. 461-470
    • Dorstyn, L.1    Kumar, S.2
  • 83
    • 42149169031 scopus 로고    scopus 로고
    • Activation mechanism and substrate specificity of the Drosophila initiator caspase DRONC
    • Snipas, SJ, Drag, M and Stennicke, HR et al. Activation mechanism and substrate specificity of the Drosophila initiator caspase DRONC. Cell Death Differ 2008; 15: 938-45.
    • (2008) Cell Death Differ , vol.15 , pp. 938-945
    • Snipas, S.J.1    Drag, M.2    Stennicke, H.R.3
  • 84
    • 33646839270 scopus 로고    scopus 로고
    • Structure and activation mechanism of the Drosophila initiator caspase Dronc
    • Yan, N, Huh, JR and Schirf, V et al. Structure and activation mechanism of the Drosophila initiator caspase Dronc. J Biol Chem 2006; 281: 8667-74.
    • (2006) J Biol Chem , vol.281 , pp. 8667-8674
    • Yan, N.1    Huh, J.R.2    Schirf, V.3
  • 85
    • 0033119367 scopus 로고    scopus 로고
    • Genetic control of programmed cell death in the nematode Caenorhabditis elegans
    • Horvitz, HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999; 59: 1701-6.
    • (1999) Cancer Res , vol.59 , pp. 1701-1706
    • Horvitz, H.R.1
  • 86
    • 0028288277 scopus 로고
    • C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2
    • Hengartner, MO and Horvitz, HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994; 76: 665-76.
    • (1994) Cell , vol.76 , pp. 665-676
    • Hengartner, M.O.1    Horvitz, H.R.2
  • 87
    • 0034712042 scopus 로고    scopus 로고
    • Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death
    • Chen, F, Hersh, BM and Conradt, B et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 2000; 287: 1485-9.
    • (2000) Science , vol.287 , pp. 1485-1489
    • Chen, F.1    Hersh, B.M.2    Conradt, B.3
  • 88
    • 0031127578 scopus 로고    scopus 로고
    • CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9
    • James, C, Gschmeissner, S and Fraser, A et al. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr Biol 1997; 7: 246-52.
    • (1997) Curr Biol , vol.7 , pp. 246-252
    • James, C.1    Gschmeissner, S.2    Fraser, A.3
  • 89
    • 0031019739 scopus 로고    scopus 로고
    • Interaction between the C. elegans cell-death regulators CED-9 and CED-4
    • Spector, MS, Desnoyers, S and Hoeppner, DJ et al. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 1997; 385: 653-6.
    • (1997) Nature , vol.385 , pp. 653-656
    • Spector, M.S.1    Desnoyers, S.2    Hoeppner, D.J.3
  • 90
    • 0032524885 scopus 로고    scopus 로고
    • The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9
    • Conradt, B and Horvitz, HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 1998; 93: 519-29.
    • (1998) Cell , vol.93 , pp. 519-529
    • Conradt, B.1    Horvitz, H.R.2
  • 91
    • 0032509238 scopus 로고    scopus 로고
    • Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation
    • del Peso, L, Gonzalez, VM and Nunez, G. Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. J Biol Chem 1998; 273: 33495-500.
    • (1998) J Biol Chem , vol.273 , pp. 33495-33500
    • del Peso, L.1    Gonzalez, V.M.2    Nunez, G.3
  • 92
    • 0034282926 scopus 로고    scopus 로고
    • Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans
    • del Peso, L, Gonzalez, VM and Inohara, N et al. Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 2000; 275: 27205-11.
    • (2000) J Biol Chem , vol.275 , pp. 27205-27211
    • del Peso, L.1    Gonzalez, V.M.2    Inohara, N.3
  • 93
    • 0034710971 scopus 로고    scopus 로고
    • Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors
    • Parrish, J, Metters, H and Chen, L et al. Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors. Proc Natl Acad Sci USA 2000; 97: 11916-21.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 11916-11921
    • Parrish, J.1    Metters, H.2    Chen, L.3
  • 94
    • 26844485563 scopus 로고    scopus 로고
    • Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans
    • Yan, N, Chai, J and Lee, ES et al. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 2005; 437: 831-7.
    • (2005) Nature , vol.437 , pp. 831-837
    • Yan, N.1    Chai, J.2    Lee, E.S.3
  • 95
    • 33645366156 scopus 로고    scopus 로고
    • 2:1 Stoichiometry of the CED-4-CED-9 Complex and the tetrameric CED-4: insights into the regulation of CED-3 activation
    • Yan, N, Xu, Y and Shi, Y. 2:1 Stoichiometry of the CED-4-CED-9 Complex and the tetrameric CED-4: insights into the regulation of CED-3 activation. Cell Cycle 2006; 5: 31-4.
