-
1
-
-
54149090275
-
-
World Health Organization, Geneva, World Health Organization
-
World Health Organization The global burden of disease: 2004 update 2008, World Health Organization, Geneva.
-
(2008)
The global burden of disease: 2004 update
-
-
-
2
-
-
79751531393
-
Heart disease and stroke statistics-2011 update: a report from the American heart association
-
Roger V.L., Go A.S., Lloyd-Jones D.M., Adams R.J., Berry J.D., Brown T.M., et al. Heart disease and stroke statistics-2011 update: a report from the American heart association. Circulation 2011, 123:e18-e209.
-
(2011)
Circulation
, vol.123
-
-
Roger, V.L.1
Go, A.S.2
Lloyd-Jones, D.M.3
Adams, R.J.4
Berry, J.D.5
Brown, T.M.6
-
3
-
-
0037167707
-
Viral gene transfer of the antiapoptotic factor bcl-2 protects against chronic postischemic heart failure
-
Chatterjee S., Stewart A.S., Bish L.T., Jayasankar V., Kim E.M., Pirolli T., et al. Viral gene transfer of the antiapoptotic factor bcl-2 protects against chronic postischemic heart failure. Circulation 2002, 106:I212-I217.
-
(2002)
Circulation
, vol.106
-
-
Chatterjee, S.1
Stewart, A.S.2
Bish, L.T.3
Jayasankar, V.4
Kim, E.M.5
Pirolli, T.6
-
4
-
-
15844407874
-
Cyclophilin d-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
-
Nakagawa T., Shimizu S., Watanabe T., Yamaguchi O., Otsu K., Yamagata H., et al. Cyclophilin d-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005, 434:652-658.
-
(2005)
Nature
, vol.434
, pp. 652-658
-
-
Nakagawa, T.1
Shimizu, S.2
Watanabe, T.3
Yamaguchi, O.4
Otsu, K.5
Yamagata, H.6
-
5
-
-
33947239659
-
The failing heart-an engine out of fuel
-
Neubauer S. The failing heart-an engine out of fuel. N Engl J Med 2007, 356:1140-1151.
-
(2007)
N Engl J Med
, vol.356
, pp. 1140-1151
-
-
Neubauer, S.1
-
6
-
-
35448960851
-
Functions and dysfunctions of mitochondrial dynamics
-
Detmer S.A., Chan D.C. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007, 8:870-879.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 870-879
-
-
Detmer, S.A.1
Chan, D.C.2
-
7
-
-
77951181836
-
Pink1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy
-
Matsuda N., Sato S., Shiba K., Okatsu K., Saisho K., Gautier C.A., et al. Pink1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy. J Cell Biol 2010, 189:211-221.
-
(2010)
J Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
-
9
-
-
33845511362
-
Response to myocardial ischemia/reperfusion injury involves bnip3 and autophagy
-
Hamacher-Brady A., Brady N.R., Logue S.E., Sayen M.R., Jinno M., Kirshenbaum L.A., et al. Response to myocardial ischemia/reperfusion injury involves bnip3 and autophagy. Cell Death Differ 2007, 14:146-157.
-
(2007)
Cell Death Differ
, vol.14
, pp. 146-157
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Logue, S.E.3
Sayen, M.R.4
Jinno, M.5
Kirshenbaum, L.A.6
-
10
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
Kume S., Uzu T., Horiike K., Chin-Kanasaki M., Isshiki K., Araki S., et al. Calorie restriction enhances cell adaptation to hypoxia through sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010, 120:1043-1055.
-
(2010)
J Clin Invest
, vol.120
, pp. 1043-1055
-
-
Kume, S.1
Uzu, T.2
Horiike, K.3
Chin-Kanasaki, M.4
Isshiki, K.5
Araki, S.6
-
11
-
-
67549101188
-
Role of bnip3 and nix in cell death, autophagy, and mitophagy
-
Zhang J., Ney P.A. Role of bnip3 and nix in cell death, autophagy, and mitophagy. Cell Death Differ 2009, 16:939-946.
-
(2009)
Cell Death Differ
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
12
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H., Bosch-Marce M., Shimoda L.A., Tan Y.S., Baek J.H., Wesley J.B., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008, 283:10892-10903.
-
(2008)
J Biol Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
-
13
-
-
77952236126
-
Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury
-
Ong S.B., Subrayan S., Lim S.Y., Yellon D.M., Davidson S.M., Hausenloy D.J. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010, 121:2012-2022.
-
(2010)
Circulation
, vol.121
, pp. 2012-2022
-
-
Ong, S.B.1
Subrayan, S.2
Lim, S.Y.3
Yellon, D.M.4
Davidson, S.M.5
Hausenloy, D.J.6
-
14
-
-
78049393407
-
Mitochondrial protein quality control systems in aging and disease
-
Luce K., Weil A.C., Osiewacz H.D. Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol 2010, 694:108-125.
