-
1
-
-
33847073796
-
Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training
-
O. Dor and Y. Zhou. Achieving 80% ten - fold cross - validated accuracy for secondary structure prediction by large - scale training. Proteins, 66: 838 - 845, 2007.
-
(2007)
Proteins
, vol.66
, pp. 838-845
-
-
Dor, O.1
Zhou, Y.2
-
2
-
-
34249914807
-
Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties
-
O. Dor and Y. Zhou. Real - SPINE: An integrated system of neural networks for real - value prediction of protein structural properties. Proteins, 68: 76 - 81, 2007.
-
(2007)
Proteins
, vol.68
, pp. 76-81
-
-
Dor, O.1
Zhou, Y.2
-
3
-
-
44949201613
-
Real-value prediction of backbone torsion angles
-
B. Xue, O. Dor, E. Faraggi, and Y. Zhou. Real - value prediction of backbone torsion angles. Proteins, 72: 427 - 433, 2008.
-
(2008)
Proteins
, vol.72
, pp. 427-433
-
-
Xue, B.1
Dor, O.2
Faraggi, E.3
Zhou, Y.4
-
4
-
-
77956536708
-
Improving the accuracy of predicting real-value backbone torsion angles and residue solvent accessibility by guided learning through two-layer neural networks
-
E. Faraggi, B. Xue, and Y. Zhou. Improving the accuracy of predicting real - value backbone torsion angles and residue solvent accessibility by guided learning through two - layer neural networks. Proteins, 74: 857 - 871, 2009.
-
(2009)
Proteins
, vol.74
, pp. 857-871
-
-
Faraggi, E.1
Xue, B.2
Zhou, Y.3
-
5
-
-
33745101459
-
DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent accessibility, and recursive neural networks
-
J. Cheng, M.J. Sweredoski, and P. Baldi. DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent accessibility, and recursive neural networks. Data Mining and Knowledge Discovery, 13: 1 - 10, 2006.
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, pp. 1-10
-
-
Cheng, J.1
Sweredoski, M.J.2
Baldi, P.3
-
6
-
-
32144434539
-
SSEP-Domain: Protein domain prediction by alignment of secondary structure elements and profiles
-
J. E. Gewehr and R. Zimmer. SSEP - Domain: Protein domain prediction by alignment of secondary structure elements and profiles. Bioinformatics, 22: 181 - 187, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 181-187
-
-
Gewehr, J.E.1
Zimmer, R.2
-
7
-
-
36749014942
-
Assessment of predictions submitted for the casp7 domain prediction category
-
M. Tress, J. Cheng, P. Baldi, K. Joo, J. Lee, J. - H. Seo, J. Lee, D. Baker, D. Chivian, D. Kim, and I. Ezkurdia. Assessment of predictions submitted for the casp7 domain prediction category. Proteins, 69 (8): 137 - 151, 2007.
-
(2007)
Proteins
, vol.69
, Issue.8
, pp. 137-151
-
-
Tress, M.1
Cheng, J.2
Baldi, P.3
Joo, K.4
Lee, J.5
Seo, J.-H.6
Lee, J.7
Baker, D.8
Chivian, D.9
Kim, D.10
Ezkurdia, I.11
-
8
-
-
24344503079
-
Protein fl exibility and rigidity predicted from sequence
-
A. Schlessinger and B. Rost. Protein fl exibility and rigidity predicted from sequence. Proteins, 61: 115 - 126, 2005.
-
(2005)
Proteins
, vol.61
, pp. 115-126
-
-
Schlessinger, A.1
Rost, B.2
-
9
-
-
13944277320
-
Prediction of protein B-factor profiles
-
Z. Yuan, T. L. Bailey, and R. D. Teasdale. Prediction of protein B - factor profiles. Proteins, 58: 905 - 912, 2005.
-
(2005)
Proteins
, vol.58
, pp. 905-912
-
-
Yuan, Z.1
Bailey, T.L.2
Teasdale, R.D.3
-
10
-
-
0032877492
-
Predicting conformational switches in proteins
-
M. Young, K. Kirshenbaum, K.A. Dill, and S. Highsmith. Predicting conformational switches in proteins. Protein Science, 8: 1752 - 1764, 1999.
-
(1999)
Protein Science
, vol.8
, pp. 1752-1764
-
-
Young, M.1
Kirshenbaum, K.2
Dill, K.A.3
Highsmith, S.4
-
11
-
-
0034584899
-
Proteins that convert from alpha helix to beta sheet: Implications for folding and disease
-
M. Gross. Proteins that convert from alpha helix to beta sheet: Implications for folding and disease. Current Protein & Peptide Science, 1: 339 - 347, 2000.
-
(2000)
Current Protein & Peptide Science
, vol.1
, pp. 339-347
-
-
Gross, M.1
-
12
-
-
44949083561
-
Ordered conformational change in the protein backbone: Prediction of conformationally variable positions from sequence and low -resolution structural data
-
I. B. Kuznetsov. Ordered conformational change in the protein backbone: Prediction of conformationally variable positions from sequence and low -resolution structural data. Proteins, 72: 74 - 87, 2008.
-
(2008)
Proteins
, vol.72
, pp. 74-87
-
-
Kuznetsov, I.B.1
-
13
-
-
33748258328
-
A practical overview of protein disorder prediction methods
-
F. Ferron, S. Longhi, B. Canard, and D. Karlin. A practical overview of protein disorder prediction methods. Proteins, 65: 1 - 14, 2006.
-
(2006)
Proteins
, vol.65
, pp. 1-14
-
-
Ferron, F.1
Longhi, S.2
Canard, B.3
Karlin, D.4
-
14
-
-
34247595555
-
Prediction of protein disorder at the domain level
-
Z. Dosztanyi, M. Sandor, P. Tompa, and I. Simon. Prediction of protein disorder at the domain level. Current Protein & Peptide Science, 8: 161 - 171, 2007.
-
(2007)
Current Protein & Peptide Science
, vol.8
, pp. 161-171
-
-
Dosztanyi, Z.1
Sandor, M.2
Tompa, P.3
Simon, I.4
-
15
-
-
34247640113
-
Predicting protein disorder and induced folding: From theoretical principles to practical applications
-
J. M. Bourhis, B. Canard, and S. Longhi. Predicting protein disorder and induced folding: From theoretical principles to practical applications. Current Protein & Peptide Science, 8: 135 - 149, 2007.
-
(2007)
Current Protein & Peptide Science
, vol.8
, pp. 135-149
-
-
Bourhis, J.M.1
Canard, B.2
Longhi, S.3
-
16
-
-
33847795359
-
Intrinsic disorder and functional proteomics
-
P. Radivojac, L.M. Iakoucheva, C.J. Oldfield, Z. Obradovic, V.N. Uversky, and A. K. Dunker. Intrinsic disorder and functional proteomics. Biophysical Journal, 92: 1439 - 1456, 2007.
-
(2007)
Biophysical Journal
, vol.92
, pp. 1439-1456
-
-
Radivojac, P.1
Iakoucheva, L.M.2
Oldfield, C.J.3
Obradovic, Z.4
Uversky, V.N.5
Dunker, A.K.6
-
17
-
-
67650680261
-
A kernel framework for protein residue annotation
-
T. Theeramunkong, B. Kijsirikul, N. Cercone, and T.-B. Ho (Eds.), Bangkok, Thailand, April 27-30, 2009, Proceedings; Lecture Notes in Computer Science. Springer
-
H. Rangwala, C. Kauffman, and G. Karypis. A kernel framework for protein residue annotation. In T. Theeramunkong, B. Kijsirikul, N. Cercone, and T. - B. Ho (Eds.), Advances in Knowledge Discovery and Data Mining, 13th Pacific - Asia Conference, PAKDD 2009. Bangkok, Thailand, April 27 - 30, 2009, Proceedings; Lecture Notes in Computer Science, vol. 5476, pp. 439 - 451. Springer, 2009.
