메뉴 건너뛰기




Volumn 13, Issue 2, 2014, Pages 217-232

Mitochondria: Hub of injury responses in the developing brain

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE SENSITIVE POTASSIUM CHANNEL; GLYCOGEN SYNTHASE KINASE 3BETA; INTERLEUKIN 18; INTERLEUKIN 1BETA; INTERLEUKIN 33; PATTERN RECOGNITION RECEPTOR; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN KINASE B; PROTEIN KINASE C EPSILON; TOLL LIKE RECEPTOR 1; TOLL LIKE RECEPTOR 11; TOLL LIKE RECEPTOR 2; TOLL LIKE RECEPTOR 3; TOLL LIKE RECEPTOR 4; TOLL LIKE RECEPTOR 5; TOLL LIKE RECEPTOR 7; TOLL LIKE RECEPTOR 8; TOLL LIKE RECEPTOR 9; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6;

EID: 84892517669     PISSN: 14744422     EISSN: 14744465     Source Type: Journal    
DOI: 10.1016/S1474-4422(13)70261-8     Document Type: Review
Times cited : (155)

References (205)
  • 1
    • 7444267966 scopus 로고    scopus 로고
    • Neonatal brain injury
    • Ferriero DM Neonatal brain injury. N Engl J Med 2004, 351:1985-1995.
    • (2004) N Engl J Med , vol.351 , pp. 1985-1995
    • Ferriero, D.M.1
  • 2
    • 57149118216 scopus 로고    scopus 로고
    • Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances
    • Volpe JJ Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009, 8:110-124.
    • (2009) Lancet Neurol , vol.8 , pp. 110-124
    • Volpe, J.J.1
  • 3
    • 79952722818 scopus 로고    scopus 로고
    • Treatment advances in neonatal neuroprotection and neurointensive care
    • Johnston MV, Fatemi A, Wilson MA, Northington F Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol 2011, 10:372-382.
    • (2011) Lancet Neurol , vol.10 , pp. 372-382
    • Johnston, M.V.1    Fatemi, A.2    Wilson, M.A.3    Northington, F.4
  • 4
    • 84862162313 scopus 로고    scopus 로고
    • Implementation and conduct of therapeutic hypothermia for perinatal asphyxial encephalopathy in the UK-analysis of national data
    • the UK TOBY Cooling Register
    • Azzopardi D, Strohm B, Linsell L, et al. Implementation and conduct of therapeutic hypothermia for perinatal asphyxial encephalopathy in the UK-analysis of national data. PLoS One 2012, 7:e38504. the UK TOBY Cooling Register.
    • (2012) PLoS One , vol.7
    • Azzopardi, D.1    Strohm, B.2    Linsell, L.3
  • 5
    • 84866184543 scopus 로고    scopus 로고
    • Molecular mechanisms of neonatal brain injury
    • Thornton C, Rousset CI, Kichev A, et al. Molecular mechanisms of neonatal brain injury. Neurol Res Int 2012, 2012:506320.
    • (2012) Neurol Res Int , vol.2012 , pp. 506320
    • Thornton, C.1    Rousset, C.I.2    Kichev, A.3
  • 6
    • 84861158230 scopus 로고    scopus 로고
    • Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?
    • Fleiss B, Gressens P Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?. Lancet Neurol 2012, 11:556-566.
    • (2012) Lancet Neurol , vol.11 , pp. 556-566
    • Fleiss, B.1    Gressens, P.2
  • 8
    • 84860222551 scopus 로고    scopus 로고
    • Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults
    • Hagberg H, Gressens P, Mallard C Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012, 71:444-457.
    • (2012) Ann Neurol , vol.71 , pp. 444-457
    • Hagberg, H.1    Gressens, P.2    Mallard, C.3
  • 9
    • 79959354999 scopus 로고    scopus 로고
    • Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
    • Green DR, Galluzzi L, Kroemer G Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333:1109-1112.
    • (2011) Science , vol.333 , pp. 1109-1112
    • Green, D.R.1    Galluzzi, L.2    Kroemer, G.3
  • 10
    • 79952443408 scopus 로고    scopus 로고
    • Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
    • Song W, Chen J, Petrilli A, et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 2011, 17:377-382.
    • (2011) Nat Med , vol.17 , pp. 377-382
    • Song, W.1    Chen, J.2    Petrilli, A.3
  • 11
    • 77955351652 scopus 로고    scopus 로고
    • New insights into the role of mitochondria in aging: mitochondrial dynamics and more
    • Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 2010, 123:2533-2542.
    • (2010) J Cell Sci , vol.123 , pp. 2533-2542
    • Seo, A.Y.1    Joseph, A.M.2    Dutta, D.3    Hwang, J.C.4    Aris, J.P.5    Leeuwenburgh, C.6
  • 12
    • 33947577655 scopus 로고    scopus 로고
    • Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain
    • Cowell RM, Blake KR, Russell JW Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain. J Comp Neurol 2007, 502:1-18.
    • (2007) J Comp Neurol , vol.502 , pp. 1-18
    • Cowell, R.M.1    Blake, K.R.2    Russell, J.W.3
  • 13
    • 78149359813 scopus 로고    scopus 로고
    • Mitochondrial fission/fusion dynamics and apoptosis
    • Sheridan C, Martin SJ Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 2010, 10:640-648.
    • (2010) Mitochondrion , vol.10 , pp. 640-648
    • Sheridan, C.1    Martin, S.J.2
  • 14
    • 35948978460 scopus 로고    scopus 로고
    • Moving mitochondria: establishing distribution of an essential organelle
    • Frederick RL, Shaw JM Moving mitochondria: establishing distribution of an essential organelle. Traffic 2007, 8:1668-1675.
    • (2007) Traffic , vol.8 , pp. 1668-1675
    • Frederick, R.L.1    Shaw, J.M.2
  • 15
    • 77955380974 scopus 로고    scopus 로고
    • Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice
    • Hiona A, Sanz A, Kujoth GC, et al. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 2010, 5:e11468.
    • (2010) PLoS One , vol.5
    • Hiona, A.1    Sanz, A.2    Kujoth, G.C.3
  • 16
    • 77953809952 scopus 로고    scopus 로고
    • What are the sources of hydrogen peroxide production by heart mitochondria?
    • Grivennikova VG, Kareyeva AV, Vinogradov AD What are the sources of hydrogen peroxide production by heart mitochondria?. Biochim Biophys Acta 2010, 1797:939-944.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 939-944
    • Grivennikova, V.G.1    Kareyeva, A.V.2    Vinogradov, A.D.3
  • 17
    • 77955861146 scopus 로고    scopus 로고
    • Autophagy in health and disease. 5. Mitophagy as a way of life
    • Gottlieb RA, Carreira RS Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 2010, 299:C203-C210.
    • (2010) Am J Physiol Cell Physiol , vol.299
    • Gottlieb, R.A.1    Carreira, R.S.2
  • 18
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • Scarpulla RC Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2011, 1813:1269-1278.
    • (2011) Biochim Biophys Acta , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 19
    • 84875246546 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis and PGC-1α under cellular stress
    • Wenz T Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 2013, 13:134-142.
    • (2013) Mitochondrion , vol.13 , pp. 134-142
    • Wenz, T.1
  • 20
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3
  • 21
    • 0037174798 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha
    • Huss JM, Kopp RP, Kelly DP Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 2002, 277:40265-40274.
    • (2002) J Biol Chem , vol.277 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 23
    • 0034733819 scopus 로고    scopus 로고
    • Protein translocation pathways of the mitochondrion
    • Koehler CM Protein translocation pathways of the mitochondrion. FEBS Lett 2000, 476:27-31.
    • (2000) FEBS Lett , vol.476 , pp. 27-31
    • Koehler, C.M.1
  • 24
    • 0031930319 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice
    • Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998, 18:231-236.