    • (2006) Cell Cycle , vol.5 , pp. 31-34
    • Yan, N.1    Xu, Y.2    Shi, Y.3
  • 96
    • 4644249309 scopus 로고    scopus 로고
    • Structural, biochemical, functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4
    • Yan, N, Gu, L and Kokel, D et al. Structural, biochemical, functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 2004; 15: 999-1006.
    • (2004) Mol Cell , vol.15 , pp. 999-1006
    • Yan, N.1    Gu, L.2    Kokel, D.3
  • 97
    • 77951881456 scopus 로고    scopus 로고
    • Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4
    • Qi, S, Pang, Y and Hu, Q et al. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell 2010; 141: 446-57.
    • (2010) Cell , vol.141 , pp. 446-457
    • Qi, S.1    Pang, Y.2    Hu, Q.3
  • 98
    • 84884572146 scopus 로고    scopus 로고
    • Mechanistic insights into CED-4-mediated activation of CED-3
    • In press
    • Huang, W, Jiang, T and Choi, W et al. Mechanistic insights into CED-4-mediated activation of CED-3. Genes Dev 2013. In press.
    • (2013) Genes Dev
    • Huang, W.1    Jiang, T.2    Choi, W.3
  • 99
    • 84880280093 scopus 로고    scopus 로고
    • Crystal structure of NLRC4 reveals its autoinhibition mechanism
    • Hu, Z, Yan, C and Liu, P et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 2013; 341: 172-5.
    • (2013) Science , vol.341 , pp. 172-175
    • Hu, Z.1    Yan, C.2    Liu, P.3
  • 100
    • 0035958867 scopus 로고    scopus 로고
    • Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1
    • Poyet, JL, Srinivasula, SM and Tnani, M et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 2001; 276: 28309-13.
    • (2001) J Biol Chem , vol.276 , pp. 28309-28313
    • Poyet, J.L.1    Srinivasula, S.M.2    Tnani, M.3
  • 101
    • 80053379974 scopus 로고    scopus 로고
    • Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
    • Kofoed, EM and Vance, RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011; 477: 592-5.
    • (2011) Nature , vol.477 , pp. 592-595
    • Kofoed, E.M.1    Vance, R.E.2
  • 102
    • 59649103157 scopus 로고    scopus 로고
    • Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins
    • Danot, O, Marquenet, E and Vidal-Ingigliardi, D et al. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 2009; 17: 172-82.
    • (2009) Structure , vol.17 , pp. 172-182
    • Danot, O.1    Marquenet, E.2    Vidal-Ingigliardi, D.3
  • 103
    • 33745041480 scopus 로고    scopus 로고
    • Evolutionary relationships and structural mechanisms of AAA+proteins
    • Erzberger, JP and Berger, JM. Evolutionary relationships and structural mechanisms of AAA+proteins. Annu Rev Biophys Biomol Struct 2006; 35: 93-114.
    • (2006) Annu Rev Biophys Biomol Struct , vol.35 , pp. 93-114
    • Erzberger, J.P.1    Berger, J.M.2
  • 104
    • 13444252631 scopus 로고    scopus 로고
    • GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors
    • Rossman, KL, Der, CJ and Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6: 167-80.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 167-180
    • Rossman, K.L.1    Der, C.J.2    Sondek, J.3
  • 105
    • 0036775380 scopus 로고    scopus 로고
    • Constitutive gain-offunction mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
    • Bendahmane, A, Farnham, G and Moffett, P et al. Constitutive gain-offunction mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 2002; 32: 195-204.
    • (2002) Plant J , vol.32 , pp. 195-204
    • Bendahmane, A.1    Farnham, G.2    Moffett, P.3
  • 106
    • 22544483556 scopus 로고    scopus 로고
    • Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein
    • de la Fuente van Bentem, S, Vossen, JH and de Vries, KJ et al. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J 2005; 43: 284-98.
    • (2005) Plant J , vol.43 , pp. 284-298
    • de la Fuente van Bentem, S.1    Vossen, J.H.2    de Vries, K.J.3
  • 107
    • 19544374693 scopus 로고    scopus 로고
    • Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response
    • Howles, P, Lawrence, G and Finnegan, J et al. Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol Plant Microbe In 2005; 18: 570-82.
