메뉴 건너뛰기




Volumn 46, Issue 1, 2013, Pages

Keeping the vehicle on the road - A survey on on-road lane detection systems

Author keywords

Computer vision; Intelligent vehicles; Lane detection; Road detecetion; Road following

Indexed keywords

ADVANCED DRIVER ASSISTANCE SYSTEMS; AUTOMOBILE DRIVERS; COMPUTER VISION; OBSTACLE DETECTORS; OPTICAL RADAR; ROADS AND STREETS; SURVEYS; WIRELESS SENSOR NETWORKS;

EID: 84887689884     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2522968.2522970     Document Type: Review
Times cited : (118)

References (186)
  • 1
    • 84872519234 scopus 로고    scopus 로고
    • Estimation of lane state from car-mounted camera using multiple-model particle filter based on voting result for one-dimensional parameter space
    • ADACHI, E., INAYOSHI, H., AND KURITA, T. 2007. Estimation of lane state from car-mounted camera using multiple-model particle filter based on voting result for one-dimensional parameter space. In Proceedings of the IAPR Conference on Machine Vision Applications (MVA07). 323-326.
    • (2007) Proceedings of the IAPR Conference on Machine Vision Applications (MVA07) , pp. 323-326
    • Adachi, E.1    Inayoshi, H.2    Kurita, T.3
  • 3
    • 78650435437 scopus 로고    scopus 로고
    • An implementation of active contour and kalman filter for road tracking
    • ASIF, M., ARSHAD, M. R., ZIA, M. Y. I., AND YAHYA, A. 2007. An implementation of active contour and kalman filter for road tracking. Int. J. Appl. Math. 37, 2, 71-77.
    • (2007) Int. J. Appl. Math , vol.37 , Issue.2 , pp. 71-77
    • Asif, M.1    Arshad, M.R.2    Zia, M.Y.I.3    Yahya, A.4
  • 5
    • 0035506897 scopus 로고    scopus 로고
    • Amodel driven approach for real-time road recognition
    • AUFR̀ERE, R.,CHAPUIS, R., AND CHAUSSE, F. 2001. Amodel driven approach for real-time road recognition. Mach. Vis. Appl. 13, 2, 95-107.
    • (2001) Mach. Vis. Appl , vol.13 , Issue.2 , pp. 95-107
    • Aufr̀ere, R.1    Chapuis, R.2    Chausse, F.3
  • 10
    • 0031700576 scopus 로고    scopus 로고
    • GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection
    • BERTOZZI, M. AND BROGGI, A. 1998. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 1, 62-81.
    • (1998) IEEE Trans. Image Process , vol.7 , Issue.1 , pp. 62-81
    • Bertozzi, M.1    Broggi, A.2
  • 15
    • 0029255266 scopus 로고
    • Parallel and local feature extraction: A real-time approach to road boundary detection
    • BROGGI, A. 1995a. Parallel and local feature extraction: A real-time approach to road boundary detection. IEEE Trans. Image Process. 4, 2, 217-223.
    • (1995) IEEE Trans. Image Process , vol.4 , Issue.2 , pp. 217-223
    • Broggi, A.1
  • 16
    • 0029515597 scopus 로고
    • A massively parallel approach to real-time vision-based road markings detection
    • BROGGI, A. 1995b. A massively parallel approach to real-time vision-based road markings detection. In Proceedings of the Intelligent Vehicles Symposium. 84-89.
    • (1995) Proceedings of the Intelligent Vehicles Symposium , pp. 84-89
    • Broggi, A.1
  • 25
    • 85206060901 scopus 로고    scopus 로고
    • Report of the International Council of Ophthalmology at the 30th World Ophthalmology Congress