    • (1998) Nat Genet , vol.18 , pp. 231-236
    • Larsson, N.G.1    Wang, J.2    Wilhelmsson, H.3
  • 25
    • 39549092425 scopus 로고    scopus 로고
    • A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis
    • Tanaka A, Youle RJ A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell 2008, 29:409-410.
    • (2008) Mol Cell , vol.29 , pp. 409-410
    • Tanaka, A.1    Youle, R.J.2
  • 26
    • 84875273810 scopus 로고    scopus 로고
    • New insights into the function and regulation of mitochondrial fission
    • Otera H, Ishihara N, Mihara K New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 2013, 1833:1256-1268.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 1256-1268
    • Otera, H.1    Ishihara, N.2    Mihara, K.3
  • 27
    • 84875581921 scopus 로고    scopus 로고
    • Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology
    • Onoue K, Jofuku A, Ban-Ishihara R, et al. Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J Cell Sci 2013, 126:176-185.
    • (2013) J Cell Sci , vol.126 , pp. 176-185
    • Onoue, K.1    Jofuku, A.2    Ban-Ishihara, R.3
  • 28
    • 64649093555 scopus 로고    scopus 로고
    • Mitochondrial fusion and division: Regulation and role in cell viability
    • Benard G, Karbowski M Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 2009, 20:365-374.
    • (2009) Semin Cell Dev Biol , vol.20 , pp. 365-374
    • Benard, G.1    Karbowski, M.2
  • 29
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • Ashrafi G, Schwarz TL The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013, 20:31-42.
    • (2013) Cell Death Differ , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 30
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 31
    • 84867724832 scopus 로고    scopus 로고
    • Mitochondria and mitophagy: the yin and yang of cell death control
    • Kubli DA, Gustafsson AB Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 2012, 111:1208-1221.
    • (2012) Circ Res , vol.111 , pp. 1208-1221
    • Kubli, D.A.1    Gustafsson, A.B.2
  • 32
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012, 14:177-185.
    • (2012) Nat Cell Biol , vol.14 , pp. 177-185
    • Liu, L.1    Feng, D.2    Chen, G.3
  • 33
    • 0023677396 scopus 로고
    • Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development
    • Nehlig A, de Vasconcelos AP, Boyet S Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. J Neurosci 1988, 8:2321-2333.
    • (1988) J Neurosci , vol.8 , pp. 2321-2333
    • Nehlig, A.1    de Vasconcelos, A.P.2    Boyet, S.3
  • 34
  • 35
    • 0016467598 scopus 로고
    • Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia
    • Duffy TE, Kohle SJ, Vannucci RC Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem 1975, 24:271-276.
    • (1975) J Neurochem , vol.24 , pp. 271-276
    • Duffy, T.E.1    Kohle, S.J.2    Vannucci, R.C.3
  • 36
    • 31344466187 scopus 로고
    • The effect of age and temperature on the cerebral energy requirement in the rat
    • Samson FE, Balfour WM, Dahl NA The effect of age and temperature on the cerebral energy requirement in the rat. J Gerontol 1958, 13:248-251.
    • (1958) J Gerontol , vol.13 , pp. 248-251
    • Samson, F.E.1    Balfour, W.M.2    Dahl, N.A.3
  • 38
    • 0017882396 scopus 로고
    • Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats
    • Vannucci RC, Vannucci SJ Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats. Ann Neurol 1978, 4:73-79.
    • (1978) Ann Neurol , vol.4 , pp. 73-79
    • Vannucci, R.C.1    Vannucci, S.J.2
  • 40
    • 0030795769 scopus 로고    scopus 로고
    • Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings
    • Hagberg H, Bona E, Gilland E, Puka-Sundvall M Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl 1997, 422:85-88.
    • (1997) Acta Paediatr Suppl , vol.422 , pp. 85-88
    • Hagberg, H.1    Bona, E.2    Gilland, E.3    Puka-Sundvall, M.4
  • 41
    • 58149380519 scopus 로고    scopus 로고
    • Development of amplitude-integrated electroencephalography and interburst interval in the rat
    • Tucker AM, Aquilina K, Chakkarapani E, Hobbs CE, Thoresen M Development of amplitude-integrated electroencephalography and interburst interval in the rat. Pediatr Res 2009, 65:62-66.
    • (2009) Pediatr Res , vol.65 , pp. 62-66
    • Tucker, A.M.1    Aquilina, K.2    Chakkarapani, E.3    Hobbs, C.E.4    Thoresen, M.5
  • 42
    • 4143051638 scopus 로고    scopus 로고
    • Energy metabolism in mammalian brain during development
    • Erecinska M, Cherian S, Silver IA Energy metabolism in mammalian brain during development. Prog Neurobiol 2004, 73:397-445.
    • (2004) Prog Neurobiol , vol.73 , pp. 397-445
    • Erecinska, M.1    Cherian, S.2    Silver, I.A.3
  • 43
  • 44
    • 4143132973 scopus 로고
    • Metabolism of rat brain mitochondria during postnatal development
    • Dahl DR, Samson FE Metabolism of rat brain mitochondria during postnatal development. Am J Physiol 1959, 196:470-472.
    • (1959) Am J Physiol , vol.196 , pp. 470-472
    • Dahl, D.R.1    Samson, F.E.2
  • 45
    • 0017408806 scopus 로고
    • Development of mitochondrial energy metabolism in rat brain
    • Land JM, Booth RF, Berger R, Clark JB Development of mitochondrial energy metabolism in rat brain. Biochem J 1977, 164:339-348.
    • (1977) Biochem J , vol.164 , pp. 339-348
    • Land, J.M.1    Booth, R.F.2    Berger, R.3    Clark, J.B.4
  • 46
    • 0038493644 scopus 로고    scopus 로고
    • Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain
    • Zhu C, Qiu L, Wang X, et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem 2003, 86:306-317.
    • (2003) J Neurochem , vol.86 , pp. 306-317
    • Zhu, C.1    Qiu, L.2    Wang, X.3
  • 47
    • 4344670975 scopus 로고    scopus 로고
    • Analysis of cytochrome C oxidase subunits III and IV expression in developing rat brain
    • Cannino G, Di Liegro CM, Di Liegro I, Rinaldi AM Analysis of cytochrome C oxidase subunits III and IV expression in developing rat brain. Neuroscience 2004, 128:91-98.
    • (2004) Neuroscience , vol.128 , pp. 91-98
    • Cannino, G.1    Di Liegro, C.M.2    Di Liegro, I.3    Rinaldi, A.M.4
  • 48
    • 0014497695 scopus 로고
    • A comparative study of brain and liver mitochondria from new-born and adult rats
    • Gregson NA, Williams PL A comparative study of brain and liver mitochondria from new-born and adult rats. J Neurochem 1969, 16:617-626.
    • (1969) J Neurochem , vol.16 , pp. 617-626
    • Gregson, N.A.1    Williams, P.L.2
  • 49
    • 0014930853 scopus 로고
    • Mitochondrial changes in rat inferior colliculus during postnatal development: an electron microscopic study
    • Pysh JJ Mitochondrial changes in rat inferior colliculus during postnatal development: an electron microscopic study. Brain Res 1970, 18:325-342.
    • (1970) Brain Res , vol.18 , pp. 325-342
    • Pysh, J.J.1
  • 50
    • 0021910272 scopus 로고
    • Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts
    • Schaper J, Meiser E, Stämmler G Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 1985, 56:377-391.
    • (1985) Circ Res , vol.56 , pp. 377-391
    • Schaper, J.1    Meiser, E.2    Stämmler, G.3
  • 51
  • 53
    • 57049143140 scopus 로고    scopus 로고
    • Mitochondria in neuroplasticity and neurological disorders
    • Mattson MP, Gleichmann M, Cheng A Mitochondria in neuroplasticity and neurological disorders. Neuron 2008, 60:748-766.
    • (2008) Neuron , vol.60 , pp. 748-766
    • Mattson, M.P.1    Gleichmann, M.2    Cheng, A.3
  • 54
    • 84871728323 scopus 로고    scopus 로고
    • Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines
    • Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun 2012, 3:1250.