-
(2009)
Advances in Knowledge Discovery and Data Mining, 13th Pacific-Asia Conference, PAKDD 2009
, vol.5476
, pp. 439-451
-
-
Rangwala, H.1
Kauffman, C.2
Karypis, G.3
-
18
-
-
10344224512
-
Relationship between local structural entropy and protein thermostabilty
-
C. - H. Chan, H. - K. Liang, N. - W. Hsi, M. - T. Ko, P. - C. Lyu, and J. - K. Hwang. Relationship between local structural entropy and protein thermostabilty. Proteins, 57: 684 - 691, 2004.
-
(2004)
Proteins
, vol.57
, pp. 684-691
-
-
Chan, C.-H.1
Liang, H.-K.2
Hsi, N.-W.3
Ko, M.-T.4
Lyu, P.-C.5
Hwang, J.-K.6
-
19
-
-
18844375632
-
Computation of conformational entropy from protein sequences using the machine-learning method-Application to the study of the relationship between structural conservation and local structural stability
-
S. W. Huang and J. K. Hwang. Computation of conformational entropy from protein sequences using the machine - learning method - Application to the study of the relationship between structural conservation and local structural stability. Proteins, 59: 802 - 809, 2005.
-
(2005)
Proteins
, vol.59
, pp. 802-809
-
-
Huang, S.W.1
Hwang, J.K.2
-
20
-
-
33747150197
-
Protein binding site prediction with an empirical scoring function
-
S. Liang, C. Zhang, S. Liu, and Y. Zhou. Protein binding site prediction with an empirical scoring function. Nucleic Acids Research, 34: 3698 - 3707, 2006.
-
(2006)
Nucleic Acids Research
, vol.34
, pp. 3698-3707
-
-
Liang, S.1
Zhang, C.2
Liu, S.3
Zhou, Y.4
-
21
-
-
48249145694
-
Computational identification of ubiquitylation sites from protein sequences
-
C.W. Tung and S.Y. Ho. Computational identification of ubiquitylation sites from protein sequences. BMC Bioinformatics, 9: 310, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 310
-
-
Tung, C.W.1
Ho, S.Y.2
-
22
-
-
40049091146
-
Prediction of protein functional residues from sequence by probability density estimation
-
J.D. Fischer, C.E. Mayer, and J. Soeding. Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics, 24: 613 - 620, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. 613-620
-
-
Fischer, J.D.1
Mayer, C.E.2
Soeding, J.3
-
23
-
-
34047094501
-
DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins
-
S. Hwang, Z. Gou, and I.B. Kuznetsov. DP - Bind: a web server for sequence - based prediction of DNA - binding residues in DNA - binding proteins. Bioinformatics, 23: 634 - 636, 2007.
-
(2007)
Bioinformatics
, vol.23
, pp. 634-636
-
-
Hwang, S.1
Gou, Z.2
Kuznetsov, I.B.3
-
24
-
-
25444524842
-
PSSM-based prediction of DNA binding sites in proteins
-
S. Ahmad and A. Sarai. PSSM - based prediction of DNA binding sites in proteins. BMC Bioinformatics, 6: 33, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 33
-
-
Ahmad, S.1
Sarai, A.2
-
25
-
-
10344242920
-
Sequence-based prediction of pathological mutations
-
C. Ferrer - Costa, M. Orozco, and X. de la Cruz. Sequence - based prediction of pathological mutations. Proteins, 57: 811 - 819, 2004.
-
(2004)
Proteins
, vol.57
, pp. 811-819
-
-
Ferrer-Costa, C.1
Orozco, M.2
de la Cruz, X.3
-
26
-
-
49449087313
-
Predicting subcellular localization of mycobacterial proteins by using Chou ' s pseudo amino acid composition
-
H. Lin, H. Ding, F.B. Guo, A.Y. Zhang, and J. Huang. Predicting subcellular localization of mycobacterial proteins by using Chou ' s pseudo amino acid composition. Protein & Peptide Letters, 15: 739 - 744, 2008.
-
(2008)
Protein & Peptide Letters
, vol.15
, pp. 739-744
-
-
Lin, H.1
Ding, H.2
Guo, F.B.3
Zhang, A.Y.4
Huang, J.5
-
27
-
-
33646488342
-
Distinguishing protein-coding from non-coding RNAs through support vector machines
-
J. Liu, J. Gough, and B. Rost. Distinguishing protein - coding from non - coding RNAs through support vector machines. PLOS Genetics, 2: 529 - 536, 2006.
-
(2006)
PLOS Genetics
, vol.2
, pp. 529-536
-
-
Liu, J.1
Gough, J.2
Rost, B.3
-
28
-
-
33746950964
-
Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties
-
N.V. Petrova and C.H. Wu. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. BMC Bioinformatics, 7: 312, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 312
-
-
Petrova, N.V.1
Wu, C.H.2
-
29
-
-
53749083563
-
Accurate sequence-based prediction of catalytic residues
-
T. Zhang, H. Zhang, K. Chen, S. Shen, J. Ruan, and L. Kurgan. Accurate sequence - based prediction of catalytic residues. Bioinformatics, 24: 2329 - 2338, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. 2329-2338
-
-
Zhang, T.1
Zhang, H.2
Chen, K.3
Shen, S.4
Ruan, J.5
Kurgan, L.6
-
30
-
-
35648948885
-
Computational protein function prediction: Are we making progress?
-
A. Godzik, M. Jambon, and I. Friedberg. Computational protein function prediction: Are we making progress? Cellular & Molecular Life Sciences, 64: 2505 - 2511, 2007.
-
(2007)
Cellular & Molecular Life Sciences
, vol.64
, pp. 2505-2511
-
-
Godzik, A.1
Jambon, M.2
Friedberg, I.3
-
31
-
-
20744453541
-
Biological applications of support vector machines
-
Z.R. Yang. Biological applications of support vector machines. Briefings in Bioinformatics, 5: 328 - 338, 2004.
-
(2004)
Briefings in Bioinformatics
, vol.5
, pp. 328-338
-
-
Yang, Z.R.1
-
32
-
-
36748998785
-
Assessment of predictions submitted for the CASP7 function prediction category
-
G. Lopez, A. Rojas, M. Tress, and A. Valencia. Assessment of predictions submitted for the CASP7 function prediction category. Proteins, 69 (8): 165 - 174, 2007.
-
(2007)
Proteins
, vol.69
, Issue.8
, pp. 165-174
-
-
Lopez, G.1
Rojas, A.2
Tress, M.3
Valencia, A.4
-
33
-
-
0004053611
-
-
New York: John Wiley & Sons, Inc.
-
D. Voet and J.G. Voet. Biochemistry. New York: John Wiley & Sons, Inc., 1995.
-
(1995)
Biochemistry
-
-
Voet, D.1
Voet, J.G.2
-
34
-
-
0020997912
-
Dictionary of protein structure: pattern recognition of hydrogen-bonded and geometrical features
-
W. Kabsch and C. Sander. Dictionary of protein structure: pattern recognition of hydrogen - bonded and geometrical features. Biopolymers, 22: 2577 - 2637, 1983.
-
(1983)
Biopolymers
, vol.22
, pp. 2577-2637
-
-
Kabsch, W.1
Sander, C.2
-
36
-
-
0000573263
-
Configurations of the polypeptide chains with favored orientations around single bonds: Two new pleated sheets
-
L. Pauling and R.B. Corey. Configurations of the polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proceedings of the National Academy of Science U S A, 37: 729 - 740, 1951.
-
(1951)
Proceedings of the National Academy of Science U S A
, vol.37
, pp. 729-740
-
-
Pauling, L.1
Corey, R.B.2
-
37
-
-
0000628210
-
Role of proline in polypeptide chain configuration of proteins
-
A.G. Szent - Gyorgyi and C. Cohen. Role of proline in polypeptide chain configuration of proteins. Science, 126: 697 - 698, 1957.
-
(1957)
Science
, vol.126
, pp. 697-698
-
-
Szent-Gyorgyi, A.G.1
Cohen, C.2
-
38
-
-
36949091243
-
Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å
-
J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, and D.R. Davies. Structure of Myoglobin: A Three - Dimensional Fourier Synthesis at 2 Å. Resolution. Nature, 185: 422 - 427, 1960.