    • (2005) Mol Plant Microbe In , vol.18 , pp. 570-582
    • Howles, P.1    Lawrence, G.2    Finnegan, J.3
  • 108
    • 33947711794 scopus 로고    scopus 로고
    • An NB-LRR protein required for HR signallingmediated by both extra-and intracellular resistance proteins
    • Gabriels, SH, Vossen, JH and Ekengren, SK et al. An NB-LRR protein required for HR signallingmediated by both extra-and intracellular resistance proteins. Plant J 2007; 50: 14-28.
    • (2007) Plant J , vol.50 , pp. 14-28
    • Gabriels, S.H.1    Vossen, J.H.2    Ekengren, S.K.3
  • 109
    • 33847376042 scopus 로고    scopus 로고
    • Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation
    • Faustin, B, Lartigue, L and Bruey, JM et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 2007; 25: 713-24.
    • (2007) Mol Cell , vol.25 , pp. 713-724
    • Faustin, B.1    Lartigue, L.2    Bruey, J.M.3
  • 110
    • 84869044838 scopus 로고    scopus 로고
    • Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N-and C-terminal regions of flagellin
    • Halff, EF, Diebolder, CA and Versteeg, M et al. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N-and C-terminal regions of flagellin. J Biol Chem 2012; 287: 38460-72.
    • (2012) J Biol Chem , vol.287 , pp. 38460-38472
    • Halff, E.F.1    Diebolder, C.A.2    Versteeg, M.3
  • 111
    • 69949105157 scopus 로고    scopus 로고
    • The NLRP3 inflammasome: a sensor of immune danger signals
    • Cassel, SL, Joly, S and Sutterwala, FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 2009; 21: 194-1981.
    • (2009) Semin Immunol , vol.21 , pp. 194-1981
    • Cassel, S.L.1    Joly, S.2    Sutterwala, F.S.3
  • 112
    • 69549119940 scopus 로고    scopus 로고
    • Molecular mechanisms involved in inflammasome activation
    • Bryant, C and Fitzgerald, KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 2009; 19: 455-64.
    • (2009) Trends Cell Biol , vol.19 , pp. 455-464
    • Bryant, C.1    Fitzgerald, K.A.2
  • 113
    • 77649179433 scopus 로고    scopus 로고
    • NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?
    • Tschopp, J and Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 2010; 10: 210-5.
    • (2010) Nat Rev Immunol , vol.10 , pp. 210-215
    • Tschopp, J.1    Schroder, K.2
  • 114
    • 84884332722 scopus 로고    scopus 로고
    • Mechanisms of NOD-like receptor-associated inflammasome activation
    • Wen, H, Miao, EA and Ting, JP. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 2013; 39: 432-41.
    • (2013) Immunity , vol.39 , pp. 432-441
    • Wen, H.1    Miao, E.A.2    Ting, J.P.3
  • 115
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira, K, Haspel, JA and Rathinam, VA et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12: 222-30.
    • (2011) Nat Immunol , vol.12 , pp. 222-230
    • Nakahira, K.1    Haspel, J.A.2    Rathinam, V.A.3
  • 116
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou, R, Yazdi, AS and Menu, P et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469: 221-5.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3
  • 117
    • 84876237736 scopus 로고    scopus 로고
    • The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
    • Subramanian, N, Natarajan, K and Clatworthy, MR et al. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 2013; 153: 348-61.
    • (2013) Cell , vol.153 , pp. 348-361
    • Subramanian, N.1    Natarajan, K.2    Clatworthy, M.R.3
  • 118
    • 84882614243 scopus 로고    scopus 로고
    • Mitochondrial cardiolipin is required for nlrp3 inflammasome activation
    • Iyer, SS, He, Q and Janczy, JR et al. Mitochondrial cardiolipin is required for nlrp3 inflammasome activation. Immunity 2013; 39: 311-23.
    • (2013) Immunity , vol.39 , pp. 311-323
    • Iyer, S.S.1    He, Q.2    Janczy, J.R.3
  • 119
    • 84855989829 scopus 로고    scopus 로고
    • Inflammasomes in health and disease
    • Strowig, T, Henao-Mejia, J and Elinav, E et al. Inflammasomes in health and disease. Nature 2012; 481: 278-86.
    • (2012) Nature , vol.481 , pp. 278-286
    • Strowig, T.1    Henao-Mejia, J.2    Elinav, E.3
  • 120
    • 79953046719 scopus 로고    scopus 로고
    • The inflammasome NLRs in immunity, inflammation, and associated diseases
    • Davis, BK, Wen, H and Ting, JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011; 29: 707-35.