    • (2012) Nat Commun , vol.3 , pp. 1250
    • Cheng, A.1    Wan, R.2    Yang, J.L.3
  • 55
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
    • Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004, 119:121-135.
    • (2004) Cell , vol.119 , pp. 121-135
    • Lin, J.1    Wu, P.H.2    Tarr, P.T.3
  • 56
    • 48249095547 scopus 로고    scopus 로고
    • Mitochondrial morphogenesis, dendrite development, and synapse formation in cerebellum require both Bcl-w and the glutamate receptor delta2
    • Liu QA, Shio H Mitochondrial morphogenesis, dendrite development, and synapse formation in cerebellum require both Bcl-w and the glutamate receptor delta2. PLoS Genet 2008, 4:e1000097.
    • (2008) PLoS Genet , vol.4
    • Liu, Q.A.1    Shio, H.2
  • 57
    • 10944269186 scopus 로고    scopus 로고
    • The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses
    • Li Z, Okamoto K, Hayashi Y, Sheng M The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004, 119:873-887.
    • (2004) Cell , vol.119 , pp. 873-887
    • Li, Z.1    Okamoto, K.2    Hayashi, Y.3    Sheng, M.4
  • 58
    • 68249087424 scopus 로고    scopus 로고
    • Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
    • Ishihara N, Nomura M, Jofuku A, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 2009, 11:958-966.
    • (2009) Nat Cell Biol , vol.11 , pp. 958-966
    • Ishihara, N.1    Nomura, M.2    Jofuku, A.3
  • 60
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
    • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003, 160:189-200.
    • (2003) J Cell Biol , vol.160 , pp. 189-200
    • Chen, H.1    Detmer, S.A.2    Ewald, A.J.3    Griffin, E.E.4    Fraser, S.E.5    Chan, D.C.6
  • 61
    • 2442589922 scopus 로고    scopus 로고
    • Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
    • Züchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004, 36:449-451.
    • (2004) Nat Genet , vol.36 , pp. 449-451
    • Züchner, S.1    Mersiyanova, I.V.2    Muglia, M.3
  • 62
    • 20244381365 scopus 로고    scopus 로고
    • Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
    • Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000, 26:207-210.
    • (2000) Nat Genet , vol.26 , pp. 207-210
    • Delettre, C.1    Lenaers, G.2    Griffoin, J.M.3
  • 63
    • 0031001244 scopus 로고    scopus 로고
    • Bax promotes neuronal cell death and is downregulated during the development of the nervous system
    • Vekrellis K, McCarthy MJ, Watson A, Whitfield J, Rubin LL, Ham J Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development 1997, 124:1239-1249.
    • (1997) Development , vol.124 , pp. 1239-1249
    • Vekrellis, K.1    McCarthy, M.J.2    Watson, A.3    Whitfield, J.4    Rubin, L.L.5    Ham, J.6
  • 64
    • 42449143826 scopus 로고    scopus 로고
    • Postnatal developmental regulation of Bcl-2 family proteins in brain mitochondria
    • Soane L, Siegel ZT, Schuh RA, Fiskum G Postnatal developmental regulation of Bcl-2 family proteins in brain mitochondria. J Neurosci Res 2008, 86:1267-1276.
    • (2008) J Neurosci Res , vol.86 , pp. 1267-1276
    • Soane, L.1    Siegel, Z.T.2    Schuh, R.A.3    Fiskum, G.4
  • 65
    • 13544277142 scopus 로고    scopus 로고
    • The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia
    • Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005, 12:162-176.
    • (2005) Cell Death Differ , vol.12 , pp. 162-176
    • Zhu, C.1    Wang, X.2    Xu, F.3
  • 66
    • 0033600482 scopus 로고    scopus 로고
    • The immunosuppressants cyclosporin A and FK506 equally ameliorate brain damage due to 30-min middle cerebral artery occlusion in hyperglycemic rats
    • Kuroda S, Janelidze S, Siesjö BK The immunosuppressants cyclosporin A and FK506 equally ameliorate brain damage due to 30-min middle cerebral artery occlusion in hyperglycemic rats. Brain Res 1999, 835:148-153.
    • (1999) Brain Res , vol.835 , pp. 148-153
    • Kuroda, S.1    Janelidze, S.2    Siesjö, B.K.3
  • 67
    • 24744460273 scopus 로고    scopus 로고
    • Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia
    • Schinzel AC, Takeuchi O, Huang Z, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 2005, 102:12005-12010.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 12005-12010
    • Schinzel, A.C.1    Takeuchi, O.2    Huang, Z.3
  • 68
    • 61449100405 scopus 로고    scopus 로고
    • Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury
    • Wang X, Carlsson Y, Basso E, et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci 2009, 29:2588-2596.
    • (2009) J Neurosci , vol.29 , pp. 2588-2596
    • Wang, X.1    Carlsson, Y.2    Basso, E.3
  • 69
    • 0035742481 scopus 로고    scopus 로고
    • Cerebral hypoxia-ischemia in immature rats: involvement of mitochondrial permeability transition?
    • Puka-Sundvall M, Gilland E, Hagberg H Cerebral hypoxia-ischemia in immature rats: involvement of mitochondrial permeability transition?. Dev Neurosci 2001, 23:192-197.
    • (2001) Dev Neurosci , vol.23 , pp. 192-197
    • Puka-Sundvall, M.1    Gilland, E.2    Hagberg, H.3
  • 70
    • 77956410991 scopus 로고    scopus 로고
    • Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury
    • Wang X, Han W, Du X, et al. Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury. Stroke 2010, 41:2050-2055.
    • (2010) Stroke , vol.41 , pp. 2050-2055
    • Wang, X.1    Han, W.2    Du, X.3
  • 71
    • 60449108890 scopus 로고    scopus 로고
    • Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses
    • Macaskill AF, Rinholm JE, Twelvetrees AE, et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009, 61:541-555.
    • (2009) Neuron , vol.61 , pp. 541-555
    • Macaskill, A.F.1    Rinholm, J.E.2    Twelvetrees, A.E.3
  • 72
    • 60149097713 scopus 로고    scopus 로고
    • GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons
    • MacAskill AF, Brickley K, Stephenson FA, Kittler JT GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol Cell Neurosci 2009, 40:301-312.
    • (2009) Mol Cell Neurosci , vol.40 , pp. 301-312
    • MacAskill, A.F.1    Brickley, K.2    Stephenson, F.A.3    Kittler, J.T.4
  • 73
    • 84872686195 scopus 로고    scopus 로고
    • Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease
    • Wilson TJ, Slupe AM, Strack S Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease. Neurobiol Dis 2013, 51:13-26.
    • (2013) Neurobiol Dis , vol.51 , pp. 13-26
    • Wilson, T.J.1    Slupe, A.M.2    Strack, S.3
  • 74
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3
  • 75
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
    • (2006) Nature , vol.441 , pp. 885-889
    • Hara, T.1    Nakamura, K.2    Matsui, M.3
  • 76
    • 84855474847 scopus 로고    scopus 로고
    • Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder
    • Imai Y, Lu B Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder. Curr Opin Neurobiol 2011, 21:935-941.
    • (2011) Curr Opin Neurobiol , vol.21 , pp. 935-941
    • Imai, Y.1    Lu, B.2
  • 77
    • 13844313915 scopus 로고    scopus 로고
    • Parkin-deficient mice are not a robust model of parkinsonism
    • Perez FA, Palmiter RD Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 2005, 102:2174-2179.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 2174-2179
    • Perez, F.A.1    Palmiter, R.D.2
  • 78
    • 0028079731 scopus 로고
    • Delayed ("secondary") cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy
    • Lorek A, Takei Y, Cady EB, et al. Delayed ("secondary") cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994, 36:699-706.