-
(1960)
Resolution. Nature
, vol.185
, pp. 422-427
-
-
Kendrew, J.C.1
Dickerson, R.E.2
Strandberg, B.E.3
Hart, R.G.4
Davies, D.R.5
-
39
-
-
36949066642
-
Structure of Haemoglobin: A Three-Dimensional Fourier Synthesis at 5 5 Å. Resolution
-
M.F. Perutz, M.G. Rossmann, A.F. Cullis, G. Muirhead, G. Will, and A.T North. Structure of Haemoglobin: A Three - Dimensional Fourier Synthesis at 5.5 Å. Resolution. Nature, 185: 416 - 422, 1960.
-
(1960)
Nature
, vol.185
, pp. 416-422
-
-
Perutz, M.F.1
Rossmann, M.G.2
Cullis, A.F.3
Muirhead, G.4
Will, G.5
North, A.T.6
-
40
-
-
0039891755
-
Structural studies of ribonuclease III. A model for the secondary and tertiary structure
-
H.A. Scheraga. Structural studies of ribonuclease III. A model for the secondary and tertiary structure. Journal of the American Chemical Society, 82: 3847 - 3852, 1960.
-
(1960)
Journal of the American Chemical Society
, vol.82
, pp. 3847-3852
-
-
Scheraga, H.A.1
-
41
-
-
0015243875
-
Statistical analysis of the correlation among amino acid residues in helical, β-structural and non-regular regions of globular proteins
-
A.V. Finkelstein and O.B. Ptitsyn. Statistical analysis of the correlation among amino acid residues in helical, β - structural and non - regular regions of globular proteins. Journal of Molecular Biology, 62: 613 - 624, 1971.
-
(1971)
Journal of Molecular Biology
, vol.62
, pp. 613-624
-
-
Finkelstein, A.V.1
Ptitsyn, O.B.2
-
42
-
-
0015987426
-
Prediction of protein conformation
-
P.Y. Chou and U.D. Fasman. Prediction of protein conformation. Biochemistry, 13: 211 - 215, 1974.
-
(1974)
Biochemistry
, vol.13
, pp. 211-215
-
-
Chou, P.Y.1
Fasman, U.D.2
-
43
-
-
0015621284
-
The infl uence of nearest-neighbor amino acids on the conformation of the middle amino acid in proteins: Comparison of predicted and experimental determination of β-sheets in concanavalin A
-
E.A. Kabat and T.T. Wu. The infl uence of nearest - neighbor amino acids on the conformation of the middle amino acid in proteins: Comparison of predicted and experimental determination of β - sheets in concanavalin A. Proceedings of the National Academy of Science U S A, 70: 1473 - 1477, 1973.
-
(1973)
Proceedings of the National Academy of Science U S A
, vol.70
, pp. 1473-1477
-
-
Kabat, E.A.1
Wu, T.T.2
-
44
-
-
0017166105
-
Status of empirical methods for the prediction of protein backbone topography
-
F.R. Maxfield and H.A. Scheraga. Status of empirical methods for the prediction of protein backbone topography. Biochemistry, 15: 5138 - 5153, 1976.
-
(1976)
Biochemistry
, vol.15
, pp. 5138-5153
-
-
Maxfield, F.R.1
Scheraga, H.A.2
-
46
-
-
0026629597
-
Use of conditional probabilities for determining relationships between amino acid sequence and protein secondary structure
-
G.E. Arnold, A.K. Dunker, S.J. Johns, and R.J. Douthart. Use of conditional probabilities for determining relationships between amino acid sequence and protein secondary structure. Proteins, 12: 382 - 399, 1992.
-
(1992)
Proteins
, vol.12
, pp. 382-399
-
-
Arnold, G.E.1
Dunker, A.K.2
Johns, S.J.3
Douthart, R.J.4
-
47
-
-
0023660653
-
Prediction of protein secondary structure and active-sites using the alignment of homologous sequences
-
M.J. Zvelebil, G.J. Barton, W.R. Taylor, and M.J E. Sternberg. Prediction of protein secondary structure and active - sites using the alignment of homologous sequences. Journal of Molecular Biology, 195: 957 - 961, 1987.
-
(1987)
Journal of Molecular Biology
, vol.195
, pp. 957-961
-
-
Zvelebil, M.J.1
Barton, G.J.2
Taylor, W.R.3
Sternberg, M.J.E.4
-
48
-
-
0035782925
-
Review: Protein secondary structure prediction continues to rise
-
B. Rost. Review: Protein secondary structure prediction continues to rise. Journal of Structural Biology, 134: 204 - 218, 2001.
-
(2001)
Journal of Structural Biology
, vol.134
, pp. 204-218
-
-
Rost, B.1
-
49
-
-
3543143812
-
Integrating secondary structure prediction and multiple sequence alignment
-
V.A. Simossis and J. Heringa. Integrating secondary structure prediction and multiple sequence alignment. Current Protein and Peptide Science, 5: 1 - 15, 2004.
-
(2004)
Current Protein and Peptide Science
, vol.5
, pp. 1-15
-
-
Simossis, V.A.1
Heringa, J.2
-
50
-
-
0034334542
-
Computational methods for protein secondary structure prediction using multiple sequence alignments
-
J. Heringa. Computational methods for protein secondary structure prediction using multiple sequence alignments. Current Protein and Peptide Science, 1: 273 - 301, 2000.
-
(2000)
Current Protein and Peptide Science
, vol.1
, pp. 273-301
-
-
Heringa, J.1
-
51
-
-
71549152918
-
Machine learning techniques for protein secondary structure prediction: An overview and evaluation
-
P.D. Yoo, B.B. Zhou, and A.Y. Zomaya. Machine learning techniques for protein secondary structure prediction: An overview and evaluation. Current Bioinformatics, 3: 74 - 86, 2008.
-
(2008)
Current Bioinformatics
, vol.3
, pp. 74-86
-
-
Yoo, P.D.1
Zhou, B.B.2
Zomaya, A.Y.3
-
52
-
-
0035957531
-
A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach
-
S. Hua and Z. Sun. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Journal of Molecular Biology, 308 (2): 397 - 407, 2001.
-
(2001)
Journal of Molecular Biology
, vol.308
, Issue.2
, pp. 397-407
-
-
Hua, S.1
Sun, Z.2
-
53
-
-
0141738785
-
Secondary structure prediction with support vector machines
-
J.J. Ward, L.J. McGuffin, B.F. Buxton, and D.T. Jones. Secondary structure prediction with support vector machines. Bioinformatics, 19: 1650 - 1655, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 1650-1655
-
-
Ward, J.J.1
McGuffin, L.J.2
Buxton, B.F.3
Jones, D.T.4
-
54
-
-
0141593924
-
Protein secondary structure prediction based on an improved support vector machines approach
-
H. Kim and H. Park. Protein secondary structure prediction based on an improved support vector machines approach. Protein Engineering, 16: 553 - 560, 2003.
-
(2003)
Protein Engineering
, vol.16
, pp. 553-560
-
-
Kim, H.1
Park, H.2
-
55
-
-
10644246923
-
Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier
-
H.J. Hu, Y. Pan, R. Harrison, and P.C. Tai. Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Transactions on Nanobioscience, 3: 265 - 271, 2004.
-
(2004)
IEEE Transactions on Nanobioscience
, vol.3
, pp. 265-271
-
-
Hu, H.J.1
Pan, Y.2
Harrison, R.3
Tai, P.C.4
-
56
-
-
33644690605
-
Predicting protein secondary structure by a support vector machine based on a new coding scheme
-
L.H. Wang, Y.F. Li, J. Liu, and H.B. Zhou. Predicting protein secondary structure by a support vector machine based on a new coding scheme. Genome Informatics, 15: 181 - 190, 2004.