    • COLENBRENDER, A. AND DE LAEY, J.-J. 2006. Vision requirements for driving safety. Report of the International Council of Ophthalmology at the 30th World Ophthalmology Congress.
    • (2006) Vision Requirements for Driving Safety
    • Colenbrender, A.1    De Laey, J.-J.2
  • 28
    • 0027540993 scopus 로고
    • SCARF, A Color vision system that tracks road and intersections
    • CRISMAN, J. D. AND THORPE, C. E. 1993. SCARF, A Color vision system that tracks road and intersections. IEEE Trans. Robotics Autom. 9, 1, 49-58.
    • (1993) IEEE Trans. Robotics Autom , vol.9 , Issue.1 , pp. 49-58
    • Crisman, J.D.1    Thorpe, C.E.2
  • 33
    • 67650248714 scopus 로고    scopus 로고
    • Probabilistic lane tracking in difficult road scenarios using stereovision
    • DANESCU, R. AND NEDEVSCHI, S. 2009. Probabilistic lane tracking in difficult road scenarios using stereovision. IEEE Trans. Intell. Transport. Syst. 10, 2, 272-282.
    • (2009) IEEE Trans. Intell. Transport. Syst , vol.10 , Issue.2 , pp. 272-282
    • Danescu, R.1    Nedevschi, S.2
  • 37
    • 0037844860 scopus 로고    scopus 로고
    • Automatic change detection of driving environments in a vision based driver assistance systems
    • FANG, C.-Y., CHEN, S.-W., AND FUH, C.-S. 2003. Automatic change detection of driving environments in a vision based driver assistance systems. IEEE Trans. Neural Netw. 14, 3, 646-657.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.3 , pp. 646-657
    • Fang, C.-Y.1    Chen, S.-W.2    Fuh, C.-S.3
  • 52
    • 10644269536 scopus 로고    scopus 로고
    • Color based road detection in urban traffic scenes
    • HE, Y.,WANG, H., AND ZHANG, B. 2004. Color based road detection in urban traffic scenes. IEEE Trans. Intell. Transport. Syst. 5, 4, 309-318.
    • (2004) IEEE Trans. Intell. Transport. Syst , vol.5 , Issue.4 , pp. 309-318
    • He, Y.1    Wang, H.2    Zhang, B.3
  • 60
    • 0030407062 scopus 로고    scopus 로고
    • A textural analysis by mathematical morphology transformations: Structural opening and top-hat
    • HUET, F. AND MATTIOLI, J. 1996. A textural analysis by mathematical morphology transformations: Structural opening and top-hat. In Proceedings of the International Conference on Image Processing. Vol. 3, 49-52.
    • (1996) Proceedings of the International Conference on Image Processing , vol.3 , pp. 49-52
    • Huet, F.1    Mattioli, J.2
  • 66
    • 17144386187 scopus 로고    scopus 로고
    • Efficient and robust classification method using combined feature vector for lane detection
    • JEONG, P. AND NEDEVSCHI, S. 2005. Efficient and robust classification method using combined feature vector for lane detection. IEEE Trans. Circ. Syst. Video Technol. 15, 4, 528-537.
    • (2005) IEEE Trans. Circ. Syst. Video Technol , vol.15 , Issue.4 , pp. 528-537
    • Jeong, P.1    Nedevschi, S.2
  • 69
    • 85206028825 scopus 로고    scopus 로고
    • Low-level image processing for lane detection and tracking
    • JIANG, R., KLETTE, R., WANG, S., AND VAUDREY, T. 2009. Low-level image processing for lane detection and tracking. Multimedia Imaging Rep. 30, 42.
    • (2009) Multimedia Imaging Rep , vol.30 , pp. 42
    • Jiang, R.1    Klette, R.2    Wang, S.3    Vaudrey, T.4
  • 76
    • 40349085794 scopus 로고    scopus 로고
    • Robust lane detection and tracking in challenging scenarios