    • (1994) Pediatr Res , vol.36 , pp. 699-706
    • Lorek, A.1    Takei, Y.2    Cady, E.B.3
  • 79
    • 0031026883 scopus 로고    scopus 로고
    • Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia-ischaemia in the developing brain
    • Blumberg RM, Cady EB, Wigglesworth JS, McKenzie JE, Edwards AD Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia-ischaemia in the developing brain. Exp Brain Res 1997, 113:130-137.
    • (1997) Exp Brain Res , vol.113 , pp. 130-137
    • Blumberg, R.M.1    Cady, E.B.2    Wigglesworth, J.S.3    McKenzie, J.E.4    Edwards, A.D.5
  • 80
    • 49449093285 scopus 로고    scopus 로고
    • Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome
    • Iwata O, Iwata S, Bainbridge A, et al. Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome. Brain 2008, 131:2220-2226.
    • (2008) Brain , vol.131 , pp. 2220-2226
    • Iwata, O.1    Iwata, S.2    Bainbridge, A.3
  • 81
    • 0031916208 scopus 로고    scopus 로고
    • Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors
    • Gilland E, Puka-Sundvall M, Hillered L, Hagberg H Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab 1998, 18:297-304.
    • (1998) J Cereb Blood Flow Metab , vol.18 , pp. 297-304
    • Gilland, E.1    Puka-Sundvall, M.2    Hillered, L.3    Hagberg, H.4
  • 82
    • 0028144565 scopus 로고
    • Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat
    • Vannucci RC, Yager JY, Vannucci SJ Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 1994, 14:279-288.
    • (1994) J Cereb Blood Flow Metab , vol.14 , pp. 279-288
    • Vannucci, R.C.1    Yager, J.Y.2    Vannucci, S.J.3
  • 84
    • 0029744527 scopus 로고    scopus 로고
    • NMDA receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat
    • Gilland E, Hagberg H NMDA receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 1996, 16:1005-1013.
    • (1996) J Cereb Blood Flow Metab , vol.16 , pp. 1005-1013
    • Gilland, E.1    Hagberg, H.2
  • 85
    • 0030955459 scopus 로고    scopus 로고
    • Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet
    • Penrice J, Lorek A, Cady EB, et al. Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr Res 1997, 41:795-802.
    • (1997) Pediatr Res , vol.41 , pp. 795-802
    • Penrice, J.1    Lorek, A.2    Cady, E.B.3
  • 86
    • 0028790740 scopus 로고
    • 18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period
    • 18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr 1995, 84:1289-1295.
    • (1995) Acta Paediatr , vol.84 , pp. 1289-1295
    • Blennow, M.1    Ingvar, M.2    Lagercrantz, H.3
  • 89
    • 84860689529 scopus 로고    scopus 로고
    • Synaptic NMDA receptors mediate hypoxic excitotoxic death
    • Wroge CM, Hogins J, Eisenman L, Mennerick S Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 2012, 32:6732-6742.
    • (2012) J Neurosci , vol.32 , pp. 6732-6742
    • Wroge, C.M.1    Hogins, J.2    Eisenman, L.3    Mennerick, S.4
  • 90
    • 77956917231 scopus 로고    scopus 로고
    • Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders
    • Hardingham GE, Bading H Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010, 11:682-696.
    • (2010) Nat Rev Neurosci , vol.11 , pp. 682-696
    • Hardingham, G.E.1    Bading, H.2
  • 91
    • 0029865660 scopus 로고    scopus 로고
    • Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury
    • Ferriero DM, Holtzman DM, Black SM, Sheldon RA Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 1996, 3:64-71.
    • (1996) Neurobiol Dis , vol.3 , pp. 64-71
    • Ferriero, D.M.1    Holtzman, D.M.2    Black, S.M.3    Sheldon, R.A.4
  • 92
    • 34247503156 scopus 로고    scopus 로고
    • Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury
    • Pirianov G, Brywe KG, Mallard C, et al. Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J Cereb Blood Flow Metab 2007, 27:1022-1032.
    • (2007) J Cereb Blood Flow Metab , vol.27 , pp. 1022-1032
    • Pirianov, G.1    Brywe, K.G.2    Mallard, C.3
  • 93
    • 0035971091 scopus 로고    scopus 로고
    • Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"?
    • Blomgren K, Zhu C, Wang X, et al. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"?. J Biol Chem 2001, 276:10191-10198.
    • (2001) J Biol Chem , vol.276 , pp. 10191-10198
    • Blomgren, K.1    Zhu, C.2    Wang, X.3
  • 94
    • 84876301610 scopus 로고    scopus 로고
    • Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage
    • Nijboer CH, Bonestroo HJ, Zijlstra J, Kavelaars A, Heijnen CJ Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis 2013, 54:432-444.
    • (2013) Neurobiol Dis , vol.54 , pp. 432-444
    • Nijboer, C.H.1    Bonestroo, H.J.2    Zijlstra, J.3    Kavelaars, A.4    Heijnen, C.J.5
  • 95
    • 0034637845 scopus 로고    scopus 로고
    • NMDA blockade attenuates caspase-3 activation and DNA fragmentation after neonatal hypoxia-ischemia
    • Puka-Sundvall M, Hallin U, Zhu C, et al. NMDA blockade attenuates caspase-3 activation and DNA fragmentation after neonatal hypoxia-ischemia. Neuroreport 2000, 11:2833-2836.
    • (2000) Neuroreport , vol.11 , pp. 2833-2836
    • Puka-Sundvall, M.1    Hallin, U.2    Zhu, C.3
  • 96
    • 0032947526 scopus 로고    scopus 로고
    • Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain
    • Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999, 283:70-74.
    • (1999) Science , vol.283 , pp. 70-74
    • Ikonomidou, C.1    Bosch, F.2    Miksa, M.3
  • 97
    • 74549173438 scopus 로고    scopus 로고
    • DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke
    • Tu W, Xu X, Peng L, et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 2010, 140:222-234.
    • (2010) Cell , vol.140 , pp. 222-234
    • Tu, W.1    Xu, X.2    Peng, L.3
  • 98
    • 29644433255 scopus 로고    scopus 로고
    • Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia
    • Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem 2005, 280:42290-42299.
    • (2005) J Biol Chem , vol.280 , pp. 42290-42299
    • Shamloo, M.1    Soriano, L.2    Wieloch, T.3    Nikolich, K.4    Urfer, R.5    Oksenberg, D.6
  • 99
    • 84867222320 scopus 로고    scopus 로고
    • A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates
    • Cook DJ, Teves L, Tymianski M A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci Transl Med 2012, 4:154ra133.
    • (2012) Sci Transl Med , vol.4
    • Cook, D.J.1    Teves, L.2    Tymianski, M.3
  • 100
    • 84857999519 scopus 로고    scopus 로고
    • Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain
    • Cook DJ, Teves L, Tymianski M Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 2012, 483:213-217.
    • (2012) Nature , vol.483 , pp. 213-217
    • Cook, D.J.1    Teves, L.2    Tymianski, M.3
  • 101
    • 84867641191 scopus 로고    scopus 로고
    • Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial
    • the ENACT trial investigators
    • Hill MD, Martin RH, Mikulis D, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2012, 11:942-950. the ENACT trial investigators.
    • (2012) Lancet Neurol , vol.11 , pp. 942-950
    • Hill, M.D.1    Martin, R.H.2    Mikulis, D.3
  • 102
  • 103
    • 0031839233 scopus 로고    scopus 로고
    • Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors
    • Peng TI, Greenamyre JT Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol Pharmacol 1998, 53:974-980.
    • (1998) Mol Pharmacol , vol.53 , pp. 974-980
    • Peng, T.I.1    Greenamyre, J.T.2
  • 104
    • 84872486948 scopus 로고    scopus 로고
    • Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation
    • Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2013, 47:9-23.
    • (2013) Mol Neurobiol , vol.47 , pp. 9-23
    • Sanderson, T.H.1    Reynolds, C.A.2    Kumar, R.3    Przyklenk, K.4    Hüttemann, M.5
  • 105
    • 0042433242 scopus 로고    scopus 로고
    • 2 production by membrane potential and NAD(P)H redox state
    • 2 production by membrane potential and NAD(P)H redox state. J Neurochem 2003, 86:1101-1107.