-
(2004)
Genome Informatics
, vol.15
, pp. 181-190
-
-
Wang, L.H.1
Li, Y.F.2
Liu, J.3
Zhou, H.B.4
-
57
-
-
1542346418
-
A novel method for protein secondary structure prediction using dual-layer SVM and profiles
-
J. Guo, H. Chen, Z.R. Sun, and Y.L. Lin. A novel method for protein secondary structure prediction using dual - layer SVM and profiles. Proteins, 54: 738 - 743, 2004.
-
(2004)
Proteins
, vol.54
, pp. 738-743
-
-
Guo, J.1
Chen, H.2
Sun, Z.R.3
Lin, Y.L.4
-
58
-
-
33746267388
-
YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction
-
G. Karypis. YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction. Proteins, 64: 575 - 586, 2006.
-
(2006)
Proteins
, vol.64
, pp. 575-586
-
-
Karypis, G.1
-
60
-
-
0023803244
-
Predicting the secondary structure of globular proteins using neural network models
-
N. Qian and T.J. Sejnowski. Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202: 865 - 884, 1988.
-
(1988)
Journal of Molecular Biology
, vol.202
, pp. 865-884
-
-
Qian, N.1
Sejnowski, T.J.2
-
61
-
-
0027169638
-
Improved prediction of protein secondary structure by use of sequence profiles and neural networks
-
B. Rost and C. Sander. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proceedings of the National Academy of Science U S A, 90: 7558 - 7562, 1993.
-
(1993)
Proceedings of the National Academy of Science U S A
, vol.90
, pp. 7558-7562
-
-
Rost, B.1
Sander, C.2
-
62
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
D.T. Jones. Protein secondary structure prediction based on position - specific scoring matrices. Journal of Molecular Biology, 292: 195 - 202, 1999.
-
(1999)
Journal of Molecular Biology
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
63
-
-
0034663597
-
Application of multiple sequence alignment profiles to improve protein secondary structure prediction
-
J.A. Cuff and G.J. Barton. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins, 40: 502 - 511, 2000.
-
(2000)
Proteins
, vol.40
, pp. 502-511
-
-
Cuff, J.A.1
Barton, G.J.2
-
64
-
-
0033562880
-
New methods for accurate prediction of protein secondary structure
-
G.M. Chandonia and M. Karplus. New methods for accurate prediction of protein secondary structure. Proteins, 35: 293 - 306, 1999.
-
(1999)
Proteins
, vol.35
, pp. 293-306
-
-
Chandonia, G.M.1
Karplus, M.2
-
65
-
-
0034308131
-
Prediction of protein secondary structure at 80% accuracy
-
T.N. Petersen, C. Lundegaard, M. Nielsen, H. Boher, J. Boher, S. Brunak, G.P. Gippert, and O. Lund. Prediction of protein secondary structure at 80% accuracy. Proteins, 41: 17 - 20, 2000.
-
(2000)
Proteins
, vol.41
, pp. 17-20
-
-
Petersen, T.N.1
Lundegaard, C.2
Nielsen, M.3
Boher, H.4
Boher, J.5
Brunak, S.6
Gippert, G.P.7
Lund, O.8
-
66
-
-
0036568279
-
Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins, 47: 228 - 235, 2002.
-
(2002)
Proteins
, vol.47
, pp. 228-235
-
-
Pollastri, G.1
Przybylski, D.2
Rost, B.3
Baldi, P.4
-
67
-
-
17444397116
-
Porter: A new, accurate server for protein secondary structure prediction
-
G. Pollastri and A. McLysaght. Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics, 21: 1719 - 1720, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 1719-1720
-
-
Pollastri, G.1
McLysaght, A.2
-
68
-
-
13444266488
-
A simple and fast secondary structure prediction method using hidden neural networks
-
K. Lin, V.A. Simossis, W.R. Taylor, and J. Heringa. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics, 21: 152 - 159, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 152-159
-
-
Lin, K.1
Simossis, V.A.2
Taylor, W.R.3
Heringa, J.4
-
70
-
-
33750725700
-
Prediction of protein Secondary Structure using nonlinear method
-
I. King and J. Wang, and L. Chan, and D.L. Wang (Eds.), Berlin and Heidelberg: Springer
-
S. Botelho, G. Simas, and P. Silveira. Prediction of protein Secondary Structure using nonlinear method. In I. King and J. Wang, and L. Chan, and D.L. Wang (Eds.), Neural Information Processing, Part 3, Proceedings; Lecture Notes in Computer Science, vol. 4234, pp. 40 - 47. Berlin and Heidelberg: Springer, 2006.
-
(2006)
Neural Information Processing, Part 3, Proceedings; Lecture Notes in Computer Science
, vol.4234
, pp. 40-47
-
-
Botelho, S.1
Simas, G.2
Silveira, P.3
-
71
-
-
0026771388
-
Hybrid system for protein secondary structure prediction
-
X. Zhang, J.P. Mesirov, and D.L. Waltz. Hybrid system for protein secondary structure prediction. Journal of Molecular Biology, 225: 1049 - 1063, 1992.
-
(1992)
Journal of Molecular Biology
, vol.225
, pp. 1049-1063
-
-
Zhang, X.1
Mesirov, J.P.2
Waltz, D.L.3
-
72
-
-
0027291015
-
Prediction of protein secondary structure at better than 70% accuracy
-
B. Rost and C. Sander. Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232: 584 - 599, 1993.
-
(1993)
Journal of Molecular Biology
, vol.232
, pp. 584-599
-
-
Rost, B.1
Sander, C.2
-
73
-
-
0032420333
-
Jpred: A consensus secondary structure prediction server
-
J.A. Cuff, M.E. Clamp, A.S. Siddiqui, M. Finlay, and G.J. Barton. Jpred: A consensus secondary structure prediction server. Bioinformatics, 14: 892 - 893, 1998.
-
(1998)
Bioinformatics
, vol.14
, pp. 892-893
-
-
Cuff, J.A.1
Clamp, M.E.2
Siddiqui, A.S.3
Finlay, M.4
Barton, G.J.5
-
74
-
-
0033952444
-
Is it better to combine predictions?
-
R.D. King, M. Ouali, A.T. Strong, A. Aly, A. Elmaghraby, M. Kantardzic, and D. Page. Is it better to combine predictions? Protein Engineering, 13: 15 - 19, 2000.
-
(2000)
Protein Engineering
, vol.13
, pp. 15-19
-
-
King, R.D.1
Ouali, M.2
Strong, A.T.3
Aly, A.4
Elmaghraby, A.5
Kantardzic, M.6
Page, D.7
-
75
-
-
0042379959
-
Simple consensus procedures are effective and sufficient in secondary structure prediction
-
M. Albrecht, S.C.E. Tosatto, T. Lengauer, and G. Valle. Simple consensus procedures are effective and sufficient in secondary structure prediction. Protein Engineering, 16: 459 - 462, 2003.
-
(2003)
Protein Engineering
, vol.16
, pp. 459-462
-
-
Albrecht, M.1
Tosatto, S.C.E.2
Lengauer, T.3
Valle, G.4
-
76
-
-
7444267810
-
A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction
-
A. Cappelli and F. Turini (Eds.), Berlin and Heidelberg: Springer
-
A. Ceroni, P. Frasconi, A. Passerini, and A. Vullo. A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction. In A. Cappelli and F. Turini (Eds.), AIIA 2003: Advances in Artificial Intelligence, Proceedings; Lecture Notes in Artificial Intelligence, vol. 2829, pp. 142 - 153. Berlin and Heidelberg: Springer, 2003.
-
(2003)
AIIA 2003 Advances in Artificial Intelligence, Proceedings; Lecture Notes in Artificial Intelligence
, vol.2829
, pp. 142-153
-
-
Ceroni, A.1
Frasconi, P.2
Passerini, A.3
Vullo, A.4
-
77
-
-
10244226774
-
-Seetharaman, and V
-
Y. Liu, J. Carbonell, J. Klein - Seetharaman, and V. Gopalakrishnan. Comparison of probabilistic combination methods for protein secondary structure prediction. Bioinformatics, 20: 3099 - 3107, 2004.