-
(2010)
Adv Exp Med Biol
, vol.694
, pp. 108-125
-
-
Luce, K.1
Weil, A.C.2
Osiewacz, H.D.3
-
16
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
Matoba S., Kang J.G., Patino W.D., Wragg A., Boehm M., Gavrilova O., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.G.2
Patino, W.D.3
Wragg, A.4
Boehm, M.5
Gavrilova, O.6
-
17
-
-
78649753882
-
P53 and tigar regulate cardiac myocyte energy homeostasis under hypoxic stress
-
Kimata M., Matoba S., Iwai-Kanai E., Nakamura H., Hoshino A., Nakaoka M., et al. p53 and tigar regulate cardiac myocyte energy homeostasis under hypoxic stress. Am J Physiol Heart Circ Physiol 2010, 299:H1908-H1916.
-
(2010)
Am J Physiol Heart Circ Physiol
, vol.299
-
-
Kimata, M.1
Matoba, S.2
Iwai-Kanai, E.3
Nakamura, H.4
Hoshino, A.5
Nakaoka, M.6
-
18
-
-
77953809546
-
Promotion of chip-mediated p53 degradation protects the heart from ischemic injury
-
Naito A.T., Okada S., Minamino T., Iwanaga K., Liu M.L., Sumida T., et al. Promotion of chip-mediated p53 degradation protects the heart from ischemic injury. Circ Res 2010, 106:1692-1702.
-
(2010)
Circ Res
, vol.106
, pp. 1692-1702
-
-
Naito, A.T.1
Okada, S.2
Minamino, T.3
Iwanaga, K.4
Liu, M.L.5
Sumida, T.6
-
20
-
-
77951243028
-
Autophagy regulation by p53
-
Maiuri M.C., Galluzzi L., Morselli E., Kepp O., Malik S.A., Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol 2010, 22:181-185.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 181-185
-
-
Maiuri, M.C.1
Galluzzi, L.2
Morselli, E.3
Kepp, O.4
Malik, S.A.5
Kroemer, G.6
-
21
-
-
41449085132
-
A method to measure cardiac autophagic flux in vivo
-
Iwai-Kanai E., Yuan H., Huang C., Sayen M.R., Perry-Garza C.N., Kim L., et al. A method to measure cardiac autophagic flux in vivo. Autophagy 2008, 4:322-329.
-
(2008)
Autophagy
, vol.4
, pp. 322-329
-
-
Iwai-Kanai, E.1
Yuan, H.2
Huang, C.3
Sayen, M.R.4
Perry-Garza, C.N.5
Kim, L.6
-
22
-
-
59849110194
-
Autophagy in ischemic heart disease
-
Gustafsson A.B., Gottlieb R.A. Autophagy in ischemic heart disease. Circ Res 2009, 104:150-158.
-
(2009)
Circ Res
, vol.104
, pp. 150-158
-
-
Gustafsson, A.B.1
Gottlieb, R.A.2
-
23
-
-
60249085506
-
Quantification of mitochondrial DNA (mtdna) damage and error rates by real-time qpcr
-
Edwards J.G. Quantification of mitochondrial DNA (mtdna) damage and error rates by real-time qpcr. Mitochondrion 2009, 9:31-35.
-
(2009)
Mitochondrion
, vol.9
, pp. 31-35
-
-
Edwards, J.G.1
-
24
-
-
0031918742
-
The mitochondrial death/life regulator in apoptosis and necrosis
-
Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998, 60:619-642.
-
(1998)
Annu Rev Physiol
, vol.60
, pp. 619-642
-
-
Kroemer, G.1
Dallaporta, B.2
Resche-Rigon, M.3
-
25
-
-
0033572746
-
Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2
-
Dumaz N., Meek D.W. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 1999, 15(18):7002-7010.
-
(1999)
EMBO J
, vol.15
, Issue.18
, pp. 7002-7010
-
-
Dumaz, N.1
Meek, D.W.2
-
26
-
-
57049172037
-
Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion
-
Kubli D.A., Quinsay M.N., Huang C., Lee Y., Gustafsson A.B. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2008, 295:H2025-H2031.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.295
-
-
Kubli, D.A.1
Quinsay, M.N.2
Huang, C.3
Lee, Y.4
Gustafsson, A.B.5
-
27
-
-
70350575440
-
Modulation of intracellular ros levels by tigar controls autophagy
-
Bensaad K., Cheung E.C., Vousden K.H. Modulation of intracellular ros levels by tigar controls autophagy. EMBO J 2009, 28:3015-3026.