    • (2003) J Neurochem , vol.86 , pp. 1101-1107
    • Starkov, A.A.1    Fiskum, G.2
  • 106
    • 84871016609 scopus 로고    scopus 로고
    • Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency
    • Ramonet D, Perier C, Recasens A, et al. Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ 2013, 20:77-85.
    • (2013) Cell Death Differ , vol.20 , pp. 77-85
    • Ramonet, D.1    Perier, C.2    Recasens, A.3
  • 108
    • 33847134493 scopus 로고    scopus 로고
    • Apoptosis-inducing factor: a matter of neuron life and death
    • Krantic S, Mechawar N, Reix S, Quirion R Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 2007, 81:179-196.
    • (2007) Prog Neurobiol , vol.81 , pp. 179-196
    • Krantic, S.1    Mechawar, N.2    Reix, S.3    Quirion, R.4
  • 109
    • 0017154414 scopus 로고
    • Role of ubiquinone in the mitochondrial generation of hydrogen peroxide
    • Boveris A, Cadenas E, Stoppani AO Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 1976, 156:435-444.
    • (1976) Biochem J , vol.156 , pp. 435-444
    • Boveris, A.1    Cadenas, E.2    Stoppani, A.O.3
  • 110
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens JF, Boveris A Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980, 191:421-427.
    • (1980) Biochem J , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 111
    • 3142698351 scopus 로고    scopus 로고
    • Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia
    • Zhu C, Wang X, Qiu L, Peeters-Scholte C, Hagberg H, Blomgren K Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia. J Neurochem 2004, 90:462-471.
    • (2004) J Neurochem , vol.90 , pp. 462-471
    • Zhu, C.1    Wang, X.2    Qiu, L.3    Peeters-Scholte, C.4    Hagberg, H.5    Blomgren, K.6
  • 112
    • 0028820628 scopus 로고
    • Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat
    • Ferriero DM, Sheldon RA, Black SM, Chuai J Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatr Res 1995, 38:912-918.
    • (1995) Pediatr Res , vol.38 , pp. 912-918
    • Ferriero, D.M.1    Sheldon, R.A.2    Black, S.M.3    Chuai, J.4
  • 113
    • 0036714560 scopus 로고    scopus 로고
    • Neuroprotection by selective nitric oxide synthase inhibition at 24 hours after perinatal hypoxia-ischemia
    • Peeters-Scholte C, Koster J, Veldhuis W, et al. Neuroprotection by selective nitric oxide synthase inhibition at 24 hours after perinatal hypoxia-ischemia. Stroke 2002, 33:2304-2310.
    • (2002) Stroke , vol.33 , pp. 2304-2310
    • Peeters-Scholte, C.1    Koster, J.2    Veldhuis, W.3
  • 114
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens JF Mitochondrial formation of reactive oxygen species. J Physiol 2003, 552:335-344.
    • (2003) J Physiol , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 115
    • 0030060186 scopus 로고    scopus 로고
    • Mitochondrial generation of reactive oxygen species after brain ischemia in the rat
    • Piantadosi CA, Zhang J Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 1996, 27:327-331.
    • (1996) Stroke , vol.27 , pp. 327-331
    • Piantadosi, C.A.1    Zhang, J.2
  • 116
    • 50949088772 scopus 로고    scopus 로고
    • Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors
    • Kudin AP, Malinska D, Kunz WS Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim Biophys Acta 2008, 1777:689-695.
    • (2008) Biochim Biophys Acta , vol.1777 , pp. 689-695
    • Kudin, A.P.1    Malinska, D.2    Kunz, W.S.3
  • 117
    • 2342536508 scopus 로고    scopus 로고
    • X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia
    • Wang X, Zhu C, Wang X, et al. X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia. Neurobiol Dis 2004, 16:179-189.
    • (2004) Neurobiol Dis , vol.16 , pp. 179-189
    • Wang, X.1    Zhu, C.2    Wang, X.3
  • 118
    • 0036208147 scopus 로고    scopus 로고
    • Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain
    • Gill R, Soriano M, Blomgren K, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab 2002, 22:420-430.
    • (2002) J Cereb Blood Flow Metab , vol.22 , pp. 420-430
    • Gill, R.1    Soriano, M.2    Blomgren, K.3
  • 119
    • 67649460932 scopus 로고    scopus 로고
    • Mitochondrial membrane permeabilization in neuronal injury
    • Galluzzi L, Blomgren K, Kroemer G Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009, 10:481-494.
    • (2009) Nat Rev Neurosci , vol.10 , pp. 481-494
    • Galluzzi, L.1    Blomgren, K.2    Kroemer, G.3
  • 120
    • 77952671613 scopus 로고    scopus 로고
    • Signal transduction to the permeability transition pore
    • Rasola A, Sciacovelli M, Pantic B, Bernardi P Signal transduction to the permeability transition pore. FEBS Lett 2010, 584:1989-1996.
    • (2010) FEBS Lett , vol.584 , pp. 1989-1996
    • Rasola, A.1    Sciacovelli, M.2    Pantic, B.3    Bernardi, P.4
  • 121
    • 0035718736 scopus 로고    scopus 로고
    • BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways
    • Gibson ME, Han BH, Choi J, et al. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med 2001, 7:644-655.
    • (2001) Mol Med , vol.7 , pp. 644-655
    • Gibson, M.E.1    Han, B.H.2    Choi, J.3
  • 122
    • 0032080673 scopus 로고    scopus 로고
    • Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury
    • Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998, 101:1992-1999.
    • (1998) J Clin Invest , vol.101 , pp. 1992-1999
    • Cheng, Y.1    Deshmukh, M.2    D'Costa, A.3
  • 124
    • 0034255042 scopus 로고    scopus 로고
    • BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway
    • Han BH, Holtzman DM BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 2000, 20:5775-5781.
    • (2000) J Neurosci , vol.20 , pp. 5775-5781
    • Han, B.H.1    Holtzman, D.M.2
  • 126
    • 0342546527 scopus 로고    scopus 로고
    • BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia
    • Han BH, D'Costa A, Back SA, et al. BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 2000, 7:38-53.
    • (2000) Neurobiol Dis , vol.7 , pp. 38-53
    • Han, B.H.1    D'Costa, A.2    Back, S.A.3
  • 127
    • 0242663945 scopus 로고    scopus 로고
    • Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury
    • Han BH, Xu D, Choi J, et al. Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. J Biol Chem 2002, 277:30128-30136.
    • (2002) J Biol Chem , vol.277 , pp. 30128-30136
    • Han, B.H.1    Xu, D.2    Choi, J.3
  • 128
    • 34547759778 scopus 로고    scopus 로고
    • Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia
    • Zhu C, Wang X, Deinum J, et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 2007, 204:1741-1748.
    • (2007) J Exp Med , vol.204 , pp. 1741-1748
    • Zhu, C.1    Wang, X.2    Deinum, J.3
  • 129
    • 33947406873 scopus 로고    scopus 로고
    • Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia
    • Zhu C, Wang X, Huang Z, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 2007, 14:775-784.
    • (2007) Cell Death Differ , vol.14 , pp. 775-784
    • Zhu, C.1    Wang, X.2    Huang, Z.3
  • 130
    • 2342536508 scopus 로고    scopus 로고
    • X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia
    • Wang X, Zhu C, Wang X, et al. X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia. Neurobiol Dis 2004, 16:179-189.
    • (2004) Neurobiol Dis , vol.16 , pp. 179-189
    • Wang, X.1    Zhu, C.2    Wang, X.3
  • 131
    • 33746190620 scopus 로고    scopus 로고
    • Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia
    • Ness JM, Harvey CA, Strasser A, Bouillet P, Klocke BJ, Roth KA Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia. Brain Res 2006, 1099:150-159.