-
(2004)
Gopalakrishnan. Comparison of probabilistic combination methods for protein secondary structure prediction. Bioinformatics
, vol.20
, pp. 3099-3107
-
-
Liu, Y.1
Carbonell, J.2
Klein, J.3
-
78
-
-
0742271712
-
Combining protein secondary structure prediction models with ensemble methods of optimal complexity
-
Y. Guermeur, G. Pollastri, A. Elisseeff, D. Zelus, H. Paugam - Moisy, and P. Baldi. Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing, 56: 305 - 327, 2004.
-
(2004)
Neurocomputing
, vol.56
, pp. 305-327
-
-
Guermeur, Y.1
Pollastri, G.2
Elisseeff, A.3
Zelus, D.4
Paugam-Moisy, H.5
Baldi, P.6
-
79
-
-
33745304218
-
Protein secondary structure classifiers fusion using OWA
-
J.L. Oliveira and V. Maojo, and F. Martin Sanchez and A.S. Pereira (Eds.), Berlin and Heidelberg: Springer
-
M. Kazemian, B. Moshiri, H. Nikbakht, and C. Lucas. Protein secondary structure classifiers fusion using OWA. In J.L. Oliveira and V. Maojo, and F. Martin Sanchez and A.S. Pereira (Eds.), Biological and Medical Data Analysis, Proceedings; Lecture Notes in Computer Science, vol. 3745, pp. 338 - 345. Berlin and Heidelberg: Springer, 2005.
-
(2005)
Biological and Medical Data Analysis, Proceedings; Lecture Notes in Computer Science
, vol.3745
, pp. 338-345
-
-
Kazemian, M.1
Moshiri, B.2
Nikbakht, H.3
Lucas, C.4
-
80
-
-
25144432549
-
Hyprosp II-A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence
-
H.N. Lin, J.M. Chang, K.P. Wu, T.Y. Sung, and W.L. Hsu. Hyprosp II - A knowledge - based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics, 21: 3227 - 3233, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 3227-3233
-
-
Lin, H.N.1
Chang, J.M.2
Wu, K.P.3
Sung, T.Y.4
Hsu, W.L.5
-
81
-
-
45749117507
-
Efficient ensemble schemes for protein secondary structure prediction
-
K. - H. Liu, J. - F. Xia, and X. Li. Efficient ensemble schemes for protein secondary structure prediction. Protein and Peptide Letters, 15: 488 - 493, 2008.
-
(2008)
Protein and Peptide Letters
, vol.15
, pp. 488-493
-
-
Liu, K.-H.1
Xia, J.-F.2
Li, X.3
-
82
-
-
33646781937
-
Bayesian segmental models with multiple sequence alignment profiles for protein secondary structure and contact map prediction
-
W. Chu, Z. Ghahramani, A. Podtelezhnikov, and D.L. Wild. Bayesian segmental models with multiple sequence alignment profiles for protein secondary structure and contact map prediction. IEEE - ACM Transactions on Computational Biology and Bioinformatics, 3: 98 - 113, 2006.
-
(2006)
IEEE-ACM Transactions on Computational Biology and Bioinformatics
, vol.3
, pp. 98-113
-
-
Chu, W.1
Ghahramani, Z.2
Podtelezhnikov, A.3
Wild, D.L.4
-
83
-
-
33745259286
-
Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
-
Z. Aydin, Y. Altunbasak, and M. Borodovsky. Protein secondary structure prediction for a single - sequence using hidden semi - Markov models. BMC Bioinformatics, 7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Aydin, Z.1
Altunbasak, Y.2
Borodovsky, M.3
-
84
-
-
34347382743
-
Bayesian protein secondary structure prediction with near-optimal segmentations
-
Z. Aydin, Y. Altunbasak, and H. Erdogan. Bayesian protein secondary structure prediction with near - optimal segmentations. IEEE Transactions on Signal Processing, 55: 3512 - 3525, 2007.
-
(2007)
IEEE Transactions on Signal Processing
, vol.55
, pp. 3512-3525
-
-
Aydin, Z.1
Altunbasak, Y.2
Erdogan, H.3
-
85
-
-
40549143077
-
A dynamic Bayesian network approach to protein secondary structure prediction
-
X. - Q. Yao, H. Zhu, and Z. - S. She. A dynamic Bayesian network approach to protein secondary structure prediction. BMC Bioinformatics, 9, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Yao, X.-Q.1
Zhu, H.2
She, Z.-S.3
-
86
-
-
0035874145
-
Multiple linear regression for protein secondary structure prediction
-
X.M. Pan. Multiple linear regression for protein secondary structure prediction. Proteins, 43: 256 - 259, 2001.
-
(2001)
Proteins
, vol.43
, pp. 256-259
-
-
Pan, X.M.1
-
87
-
-
27544490615
-
Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method
-
S. Qin, Y. He, and X.M. Pan. Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method. Proteins, 61: 473 - 480, 2005.
-
(2005)
Proteins
, vol.61
, pp. 473-480
-
-
Qin, S.1
He, Y.2
Pan, X.M.3
-
88
-
-
20844452070
-
Prediction of protein solvent accessibility using fuzzy k-nearest neighbor method
-
J. Sim, S.Y. Kim, and J. Lee. Prediction of protein solvent accessibility using fuzzy k - nearest neighbor method. Bioinformatics, 21: 2844 - 2849, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 2844-2849
-
-
Sim, J.1
Kim, S.Y.2
Lee, J.3
-
89
-
-
20444408014
-
Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm
-
M. Sadeghi, S. Parto, S. Arab, and B. Ranjbar. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm. FEBS Letters, 579: 3397 - 3400, 2005.
-
(2005)
FEBS Letters
, vol.579
, pp. 3397-3400
-
-
Sadeghi, M.1
Parto, S.2
Arab, S.3
Ranjbar, B.4
-
90
-
-
33947302584
-
A hybrid genetic-neural system for predicting protein secondary structure
-
G. Armano, G. Mancosu, L. Milanesi, A. Orro, M. Saba, and E. Vargiu. A hybrid genetic - neural system for predicting protein secondary structure. BMC Bioinformatics, 6: S3, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
-
-
Armano, G.1
Mancosu, G.2
Milanesi, L.3
Orro, A.4
Saba, M.5
Vargiu, E.6
-
91
-
-
0142153209
-
Prediction of protein secondary structure with a reliability score estimated by local sequence clustering
-
F. Jiang. Prediction of protein secondary structure with a reliability score estimated by local sequence clustering. Protein Engineering, 16: 651 - 657, 2003.
-
(2003)
Protein Engineering
, vol.16
, pp. 651-657
-
-
Jiang, F.1
-
92
-
-
30744445963
-
Cluster-based local modeling approach to protein secondary structure prediction
-
S.H. Doong and C.Y. Yeh. Cluster - based local modeling approach to protein secondary structure prediction. Journal of Computational and Theoretical Nanoscience, 2: 551 - 560, 2005.
-
(2005)
Journal of Computational and Theoretical Nanoscience
, vol.2
, pp. 551-560
-
-
Doong, S.H.1
Yeh, C.Y.2
-
93
-
-
26944461160
-
Bayesian neural networks for prediction of protein secondary structure
-
X. Li and S. Wang, and Z.Y. Dong, (Eds.), Berlin and Heidelberg: Springer
-
J.L. Shao, D. Xu, L.Z. Wang, and Y.F. Wang. Bayesian neural networks for prediction of protein secondary structure. In X. Li and S. Wang, and Z.Y. Dong, (Eds.), Advanced Data Mining and Applications, Proceedings; Lecture Notes in Artificial Intelligence, vol. 3584, pp. 544 - 551. Berlin and Heidelberg: Springer, 2005.