    • KIM, Z. 2008. Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transport. Syst. 9, 1, 16-26.
    • (2008) IEEE Trans. Intell. Transport. Syst , vol.9 , Issue.1 , pp. 16-26
    • Kim, Z.1
  • 77
    • 0028699069 scopus 로고
    • Extracting road curvature and orientation from image edge points without perceptual grouping into features
    • KLUGE, K. 1994. Extracting road curvature and orientation from image edge points without perceptual grouping into features. In Proceedings of the Intelligent Vehicles Symposium. 109-114.
    • (1994) Proceedings of the Intelligent Vehicles Symposium , pp. 109-114
    • Kluge, K.1
  • 81
    • 0032659113 scopus 로고    scopus 로고
    • LANA: A lane extraction algorithm that uses frequency domain features
    • KREUCHER, C. AND LAKSHMANAN, S. 1999. LANA: A lane extraction algorithm that uses frequency domain features. IEEE Trans. Robotics Autom. 15, 2, 343-350.
    • (1999) IEEE Trans. Robotics Autom , vol.15 , Issue.2 , pp. 343-350
    • Kreucher, C.1    Lakshmanan, S.2
  • 87
    • 0042530134 scopus 로고    scopus 로고
    • A machine vision system for lane-departure detection
    • LEE, W. 2002. A machine vision system for lane-departure detection. Comput. Vis. Image Understand. 86, 1, 52-78.
    • (2002) Comput. Vis. Image Understand , vol.86 , Issue.1 , pp. 52-78
    • Lee, W.1
  • 111
    • 33644981417 scopus 로고    scopus 로고
    • Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation
    • MCCALL, J. C. AND TRIVEDI, M. M. 2006. Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation. IEEE Trans. Intell. Transport. Syst. 7, 1, 20-37.
    • (2006) IEEE Trans. Intell. Transport. Syst , vol.7 , Issue.1 , pp. 20-37
    • McCall, J.C.1    Trivedi, M.M.2
  • 114
    • 12744253681 scopus 로고    scopus 로고
    • Hough-based robust lane boundary detection for the omnidirectional camera
    • MORI, R., KOBAYASHI, K., AND WATANABE, K. 2004. Hough-based robust lane boundary detection for the omnidirectional camera. In Proceedings of the SICE Annual Conference. Vol. 3, 2113-2117.
    • (2004) Proceedings of the SICE Annual Conference , vol.3 , pp. 2113-2117
    • Mori, R.1    Kobayashi, K.2    Watanabe, K.3
  • 115
  • 119
    • 46149090124 scopus 로고    scopus 로고
    • A simple and efficient road detection algorithm for real time autonomous navigation based on monocular vision
    • NETO, A. M. AND RITTNER, L. 2006. A simple and efficient road detection algorithm for real time autonomous navigation based on monocular vision. In Proceedings of the IEEE 3rd Latin American Robotics Symposium (LARS06). 92-99.
    • (2006) Proceedings of the IEEE 3rd Latin American Robotics Symposium (LARS06) , pp. 92-99
    • Neto, A.M.1    Rittner, L.2
  • 139
    • 78650324986 scopus 로고    scopus 로고
    • Road boundary detection by a remote vehicle using radon transform for path map generation of an unknown area
    • SHIHAVUDDIN, A. S. M., AHMED, K., MUNIR, S., AND AHMED, K. R. 2008. Road boundary detection by a remote vehicle using radon transform for path map generation of an unknown area. Int. J. Comput. Sci. Netw. Secur. 8, 8, 64-69.
    • (2008) Int. J. Comput. Sci. Netw. Secur , vol.8 , Issue.8 , pp. 64-69
    • Shihavuddin, A.S.M.1    Ahmed, K.2    Munir, S.3    Ahmed, K.R.4
  • 140
    • 0346110813 scopus 로고    scopus 로고