    • (2006) Brain Res , vol.1099 , pp. 150-159
    • Ness, J.M.1    Harvey, C.A.2    Strasser, A.3    Bouillet, P.4    Klocke, B.J.5    Roth, K.A.6
  • 132
    • 77953373213 scopus 로고    scopus 로고
    • Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury
    • West T, Stump M, Lodygensky G, Neil JJ, Deshmukh M, Holtzman DM Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury. ASN Neuro 2009, 1:43-53.
    • (2009) ASN Neuro , vol.1 , pp. 43-53
    • West, T.1    Stump, M.2    Lodygensky, G.3    Neil, J.J.4    Deshmukh, M.5    Holtzman, D.M.6
  • 133
    • 74049160362 scopus 로고    scopus 로고
    • Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway
    • Gao Y, Liang W, Hu X, et al. Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke 2010, 41:166-172.
    • (2010) Stroke , vol.41 , pp. 166-172
    • Gao, Y.1    Liang, W.2    Hu, X.3
  • 134
    • 80051547771 scopus 로고    scopus 로고
    • Targeting the p53 pathway to protect the neonatal ischemic brain
    • Nijboer CH, Heijnen CJ, van der Kooij MA, et al. Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol 2011, 70:255-264.
    • (2011) Ann Neurol , vol.70 , pp. 255-264
    • Nijboer, C.H.1    Heijnen, C.J.2    van der Kooij, M.A.3
  • 135
    • 80053392102 scopus 로고    scopus 로고
    • Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury
    • Carlsson Y, Schwendimann L, Vontell R, et al. Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury. Ann Neurol 2011, 70:781-789.
    • (2011) Ann Neurol , vol.70 , pp. 781-789
    • Carlsson, Y.1    Schwendimann, L.2    Vontell, R.3
  • 136
    • 80053425629 scopus 로고    scopus 로고
    • Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor
    • Chauvier D, Renolleau S, Holifanjaniaina S, et al. Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor. Cell Death Dis 2011, 2:e203.
    • (2011) Cell Death Dis , vol.2
    • Chauvier, D.1    Renolleau, S.2    Holifanjaniaina, S.3
  • 137
    • 0035869339 scopus 로고    scopus 로고
    • Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis
    • Northington FJ, Ferriero DM, Flock DL, Martin LJ Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 2001, 21:1931-1938.
    • (2001) J Neurosci , vol.21 , pp. 1931-1938
    • Northington, F.J.1    Ferriero, D.M.2    Flock, D.L.3    Martin, L.J.4
  • 138
    • 33244482574 scopus 로고    scopus 로고
    • Bcl-2 phosphorylation in the BH4 domain precedes caspase-3 activation and cell death after neonatal cerebral hypoxic-ischemic injury
    • Hallin U, Kondo E, Ozaki Y, Hagberg H, Shibasaki F, Blomgren K Bcl-2 phosphorylation in the BH4 domain precedes caspase-3 activation and cell death after neonatal cerebral hypoxic-ischemic injury. Neurobiol Dis 2006, 21:478-486.
    • (2006) Neurobiol Dis , vol.21 , pp. 478-486
    • Hallin, U.1    Kondo, E.2    Ozaki, Y.3    Hagberg, H.4    Shibasaki, F.5    Blomgren, K.6
  • 140
    • 0035487808 scopus 로고    scopus 로고
    • The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis
    • Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001, 1:515-525.
    • (2001) Dev Cell , vol.1 , pp. 515-525
    • Frank, S.1    Gaume, B.2    Bergmann-Leitner, E.S.3
  • 141
    • 10644296253 scopus 로고    scopus 로고
    • Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis
    • Sugioka R, Shimizu S, Tsujimoto Y Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 2004, 279:52726-52734.
    • (2004) J Biol Chem , vol.279 , pp. 52726-52734
    • Sugioka, R.1    Shimizu, S.2    Tsujimoto, Y.3
  • 142
    • 56349126024 scopus 로고    scopus 로고
    • Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury
    • Carloni S, Buonocore G, Balduini W Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008, 32:329-339.
    • (2008) Neurobiol Dis , vol.32 , pp. 329-339
    • Carloni, S.1    Buonocore, G.2    Balduini, W.3
  • 143
    • 73849114180 scopus 로고    scopus 로고
    • Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms
    • Ginet V, Puyal J, Clarke PG, Truttmann AC Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 2009, 175:1962-1974.
    • (2009) Am J Pathol , vol.175 , pp. 1962-1974
    • Ginet, V.1    Puyal, J.2    Clarke, P.G.3    Truttmann, A.C.4
  • 144
    • 39549093998 scopus 로고    scopus 로고
    • Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury
    • Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008, 172:454-469.
    • (2008) Am J Pathol , vol.172 , pp. 454-469
    • Koike, M.1    Shibata, M.2    Tadakoshi, M.3
  • 145
    • 84155180848 scopus 로고    scopus 로고
    • P53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia
    • Hoshino A, Matoba S, Iwai-Kanai E, et al. p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol 2012, 52:175-184.
    • (2012) J Mol Cell Cardiol , vol.52 , pp. 175-184
    • Hoshino, A.1    Matoba, S.2    Iwai-Kanai, E.3
  • 146
    • 55749114205 scopus 로고    scopus 로고
    • Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury
    • Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008, 39:3057-3063.
    • (2008) Stroke , vol.39 , pp. 3057-3063
    • Yin, W.1    Signore, A.P.2    Iwai, M.3    Cao, G.4    Gao, Y.5    Chen, J.6
  • 147
    • 84856431622 scopus 로고    scopus 로고
    • The end of autophagic cell death?
    • Shen S, Kepp O, Kroemer G The end of autophagic cell death?. Autophagy 2012, 8:1-3.
    • (2012) Autophagy , vol.8 , pp. 1-3
    • Shen, S.1    Kepp, O.2    Kroemer, G.3
  • 148
    • 84866552686 scopus 로고    scopus 로고
    • ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage
    • Kessel DH, Price M, Reiners JJ ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy 2012, 8:1333-1341.
    • (2012) Autophagy , vol.8 , pp. 1333-1341
    • Kessel, D.H.1    Price, M.2    Reiners, J.J.3
  • 149
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3
  • 150
    • 0000639361 scopus 로고
    • The development of resistance by rats and guinea pigs to amount of trauma usually fatal
    • Noble R The development of resistance by rats and guinea pigs to amount of trauma usually fatal. Am J Physiol 1943, 138:346-356.
    • (1943) Am J Physiol , vol.138 , pp. 346-356
    • Noble, R.1
  • 151
    • 0025817319 scopus 로고
    • Dexamethasone prevents hypoxic-ischemic brain damage in the neonatal rat
    • Barks JD, Post M, Tuor UI Dexamethasone prevents hypoxic-ischemic brain damage in the neonatal rat. Pediatr Res 1991, 29:558-563.
    • (1991) Pediatr Res , vol.29 , pp. 558-563
    • Barks, J.D.1    Post, M.2    Tuor, U.I.3
  • 152
    • 0028221633 scopus 로고
    • Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat
    • Gidday JM, Fitzgibbons JC, Shah AR, Park TS Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 1994, 168:221-224.
    • (1994) Neurosci Lett , vol.168 , pp. 221-224
    • Gidday, J.M.1    Fitzgibbons, J.C.2    Shah, A.R.3    Park, T.S.4
  • 153
    • 12844266701 scopus 로고    scopus 로고
    • Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats
    • Gustavsson M, Anderson MF, Mallard C, Hagberg H Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res 2005, 57:305-309.
    • (2005) Pediatr Res , vol.57 , pp. 305-309
    • Gustavsson, M.1    Anderson, M.F.2    Mallard, C.3    Hagberg, H.4
  • 154
    • 16444369209 scopus 로고    scopus 로고
    • Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain
    • Eklind S, Mallard C, Arvidsson P, Hagberg H Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 2005, 58:112-116.