-
(2005)
Advanced Data Mining and Applications, Proceedings; Lecture Notes in Artificial Intelligence
, vol.3584
, pp. 544-551
-
-
Shao, J.L.1
Xu, D.2
Wang, L.Z.3
Wang, Y.F.4
-
94
-
-
33750382309
-
Weighted quality estimates in machine learning
-
L. Budagyan and R. Abagyan. Weighted quality estimates in machine learning. Bioinformatics, 22: 2597 - 2603, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 2597-2603
-
-
Budagyan, L.1
Abagyan, R.2
-
95
-
-
29544444684
-
Bidirectional segmented-memory recurrent neural network for protein secondary structure prediction
-
J. Chen and N.S. Chaudhari. Bidirectional segmented - memory recurrent neural network for protein secondary structure prediction. Soft Computing, 10: 315 - 324, 2006.
-
(2006)
Soft Computing
, vol.10
, pp. 315-324
-
-
Chen, J.1
Chaudhari, N.S.2
-
96
-
-
2542420004
-
The principled design of large-scale recursive neural network architectures-DAG-RNNs and the protein structure prediction problem
-
P. Baldi and G. Pollastri. The principled design of large - scale recursive neural network architectures - DAG - RNNs and the protein structure prediction problem. Journal of Machine Learning Research, 4: 575 - 602, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.4
, pp. 575-602
-
-
Baldi, P.1
Pollastri, G.2
-
97
-
-
4644354297
-
HYPROSP: A hybrid protein secondary structure prediction algorithm-a knowledge-based approach
-
K.P. Wu, H.N. Lin, J.M. Chang, T.Y. Sung, and W.L. Hsu. HYPROSP: A hybrid protein secondary structure prediction algorithm - a knowledge - based approach. Nucleic Acids Research, 32: 5059 - 5065, 2004.
-
(2004)
Nucleic Acids Research
, vol.32
, pp. 5059-5065
-
-
Wu, K.P.1
Lin, H.N.2
Chang, J.M.3
Sung, T.Y.4
Hsu, W.L.5
-
98
-
-
33747586510
-
Improving the accuracy of protein secondary structure prediction using structural alignment
-
S. Montgomerie, S. Sundararaj, W.J. Gallin, and D.S. Wishart. Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics, 7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Montgomerie, S.1
Sundararaj, S.2
Gallin, W.J.3
Wishart, D.S.4
-
99
-
-
33846249595
-
MUPRED: A tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction
-
R. Bondugula and D. Xu. MUPRED: A tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction. Proteins, 66: 664 - 670, 2007.
-
(2007)
Proteins
, vol.66
, pp. 664-670
-
-
Bondugula, R.1
Xu, D.2
-
100
-
-
34547127137
-
Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information
-
G. Pollastri, A.J.M. Martin, C. Mooney, and A. Vullo. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics, 8: 201, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 201
-
-
Pollastri, G.1
Martin, A.J.M.2
Mooney, C.3
Vullo, A.4
-
101
-
-
35748978197
-
Consensus data mining (CDM) protein secondary structure prediction server: Combining GOR V and fragment database mining (FDM)
-
H. Cheng, T.Z. Sen, R.L. Jernigan, and A. Kloczkowski. Consensus data mining (CDM) protein secondary structure prediction server: Combining GOR V and fragment database mining (FDM). Bioinformatics, 23: 2628 - 2630, 2007.
-
(2007)
Bioinformatics
, vol.23
, pp. 2628-2630
-
-
Cheng, H.1
Sen, T.Z.2
Jernigan, R.L.3
Kloczkowski, A.4
-
102
-
-
4043050047
-
Combining evolutionary and structural information for local protein structure prediction
-
J.M. Pei and N.V. Grishin. Combining evolutionary and structural information for local protein structure prediction. Proteins, 56: 782 - 794, 2004.
-
(2004)
Proteins
, vol.56
, pp. 782-794
-
-
Pei, J.M.1
Grishin, N.V.2
-
103
-
-
0037312528
-
A pentapeptide-based method for protein secondary structure prediction
-
A. Figureau, M.A. Soto, and J. Toha. A pentapeptide - based method for protein secondary structure prediction. Protein Engineering, 16: 103 - 107, 2003.
-
(2003)
Protein Engineering
, vol.16
, pp. 103-107
-
-
Figureau, A.1
Soto, M.A.2
Toha, J.3
-
104
-
-
1642534608
-
Analysis of forces that determine helix formation in alpha-proteins
-
G.T. Kilosanidze, A.S. Kutsenko, N.G. Esipova, and V.G. Tumanyan. Analysis of forces that determine helix formation in alpha - proteins. Protein Science, 13: 351 - 357, 2004.
-
(2004)
Protein Science
, vol.13
, pp. 351-357
-
-
Kilosanidze, G.T.1
Kutsenko, A.S.2
Esipova, N.G.3
Tumanyan, V.G.4
-
105
-
-
27144524966
-
Protein secondary structure prediction using sequence profile and conserved domain profile
-
D.S. Huang and X. P. Zhang, and G.B. Huang (Eds.), Berlin and Heidelberg: Springer
-
S.K. Woo, C.B. Park, and S.W. Lee. Protein secondary structure prediction using sequence profile and conserved domain profile. In D.S. Huang and X. P. Zhang, and G.B. Huang (Eds.), Advances in Intelligent Computing, Part 2, Proceedings; Lecture Notes in Computer Science, vol. 3645, pp. 1 - 10. Berlin and Heidelberg: Springer, 2005.
-
(2005)
Advances in Intelligent Computing, Part 2, Proceedings; Lecture Notes in Computer Science
, vol.3645
, pp. 1-10
-
-
Woo, S.K.1
Park, C.B.2
Lee, S.W.3
-
106
-
-
33750402176
-
A new representation for protein secondary structure prediction based on frequent patterns
-
F. Birzele and S. Kramer. A new representation for protein secondary structure prediction based on frequent patterns. Bioinformatics, 22: 2628 - 2634, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 2628-2634
-
-
Birzele, F.1
Kramer, S.2
-
107
-
-
17844373552
-
Protein secondary structure prediction with dihedral angles
-
M.J. Wood and J.D. Hirst. Protein secondary structure prediction with dihedral angles. Proteins, 59: 476 - 481, 2005.
-
(2005)
Proteins
, vol.59
, pp. 476-481
-
-
Wood, M.J.1
Hirst, J.D.2
-
108
-
-
39049179145
-
Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction
-
C. Mooney, A. Vullo, and G. Pollastri. Protein structural motif prediction in multidimensional phi - psi space leads to improved secondary structure prediction. J. Computational Biology, 13: 1489 - 1502, 2006.
-
(2006)
J. Computational Biology
, vol.13
, pp. 1489-1502
-
-
Mooney, C.1
Vullo, A.2
Pollastri, G.3
-
110
-
-
52649111134
-
Impact of residue accessible surface area on the prediction of protein secondary structures
-
A. Momen - Roknabadi, M. Sadeghi, H. Pezeshk, and S. - A. Marashi. Impact of residue accessible surface area on the prediction of protein secondary structures. BMC Bioinformatics, 9, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Momen-Roknabadi, A.1
Sadeghi, M.2
Pezeshk, H.3
Marashi, S.-A.4
-
112
-
-
34547770359
-
Learning biophysically-motivated parameters for alpha helix prediction
-
B. Gassend, C.W. O'Donnell, W. Thies, A. Lee, M. van Dijk, and S. Devadas. Learning biophysically - motivated parameters for alpha helix prediction. BMC Bioinformatics, 8, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Gassend, B.1
O'Donnell, C.W.2
Thies, W.3
Lee, A.4
van Dijk, M.5
Devadas, S.6
-
113
-
-
0034630136
-
Enhanced prediction accuracy of protein secondary structure using hydrogen exchange Fourier transform infrared spectroscopy
-
B.I. Baello, P. Pancoska, and T.A. Keiderling. Enhanced prediction accuracy of protein secondary structure using hydrogen exchange Fourier transform infrared spectroscopy. Analytical Biochemistry, 280: 46 - 57, 2000.