    • An algorithm for distinguishing the types of objects on the road using laser radar and vision
    • SHIMOMURA, N., FUJIMOTO, K.,OKI, T., AND MURO, H. 2002. An algorithm for distinguishing the types of objects on the road using laser radar and vision. IEEE Trans. Intell. Transport. Syst. 3, 3, 189-195.
    • (2002) IEEE Trans. Intell. Transport. Syst , vol.3 , Issue.3 , pp. 189-195
    • Shimomura, N.1    Fujimoto, K.2    Oki, T.3    Muro, H.4
  • 144
    • 70349443094 scopus 로고    scopus 로고
    • Exploiting inherent parallelisms for accelerating linear hough transform
    • SUCHITRA, S. S., SATZODA, R. K., AND SRIKANTHAN, T. 2009. Exploiting inherent parallelisms for accelerating linear hough transform. IEEE Trans. Image Process. 18, 10, 2255-2264.
    • (2009) IEEE Trans. Image Process , vol.18 , Issue.10 , pp. 2255-2264
    • Suchitra, S.S.1    Satzoda, R.K.2    Srikanthan, T.3
  • 157
    • 0346528829 scopus 로고    scopus 로고
    • Estimation of road configuration and vehicle attitude by lane detection for a lane-keeping system
    • TSUJI, M. 2001. Estimation of road configuration and vehicle attitude by lane detection for a lane-keeping system. In Proceedings of the SAE World Congress. 45-51.
    • (2001) Proceedings of the SAE World Congress , pp. 45-51
    • Tsuji, M.1
  • 162
    • 0442327391 scopus 로고    scopus 로고
    • Lane detection and tracking using b-snake
    • WANG, Y., TEOH, E. K., AND SHEN, D. 2004. Lane detection and tracking using b-snake. Image Vis. Comput. 22, 4, 269-280.
    • (2004) Image Vis. Comput , vol.22 , Issue.4 , pp. 269-280
    • Wang, Y.1    Teoh, E.K.2    Shen, D.3
  • 165
    • 57149136442 scopus 로고    scopus 로고
    • Robust road modeling and tracking using condensation
    • WANG, Y., BAI, L., AND FAIRHURST, M. 2008a. Robust road modeling and tracking using condensation. IEEE Trans. Intell. Transport. Syst. 9, 4, 570-579.
    • (2008) IEEE Trans. Intell. Transport. Syst , vol.9 , Issue.4 , pp. 570-579
    • Wang, Y.1    Bai, L.2    Fairhurst, M.3
  • 172
    • 66149092024 scopus 로고    scopus 로고
    • Dynamic calibration and occlusion handling algorithms for lane tracking
    • WU, B., LIN, C., AND CHEN, Y. 2009. Dynamic calibration and occlusion handling algorithms for lane tracking. IEEE Trans. Industr. Electron. 56, 5, 1757-1773.
    • (2009) IEEE Trans. Industr. Electron , vol.56 , Issue.5 , pp. 1757-1773
    • Wu, B.1    Lin, C.2    Chen, Y.3
  • 175
    • 1342268972 scopus 로고    scopus 로고
    • Three-feature based automatic lane detection algorithm (tfalda) for autonomous driving
    • YIM, Y. U. AND OH, S.-Y. 2003. Three-feature based automatic lane detection algorithm (tfalda) for autonomous driving. IEEE Trans. Intell. Transpot. Syst. 4, 4, 219-225.
    • (2003) IEEE Trans. Intell. Transpot. Syst , vol.4 , Issue.4 , pp. 219-225
    • Yim, Y.U.1    Oh, S.-Y.2
  • 184
    • 33645242655 scopus 로고    scopus 로고
    • A robust lane detection and tracking method based on computer vision
    • ZHOU, Y., XU, R., HU, X., AND YE, Q. 2006. A robust lane detection and tracking method based on computer vision. Measur. Sci. Technol. 17, 4, 736-745.
    • (2006) Measur. Sci. Technol , vol.17 , Issue.4 , pp. 736-745
    • Zhou, Y.1    Xu, R.2    Hu, X.3    Ye, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.