    • (2005) Pediatr Res , vol.58 , pp. 112-116
    • Eklind, S.1    Mallard, C.2    Arvidsson, P.3    Hagberg, H.4
  • 155
    • 79960286634 scopus 로고    scopus 로고
    • Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in toll-like receptor 4 expression in the rat developing brain
    • Hickey E, Shi H, Van Arsdell G, Askalan R Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in toll-like receptor 4 expression in the rat developing brain. Pediatr Res 2011, 70:10-14.
    • (2011) Pediatr Res , vol.70 , pp. 10-14
    • Hickey, E.1    Shi, H.2    Van Arsdell, G.3    Askalan, R.4
  • 156
    • 48849099462 scopus 로고    scopus 로고
    • Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning?
    • Dirnagl U, Meisel A Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning?. Neuropharmacology 2008, 55:334-344.
    • (2008) Neuropharmacology , vol.55 , pp. 334-344
    • Dirnagl, U.1    Meisel, A.2
  • 157
    • 79955962818 scopus 로고    scopus 로고
    • Mitochondrial preconditioning: a potential neuroprotective strategy
    • Correia SC, Carvalho C, Cardoso S, et al. Mitochondrial preconditioning: a potential neuroprotective strategy. Front Aging Neurosci 2010, 2.
    • (2010) Front Aging Neurosci , vol.2
    • Correia, S.C.1    Carvalho, C.2    Cardoso, S.3
  • 158
    • 40949126440 scopus 로고    scopus 로고
    • Mitochondrial complex III regulates hypoxic activation of HIF
    • Klimova T, Chandel NS Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 2008, 15:660-666.
    • (2008) Cell Death Differ , vol.15 , pp. 660-666
    • Klimova, T.1    Chandel, N.S.2
  • 159
    • 34548412578 scopus 로고    scopus 로고
    • Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer
    • Shiva S, Sack MN, Greer JJ, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 2007, 204:2089-2102.
    • (2007) J Exp Med , vol.204 , pp. 2089-2102
    • Shiva, S.1    Sack, M.N.2    Greer, J.J.3
  • 160
    • 0033389206 scopus 로고    scopus 로고
    • Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning
    • Gidday JM, Shah AR, Maceren RG, et al. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 1999, 19:331-340.
    • (1999) J Cereb Blood Flow Metab , vol.19 , pp. 331-340
    • Gidday, J.M.1    Shah, A.R.2    Maceren, R.G.3
  • 161
    • 34147109855 scopus 로고    scopus 로고
    • Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms?
    • Gustavsson M, Wilson MA, Mallard C, Rousset C, Johnston MV, Hagberg H Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms?. Pediatr Res 2007, 61:444-450.
    • (2007) Pediatr Res , vol.61 , pp. 444-450
    • Gustavsson, M.1    Wilson, M.A.2    Mallard, C.3    Rousset, C.4    Johnston, M.V.5    Hagberg, H.6
  • 162
    • 0037968275 scopus 로고    scopus 로고
    • Protein kinase Ce{open} interacts with and inhibits the permeability transition pore in cardiac mitochondria
    • Baines CP, Song CX, Zheng YT, et al. Protein kinase Ce{open} interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 2003, 92:873-880.
    • (2003) Circ Res , vol.92 , pp. 873-880
    • Baines, C.P.1    Song, C.X.2    Zheng, Y.T.3
  • 163
    • 33644855216 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1
    • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006, 21:749-760.
    • (2006) Mol Cell , vol.21 , pp. 749-760
    • Maurer, U.1    Charvet, C.2    Wagman, A.S.3    Dejardin, E.4    Green, D.R.5
  • 165
    • 0033839757 scopus 로고    scopus 로고
    • Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain
    • Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000, 48:285-296.
    • (2000) Ann Neurol , vol.48 , pp. 285-296
    • Bergeron, M.1    Gidday, J.M.2    Yu, A.Y.3    Semenza, G.L.4    Ferriero, D.M.5    Sharp, F.R.6
  • 166
    • 2642555563 scopus 로고    scopus 로고
    • HIF1 and oxygen sensing in the brain
    • Sharp FR, Bernaudin M HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004, 5:437-448.
    • (2004) Nat Rev Neurosci , vol.5 , pp. 437-448
    • Sharp, F.R.1    Bernaudin, M.2
  • 167
    • 68349101972 scopus 로고    scopus 로고
    • HIF-1 alpha-deficient mice have increased brain injury after neonatal hypoxia-ischemia
    • Sheldon RA, Osredkar D, Lee CL, Jiang X, Mu D, Ferriero DM HIF-1 alpha-deficient mice have increased brain injury after neonatal hypoxia-ischemia. Dev Neurosci 2009, 31:452-458.
    • (2009) Dev Neurosci , vol.31 , pp. 452-458
    • Sheldon, R.A.1    Osredkar, D.2    Lee, C.L.3    Jiang, X.4    Mu, D.5    Ferriero, D.M.6
  • 168
    • 36348935147 scopus 로고    scopus 로고
    • EPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus
    • Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA EPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 2007, 1184:345-353.
    • (2007) Brain Res , vol.1184 , pp. 345-353
    • Raval, A.P.1    Dave, K.R.2    DeFazio, R.A.3    Perez-Pinzon, M.A.4
  • 169
    • 74049131721 scopus 로고    scopus 로고
    • Potassium channels in brain mitochondria
    • Bednarczyk P Potassium channels in brain mitochondria. Acta Biochim Pol 2009, 56:385-392.
    • (2009) Acta Biochim Pol , vol.56 , pp. 385-392
    • Bednarczyk, P.1
  • 170
    • 0035823614 scopus 로고    scopus 로고
    • Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain
    • Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 2001, 276:33369-33374.
    • (2001) J Biol Chem , vol.276 , pp. 33369-33374
    • Bajgar, R.1    Seetharaman, S.2    Kowaltowski, A.J.3    Garlid, K.D.4    Paucek, P.5
  • 171
    • 0036209260 scopus 로고    scopus 로고
    • Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release
    • Liu D, Lu C, Wan R, Auyeung WW, Mattson MP Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 2002, 22:431-443.
    • (2002) J Cereb Blood Flow Metab , vol.22 , pp. 431-443
    • Liu, D.1    Lu, C.2    Wan, R.3    Auyeung, W.W.4    Mattson, M.P.5
  • 172
    • 0037178641 scopus 로고    scopus 로고
    • Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats
    • Rajapakse N, Shimizu K, Kis B, Snipes J, Lacza Z, Busija D Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats. Neurosci Lett 2002, 327:208-212.
    • (2002) Neurosci Lett , vol.327 , pp. 208-212
    • Rajapakse, N.1    Shimizu, K.2    Kis, B.3    Snipes, J.4    Lacza, Z.5    Busija, D.6
  • 173
    • 79951513548 scopus 로고    scopus 로고
    • The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia-ischemia-reperfusion in brain
    • Wang L, Zhu QL, Wang GZ, et al. The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia-ischemia-reperfusion in brain. Neurosci Lett 2011, 491:63-67.
    • (2011) Neurosci Lett , vol.491 , pp. 63-67
    • Wang, L.1    Zhu, Q.L.2    Wang, G.Z.3
  • 174
    • 0242468451 scopus 로고    scopus 로고
    • Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning
    • Diano S, Matthews RT, Patrylo P, et al. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 2003, 144:5014-5021.
    • (2003) Endocrinology , vol.144 , pp. 5014-5021
    • Diano, S.1    Matthews, R.T.2    Patrylo, P.3
  • 175
    • 33751215526 scopus 로고    scopus 로고
    • Mitochondrial adaptations within chronically ischemic swine myocardium
    • McFalls EO, Sluiter W, Schoonderwoerd K, et al. Mitochondrial adaptations within chronically ischemic swine myocardium. J Mol Cell Cardiol 2006, 41:980-988.
    • (2006) J Mol Cell Cardiol , vol.41 , pp. 980-988
    • McFalls, E.O.1    Sluiter, W.2    Schoonderwoerd, K.3
  • 176
    • 79954579966 scopus 로고    scopus 로고
    • Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection
    • Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal 2011, 14:1853-1861.