-
(2000)
Analytical Biochemistry
, vol.280
, pp. 46-57
-
-
Baello, B.I.1
Pancoska, P.2
Keiderling, T.A.3
-
114
-
-
0041358781
-
Neuro-fuzzy structural classification of proteins for improved protein secondary structure prediction
-
J.A. Hering, P.R. Innocent, and P.I. Haris. Neuro - fuzzy structural classification of proteins for improved protein secondary structure prediction. Proteomics, 3: 1464 - 1475, 2003.
-
(2003)
Proteomics
, vol.3
, pp. 1464-1475
-
-
Hering, J.A.1
Innocent, P.R.2
Haris, P.I.3
-
115
-
-
39749114995
-
Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations
-
J.G. Lees and R.W. Janes. Combining sequence - based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations. BMC Bioinformatics, 9, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Lees, J.G.1
Janes, R.W.2
-
116
-
-
0035789525
-
Generation and evaluation of dimension reduced amino acid parameter representations by artificial neural networks
-
J. Meiler, M. Muller, A. Zeidler, and F. Schmaschke. Generation and evaluation of dimension reduced amino acid parameter representations by artificial neural networks. Journal of Molecular Modeling, 7: 360 - 369, 2001.
-
(2001)
Journal of Molecular Modeling
, vol.7
, pp. 360-369
-
-
Meiler, J.1
Muller, M.2
Zeidler, A.3
Schmaschke, F.4
-
117
-
-
0031871068
-
Chameleon sequences in the PDB
-
M. Mezei. Chameleon sequences in the PDB. Protein Engineering, 11: 411 - 414, 1998.
-
(1998)
Protein Engineering
, vol.11
, pp. 411-414
-
-
Mezei, M.1
-
118
-
-
19544391613
-
Rapid assessment of contact-dependent secondary structure propensity: Relevance to amyloidogenic sequences
-
S. Yoon and W.J. Welsh. Rapid assessment of contact - dependent secondary structure propensity: Relevance to amyloidogenic sequences. Proteins, 60: 110 - 117, 2005.
-
(2005)
Proteins
, vol.60
, pp. 110-117
-
-
Yoon, S.1
Welsh, W.J.2
-
119
-
-
33644655386
-
Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures
-
M. Boden, Z. Yuan, and T.L. Bailey. Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures. BMC Bioinformatics, 7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Boden, M.1
Yuan, Z.2
Bailey, T.L.3
-
120
-
-
34948846599
-
PreSSAPro: A software for the prediction of secondary structure by amino acid properties
-
S. Costantini, G. Colonna, and A.M. Facchiano. PreSSAPro: A software for the prediction of secondary structure by amino acid properties. Computational Biology and Chemistry, 31: 389 - 392, 2007.
-
(2007)
Computational Biology and Chemistry
, vol.31
, pp. 389-392
-
-
Costantini, S.1
Colonna, G.2
Facchiano, A.M.3
-
121
-
-
34247223063
-
Analysis of chameleon sequences and their implications in biological processes
-
J. - T. Guo, J.W. Jaromczyk, and Y. Xu. Analysis of chameleon sequences and their implications in biological processes. Proteins, 67: 548 - 558, 2007.
-
(2007)
Proteins
, vol.67
, pp. 548-558
-
-
Guo, J.-T.1
Jaromczyk, J.W.2
Xu, Y.3
-
122
-
-
0034563423
-
Predictions of protein segments with the same aminoacid sequence and different secondary structure: A benchmark for predictive methods
-
I. Jacoboni, P.L. Martelli, P. Fariselli, M. Compiani, and R. Casadio. Predictions of protein segments with the same aminoacid sequence and different secondary structure: A benchmark for predictive methods. Proteins, 41: 535 - 544, 2000.
-
(2000)
Proteins
, vol.41
, pp. 535-544
-
-
Jacoboni, I.1
Martelli, P.L.2
Fariselli, P.3
Compiani, M.4
Casadio, R.5
-
123
-
-
37349000392
-
Beta-sheet capping: Signals that initiate and terminate beta-sheet formation
-
F. FarzadFard, N. Gharaei, H. Pezeshk, and S. - A. Marashi. Beta - sheet capping: Signals that initiate and terminate beta - sheet formation. Journal of Structural Biology, 161: 101 - 110, 2008.
-
(2008)
Journal of Structural Biology
, vol.161
, pp. 101-110
-
-
FarzadFard, F.1
Gharaei, N.2
Pezeshk, H.3
Marashi, S.-A.4
-
124
-
-
4544369672
-
Improved prediction for N-termini of alpha-helices using empirical information
-
C.L. Wilson, P.E. Boardman, A.J. Doig, and S.J. Hubbard. Improved prediction for N - termini of alpha - helices using empirical information. Proteins, 57: 322 - 330, 2004.
-
(2004)
Proteins
, vol.57
, pp. 322-330
-
-
Wilson, C.L.1
Boardman, P.E.2
Doig, A.J.3
Hubbard, S.J.4
-
125
-
-
33847024256
-
Improving protein secondary-structure prediction by predicting ends of secondary-structure segments
-
Embassy Suites Hotel La Jolla, La Jolla, CA, November 14-15. IEEE, 2005
-
U. Midic, K. Dunker, and Z. Obradovic. Improving protein secondary - structure prediction by predicting ends of secondary - structure segments. Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2005. Embassy Suites Hotel La Jolla, La Jolla, CA, November 14 - 15, 2005, pp. 490 - 497. IEEE, 2005.
-
(2005)
Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2005
, pp. 490-497
-
-
Midic, U.1
Dunker, K.2
Obradovic, Z.3
-
126
-
-
23644456329
-
The effect of long-range interactions on the secondary structure formation of proteins
-
D. Kihara. The effect of long - range interactions on the secondary structure formation of proteins. Protein Science, 14: 1955 - 1963, 2005.
-
(2005)
Protein Science
, vol.14
, pp. 1955-1963
-
-
Kihara, D.1
-
127
-
-
0030957127
-
The role of long-range interactions in defining the secondary structure of proteins is overestimated
-
A. Fiser, Z. Dosztanyi, and I. Simon. The role of long - range interactions in defining the secondary structure of proteins is overestimated. Computer Applications in the Biosciences, 13: 297 - 301, 1997.
-
(1997)
Computer Applications in the Biosciences
, vol.13
, pp. 297-301
-
-
Fiser, A.1
Dosztanyi, Z.2
Simon, I.3
-
128
-
-
3543145933
-
Protein secondary structure: Entropy, correlations and prediction
-
G.E. Crooks and S.E. Brenner. Protein secondary structure: Entropy, correlations and prediction. Bioinformatics, 20: 1603 - 1611, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 1603-1611
-
-
Crooks, G.E.1
Brenner, S.E.2
-
129
-
-
10844233091
-
On the role of long-range dependencies in learning protein secondary structure
-
A. Ceroni and P. Frasconi. On the role of long - range dependencies in learning protein secondary structure. IEEE Proceedings on Neural Network, 3: 1899 - 1904, 2004.
-
(2004)
IEEE Proceedings on Neural Network
, vol.3
, pp. 1899-1904
-
-
Ceroni, A.1
Frasconi, P.2
-
130
-
-
26944482741
-
Learning protein secondary structure from sequential and relational data
-
A. Ceroni, P. Frasconi, and G. Pollastri. Learning protein secondary structure from sequential and relational data. Neural Networks, 18: 1029 - 1039, 2005.
-
(2005)
Neural Networks
, vol.18
, pp. 1029-1039
-
-
Ceroni, A.1
Frasconi, P.2
Pollastri, G.3
-
132
-
-
0029619259
-
Knowledge-based protein secondary structure assignment
-
D. Frishman and P. Argos. Knowledge - based protein secondary structure assignment. Proteins, 23: 566 - 579, 1995.
-
(1995)
Proteins
, vol.23
, pp. 566-579
-
-
Frishman, D.1
Argos, P.2
-
133
-
-
0023927904
-
Identification of structural motifs from protein coordinate data: Secondary structure and first level supersecondary structure
-
F.M. Richards and C.E. Kundrot. Identification of structural motifs from protein coordinate data: Secondary structure and first level supersecondary structure. Proteins, 3: 71 - 84, 1988.