    • (2011) Annu Rev Immunol , vol.29 , pp. 707-735
    • Davis, B.K.1    Wen, H.2    Ting, J.P.3
  • 121
    • 0035179970 scopus 로고    scopus 로고
    • Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome
    • Hoffman, HM, Mueller, JL and Broide, DH et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 2001; 29: 301-5.
    • (2001) Nat Genet , vol.29 , pp. 301-305
    • Hoffman, H.M.1    Mueller, J.L.2    Broide, D.H.3
  • 122
    • 0036302235 scopus 로고    scopus 로고
    • Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes
    • Feldmann, J, Prieur, AM and Quartier, P et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002; 71: 198-203.
    • (2002) Am J Hum Genet , vol.71 , pp. 198-203
    • Feldmann, J.1    Prieur, A.M.2    Quartier, P.3
  • 123
    • 0036899758 scopus 로고    scopus 로고
    • De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases
    • Aksentijevich, I, Nowak, M and Mallah, M et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 2002; 46: 3340-8.
    • (2002) Arthritis Rheum , vol.46 , pp. 3340-3348
    • Aksentijevich, I.1    Nowak, M.2    Mallah, M.3
  • 124
    • 67650736238 scopus 로고    scopus 로고
    • Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*)
    • Masters, SL, Simon, A and Aksentijevich, I et al. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009; 27: 621-68.
    • (2009) Annu Rev Immunol , vol.27 , pp. 621-668
    • Masters, S.L.1    Simon, A.2    Aksentijevich, I.3
  • 125
    • 27344448749 scopus 로고    scopus 로고
    • Familial autoinflammatory diseases: genetics, pathogenesis and treatment
    • Stojanov, S and Kastner, DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol 2005; 17: 586-99.
    • (2005) Curr Opin Rheumatol , vol.17 , pp. 586-599
    • Stojanov, S.1    Kastner, D.L.2
  • 126
    • 0037216780 scopus 로고    scopus 로고
    • The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations
    • Hull, KM, Shoham, N and Chae, JJ et al. The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations. Curr Opin Rheumatol 2003; 15: 61-9.
    • (2003) Curr Opin Rheumatol , vol.15 , pp. 61-69
    • Hull, K.M.1    Shoham, N.2    Chae, J.J.3
  • 127
    • 34249941913 scopus 로고    scopus 로고
    • Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling
    • Duncan, JA, Bergstralh, DT and Wang, Y et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 2007; 104: 8041-6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 8041-8046
    • Duncan, J.A.1    Bergstralh, D.T.2    Wang, Y.3
  • 128
    • 2542452727 scopus 로고    scopus 로고
    • Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC
    • Dowds, TA, Masumoto, J and Zhu, L et al. Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem 2004; 279: 21924-8.
    • (2004) J Biol Chem , vol.279 , pp. 21924-21928
    • Dowds, T.A.1    Masumoto, J.2    Zhu, L.3
  • 129
    • 66949175347 scopus 로고    scopus 로고
    • A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses
    • Meng, G, Zhang, F and Fuss, I et al. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 2009; 30: 860-74.
    • (2009) Immunity , vol.30 , pp. 860-874
    • Meng, G.1    Zhang, F.2    Fuss, I.3
  • 130
    • 12144288979 scopus 로고    scopus 로고
    • Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU
    • Neven, B, Callebaut, I and Prieur, AM et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 2004; 103: 2809-15.
    • (2004) Blood , vol.103 , pp. 2809-2815
    • Neven, B.1    Callebaut, I.2    Prieur, A.M.3
  • 131
    • 33745478448 scopus 로고    scopus 로고
    • Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation
    • Tameling, WI, Vossen, JH and Albrecht, M et al. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol 2006; 140: 1233-45.
    • (2006) Plant Physiol , vol.140 , pp. 1233-1245
    • Tameling, W.I.1    Vossen, J.H.2    Albrecht, M.3
  • 132
    • 0141817846 scopus 로고    scopus 로고
    • NMR structure of the apoptosis-and inflammation-related NALP1 pyrin domain
    • Hiller, S, Kohl, A and Fiorito, F et al. NMR structure of the apoptosis-and inflammation-related NALP1 pyrin domain. Structure 2003; 11: 1199-1205.
    • (2003) Structure , vol.11 , pp. 1199-1205
    • Hiller, S.1    Kohl, A.2    Fiorito, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.