    • (2011) Antioxid Redox Signal , vol.14 , pp. 1853-1861
    • Lin, H.W.1    Thompson, J.W.2    Morris, K.C.3    Perez-Pinzon, M.A.4
  • 177
    • 79953274024 scopus 로고    scopus 로고
    • Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning
    • Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 2011, 31:1003-1019.
    • (2011) J Cereb Blood Flow Metab , vol.31 , pp. 1003-1019
    • Morris, K.C.1    Lin, H.W.2    Thompson, J.W.3    Perez-Pinzon, M.A.4
  • 179
    • 39849094082 scopus 로고    scopus 로고
    • Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism
    • Gutsaeva DR, Carraway MS, Suliman HB, et al. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 2008, 28:2015-2024.
    • (2008) J Neurosci , vol.28 , pp. 2015-2024
    • Gutsaeva, D.R.1    Carraway, M.S.2    Suliman, H.B.3
  • 181
    • 0034886143 scopus 로고    scopus 로고
    • Toll-like receptors: critical proteins linking innate and acquired immunity
    • Akira S, Takeda K, Kaisho T Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2:675-680.
    • (2001) Nat Immunol , vol.2 , pp. 675-680
    • Akira, S.1    Takeda, K.2    Kaisho, T.3
  • 183
    • 2942627626 scopus 로고    scopus 로고
    • Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses
    • Seong SY, Matzinger P Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004, 4:469-478.
    • (2004) Nat Rev Immunol , vol.4 , pp. 469-478
    • Seong, S.Y.1    Matzinger, P.2
  • 184
    • 79957579734 scopus 로고    scopus 로고
    • The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3
    • Tannahill GM, O'Neill LA The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett 2011, 585:1568-1572.
    • (2011) FEBS Lett , vol.585 , pp. 1568-1572
    • Tannahill, G.M.1    O'Neill, L.A.2
  • 185
    • 84857062121 scopus 로고    scopus 로고
    • Mitochondria: commanders of innate immunity and disease?
    • Cloonan SM, Choi AM Mitochondria: commanders of innate immunity and disease?. Curr Opin Immunol 2012, 24:32-40.
    • (2012) Curr Opin Immunol , vol.24 , pp. 32-40
    • Cloonan, S.M.1    Choi, A.M.2
  • 186
    • 79957597757 scopus 로고    scopus 로고
    • Mitochondria in innate immune responses
    • West AP, Shadel GS, Ghosh S Mitochondria in innate immune responses. Nat Rev Immunol 2011, 11:389-402.
    • (2011) Nat Rev Immunol , vol.11 , pp. 389-402
    • West, A.P.1    Shadel, G.S.2    Ghosh, S.3
  • 187
    • 79953068336 scopus 로고    scopus 로고
    • Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation
    • Krysko DV, Agostinis P, Krysko O, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011, 32:157-164.
    • (2011) Trends Immunol , vol.32 , pp. 157-164
    • Krysko, D.V.1    Agostinis, P.2    Krysko, O.3
  • 189
    • 80053590435 scopus 로고    scopus 로고
    • Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter
    • Belgnaoui SM, Paz S, Hiscott J Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011, 23:564-572.
    • (2011) Curr Opin Immunol , vol.23 , pp. 564-572
    • Belgnaoui, S.M.1    Paz, S.2    Hiscott, J.3
  • 190
    • 79551716551 scopus 로고    scopus 로고
    • Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling
    • Koshiba T, Yasukawa K, Yanagi Y, Kawabata S Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci Signal 2011, 4:ra7.
    • (2011) Sci Signal , vol.4
    • Koshiba, T.1    Yasukawa, K.2    Yanagi, Y.3    Kawabata, S.4
  • 191
    • 62449110463 scopus 로고    scopus 로고
    • Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
    • Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA 2009, 106:2770-2775.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 2770-2775
    • Tal, M.C.1    Sasai, M.2    Lee, H.K.3    Yordy, B.4    Shadel, G.S.5    Iwasaki, A.6
  • 192
    • 77950275298 scopus 로고    scopus 로고
    • Circulating mitochondrial DAMPs cause inflammatory responses to injury
    • Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464:104-107.
    • (2010) Nature , vol.464 , pp. 104-107
    • Zhang, Q.1    Raoof, M.2    Chen, Y.3
  • 194
    • 84860705893 scopus 로고    scopus 로고
    • Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
    • Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485:251-255.
    • (2012) Nature , vol.485 , pp. 251-255
    • Oka, T.1    Hikoso, S.2    Yamaguchi, O.3
  • 195
    • 79251543343 scopus 로고    scopus 로고
    • Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice
    • Akundi RS, Huang Z, Eason J, et al. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One 2011, 6:e16038.
    • (2011) PLoS One , vol.6
    • Akundi, R.S.1    Huang, Z.2    Eason, J.3
  • 196
    • 84876685141 scopus 로고    scopus 로고
    • Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection
    • Lupfer C, Thomas PG, Anand PK, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat Immunol 2013, 14:480-488.
    • (2013) Nat Immunol , vol.14 , pp. 480-488
    • Lupfer, C.1    Thomas, P.G.2    Anand, P.K.3
  • 197
    • 0035064940 scopus 로고    scopus 로고
    • Bacterial endotoxin sensitizes the immature brain to hypoxic--ischaemic injury
    • Eklind S, Mallard C, Leverin AL, et al. Bacterial endotoxin sensitizes the immature brain to hypoxic--ischaemic injury. Eur J Neurosci 2001, 13:1101-1106.
    • (2001) Eur J Neurosci , vol.13 , pp. 1101-1106
    • Eklind, S.1    Mallard, C.2    Leverin, A.L.3
  • 198
    • 0036548360 scopus 로고    scopus 로고
    • The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS
    • Lehnardt S, Lachance C, Patrizi S, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002, 22:2478-2486.
    • (2002) J Neurosci , vol.22 , pp. 2478-2486
    • Lehnardt, S.1    Lachance, C.2    Patrizi, S.3
  • 199
    • 79955847863 scopus 로고    scopus 로고
    • Systemic stimulation of TLR2 impairs neonatal mouse brain development
    • Du X, Fleiss B, Li H, et al. Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One 2011, 6:e19583.
    • (2011) PLoS One , vol.6
    • Du, X.1    Fleiss, B.2    Li, H.3
  • 200
    • 79955717512 scopus 로고    scopus 로고
    • Regulation of toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia
    • Stridh L, Smith PL, Naylor AS, Wang X, Mallard C Regulation of toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia. J Neuroinflammation 2011, 8:45.
    • (2011) J Neuroinflammation , vol.8 , pp. 45
    • Stridh, L.1    Smith, P.L.2    Naylor, A.S.3    Wang, X.4    Mallard, C.5
  • 201
    • 73349083077 scopus 로고    scopus 로고
    • Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner
    • Wang X, Stridh L, Li W, et al. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 2009, 183:7471-7477.
    • (2009) J Immunol , vol.183 , pp. 7471-7477
    • Wang, X.1    Stridh, L.2    Li, W.3
  • 202
    • 79952093029 scopus 로고    scopus 로고
    • TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult
    • Kendall GS, Hristova M, Horn S, et al. TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult. Lab Invest 2011, 91:328-341.
    • (2011) Lab Invest , vol.91 , pp. 328-341
    • Kendall, G.S.1    Hristova, M.2    Horn, S.3
  • 203
    • 70450201440 scopus 로고    scopus 로고
    • The role of Toll-like receptors in perinatal brain injury
    • v-vi.
    • Mallard C, Wang X, Hagberg H The role of Toll-like receptors in perinatal brain injury. Clin Perinatol 2009, 36:763-772. v-vi.
    • (2009) Clin Perinatol , vol.36 , pp. 763-772
    • Mallard, C.1    Wang, X.2    Hagberg, H.3
  • 204


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.