-
(2009)
EMBO J
, vol.28
, pp. 3015-3026
-
-
Bensaad, K.1
Cheung, E.C.2
Vousden, K.H.3
-
28
-
-
85047694494
-
A mechanistic role for cardiac myocyte apoptosis in heart failure
-
Wencker D., Chandra M., Nguyen K., Miao W., Garantziotis S., Factor S.M., et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003, 111:1497-1504.
-
(2003)
J Clin Invest
, vol.111
, pp. 1497-1504
-
-
Wencker, D.1
Chandra, M.2
Nguyen, K.3
Miao, W.4
Garantziotis, S.5
Factor, S.M.6
-
29
-
-
77957221783
-
Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury
-
Sala-Mercado J.A., Wider J., Undyala V.V., Jahania S., Yoo W., Mentzer R.M., et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010, 122:S179-S184.
-
(2010)
Circulation
, vol.122
-
-
Sala-Mercado, J.A.1
Wider, J.2
Undyala, V.V.3
Jahania, S.4
Yoo, W.5
Mentzer, R.M.6
-
30
-
-
77951915586
-
Autophagy during cardiac stress: joys and frustrations of autophagy
-
Gottlieb R.A., Mentzer R.M. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol 2010, 72:45-59.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 45-59
-
-
Gottlieb, R.A.1
Mentzer, R.M.2
-
31
-
-
77950900273
-
Regulation of hypoxia-inducible genes by PGC-1α
-
Shoag J., Arany Z. Regulation of hypoxia-inducible genes by PGC-1α. Arterioscler Thromb Vasc Biol 2010, 30:662-666.
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 662-666
-
-
Shoag, J.1
Arany, Z.2
-
32
-
-
55749114205
-
Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury
-
Yin W., Signore A.P., Iwai M., Cao G., Gao Y., Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008, 39:3057-3063.
-
(2008)
Stroke
, vol.39
, pp. 3057-3063
-
-
Yin, W.1
Signore, A.P.2
Iwai, M.3
Cao, G.4
Gao, Y.5
Chen, J.6
-
33
-
-
77951839683
-
Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice
-
Ahuja P., Zhao P., Angelis E., Ruan H., Korge P., Olson A., et al. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest 2010, 120:1494-1505.
-
(2010)
J Clin Invest
, vol.120
, pp. 1494-1505
-
-
Ahuja, P.1
Zhao, P.2
Angelis, E.3
Ruan, H.4
Korge, P.5
Olson, A.6
-
34
-
-
0034798348
-
Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion
-
Chen H., Hu C.J., He Y.Y., Yang D.I., Xu J., Hsu C.Y. Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion. Stroke 2001, 32:2382-2387.
-
(2001)
Stroke
, vol.32
, pp. 2382-2387
-
-
Chen, H.1
Hu, C.J.2
He, Y.Y.3
Yang, D.I.4
Xu, J.5
Hsu, C.Y.6
-
35
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K., Tsuruta A., Selak M.A., Vidal M.N., Nakano K., Bartrons R., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126:107-120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
-
36
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ros production and cellular oxygen sensing
-
Guzy R.D., Hoyos B., Robin E., Chen H., Liu L., Mansfield K.D., et al. Mitochondrial complex III is required for hypoxia-induced ros production and cellular oxygen sensing. Cell Metab 2005, 1:401-408.
-
(2005)
Cell Metab
, vol.1
, pp. 401-408
-
-
Guzy, R.D.1
Hoyos, B.2
Robin, E.3
Chen, H.4
Liu, L.5
Mansfield, K.D.6
-
37
-
-
0034682786
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing
-
Chandel N.S., McClintock D.S., Feliciano C.E., Wood T.M., Melendez J.A., Rodriguez A.M., et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000, 275:25130-25138.
-
(2000)
J Biol Chem
, vol.275
, pp. 25130-25138
-
-
Chandel, N.S.1
McClintock, D.S.2
Feliciano, C.E.3
Wood, T.M.4
Melendez, J.A.5
Rodriguez, A.M.6
-
38
-
-
34948816749
-
Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice
-
Diwan A., Krenz M., Syed F.M., Wansapura J., Ren X., Koesters A.G., et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007, 117:2825-2833.
-
(2007)
J Clin Invest
, vol.117
, pp. 2825-2833
-
-
Diwan, A.1
Krenz, M.2
Syed, F.M.3
Wansapura, J.4
Ren, X.5
Koesters, A.G.6
-
39
-
-
1042299088
-
Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction
-
Chandrashekhar Y., Sen S., Anway R., Shuros A., Anand I. Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 2004, 43:295-301.
-
(2004)
J Am Coll Cardiol
, vol.43
, pp. 295-301
-
-
Chandrashekhar, Y.1
Sen, S.2
Anway, R.3
Shuros, A.4
Anand, I.5
|