-
(1988)
Proteins
, vol.3
, pp. 71-84
-
-
Richards, F.M.1
Kundrot, C.E.2
-
134
-
-
0030998184
-
P-SEA: A new efficient assignment of secondary structure from C alpha trace of proteins
-
G. Labesse, N. Colloc'h, J. Pothier, and J.P. Mornon. P - SEA: A new efficient assignment of secondary structure from C alpha trace of proteins. Computer Applications in the Biosciences, 13: 291 - 295, 1997.
-
(1997)
Computer Applications in the Biosciences
, vol.13
, pp. 291-295
-
-
Labesse, G.1
Colloc'h, N.2
Pothier, J.3
Mornon, J.P.4
-
135
-
-
26444452027
-
Protein secondary structure assignment revisited: a detailed analysis of different assignment mthods
-
J. Martin, G. Letellier, A. Marin, J.F. Taly, A G. de Brevern, and G.F. Gibrat. Protein secondary structure assignment revisited: a detailed analysis of different assignment mthods. BMC Structural Biology, 5, 2005.
-
(2005)
BMC Structural Biology
, vol.5
-
-
Martin, J.1
Letellier, G.2
Marin, A.3
Taly, J.F.4
de Brevern, A.G.5
Gibrat, G.F.6
-
136
-
-
0024821134
-
Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis
-
H. Sklenar, C. Etchebest, and R. Lavery. Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins, 6: 46 - 60, 1989.
-
(1989)
Proteins
, vol.6
, pp. 46-60
-
-
Sklenar, H.1
Etchebest, C.2
Lavery, R.3
-
137
-
-
0033562619
-
Assigning secondary structure from protein coordinate data
-
S.M. King and W.C. Johnson. Assigning secondary structure from protein coordinate data. Proteins, 3: 313 - 320, 1999.
-
(1999)
Proteins
, vol.3
, pp. 313-320
-
-
King, S.M.1
Johnson, W.C.2
-
138
-
-
0036276409
-
Occurrence, conformational features and amino acid propensities for the pi-helix
-
M.N. Fodje and S. Al - Karadaghi. Occurrence, conformational features and amino acid propensities for the pi - helix. Protein Engineering, 15: 353 - 358, 2002.
-
(2002)
Protein Engineering
, vol.15
, pp. 353-358
-
-
Fodje, M.N.1
Al-Karadaghi, S.2
-
139
-
-
33947315642
-
Secondary structure assignment that accurately refl ects physical and evolutionary characteristics
-
M.V. Cubellis, F. Cailliez, and S.C. Lovell. Secondary structure assignment that accurately refl ects physical and evolutionary characteristics. BMC Bioinformatics, 6: S8, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
-
-
Cubellis, M.V.1
Cailliez, F.2
Lovell, S.C.3
-
140
-
-
2442596233
-
Protein secondary structure assignment through Voronoi tessellation
-
F. Dupuis, J.F. Sadoc, and J.P. Mornon. Protein secondary structure assignment through Voronoi tessellation. Proteins, 55: 519 - 528, 2004.
-
(2004)
Proteins
, vol.55
, pp. 519-528
-
-
Dupuis, F.1
Sadoc, J.F.2
Mornon, J.P.3
-
142
-
-
0027207221
-
Comparison of three algorithms for the assignment of secondary structure in proteins: The advantages of a consensus assignment
-
N. Colloc'h, C. Etchebest, E. Thoreau, B. Henrissat, and J. - P. Mornon. Comparison of three algorithms for the assignment of secondary structure in proteins: The advantages of a consensus assignment. Protein Engineering, 6: 377 - 382, 1993.
-
(1993)
Protein Engineering
, vol.6
, pp. 377-382
-
-
Colloc'h, N.1
Etchebest, C.2
Thoreau, E.3
Henrissat, B.4
Mornon, J.-P.5
-
143
-
-
0016322183
-
Comparison of predicted and experimentally determined secondary structure of adenyl kinase
-
G.E. Schulz, C.D. Barry, J. Friedman, P.Y. Chou, G.D. Fasman, A.V. Finkelstein, V.I. Lim, O.B. Pititsyn, E.A. Kabat, T.T. Wu, M. Levitt, B. Robson, and K. Nagano. Comparison of predicted and experimentally determined secondary structure of adenyl kinase. Nature, 250: 140 - 142, 1974.
-
(1974)
Nature
, vol.250
, pp. 140-142
-
-
Schulz, G.E.1
Barry, C.D.2
Friedman, J.3
Chou, P.Y.4
Fasman, G.D.5
Finkelstein, A.V.6
Lim, V.I.7
Pititsyn, O.B.8
Kabat, E.A.9
Wu, T.T.10
Levitt, M.11
Robson, B.12
Nagano, K.13
-
146
-
-
40549104155
-
Assessing secondary-structure assignment of protein structures by using pairwise sequence-alignment benchmarks
-
W. Zhang, K. Dunker, and Y. Zhou. Assessing secondary - structure assignment of protein structures by using pairwise sequence - alignment benchmarks. Proteins, 71: 61 - 67, 2008.
-
(2008)
Proteins
, vol.71
, pp. 61-67
-
-
Zhang, W.1
Dunker, K.2
Zhou, Y.3
-
147
-
-
18844414326
-
High accuracy prediction of beta-turns and their types using propensities and multiple alignments
-
P.F.J. Fuchs and A.J.P. Alix. High accuracy prediction of beta - turns and their types using propensities and multiple alignments. Proteins, 59: 828 - 839, 2005.
-
(2005)
Proteins
, vol.59
, pp. 828-839
-
-
Fuchs, P.F.J.1
Alix, A.J.P.2
-
148
-
-
33748259637
-
Better prediction of the location of alpha-turns in proteins with support vector machine
-
Y. Wang, Z. Xue, and J. Xu. Better prediction of the location of alpha - turns in proteins with support vector machine. Proteins, 65: 49 - 54, 2006.
-
(2006)
Proteins
, vol.65
, pp. 49-54
-
-
Wang, Y.1
Xue, Z.2
Xu, J.3
-
149
-
-
49149096763
-
Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLE-BRNN)
-
A. Kirschner and D. Frishman. Prediction of beta - turns and beta - turn types by a novel bidirectional Elman - type recurrent neural network with multiple output layers (MOLE - BRNN). Gene, 422: 22 - 29, 2008.
-
(2008)
Gene
, vol.422
, pp. 22-29
-
-
Kirschner, A.1
Frishman, D.2
-
150
-
-
1442349113
-
Prediction of alpha-turns in proteins using PSI -BLAST profiles and secondary structure information
-
H. Kaur and G.P.S. Raghava. Prediction of alpha - turns in proteins using PSI -BLAST profiles and secondary structure information. Proteins, 55: 83 - 90, 2004.
-
(2004)
Proteins
, vol.55
, pp. 83-90
-
-
Kaur, H.1
Raghava, G.P.S.2
-
152
-
-
0025881751
-
Infl uence of the local amino acid sequence upon the zones of the torsional angles phi and psi adopted by residues in proteins
-
J.F. Gibrat, B. Robson, and J. Garnier. Infl uence of the local amino acid sequence upon the zones of the torsional angles phi and psi adopted by residues in proteins. Biochemistry, 30: 1578 - 1586, 1991.
-
(1991)
Biochemistry
, vol.30
, pp. 1578-1586
-
-
Gibrat, J.F.1
Robson, B.2
Garnier, J.3
-
153
-
-
0027407722
-
Estimation and use of protein backbone angle probabilities
-
H.S. Kang, N.A. Kurochkina, and B. Lee. Estimation and use of protein backbone angle probabilities. Journal of Molecular Biology, 229: 448 - 460, 1993.
-
(1993)
Journal of Molecular Biology
, vol.229
, pp. 448-460
-
-
Kang, H.S.1
Kurochkina, N.A.2
Lee, B.3
-
154
-
-
0038278386
-
Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry
-
R. Karchin, M. Cline, Y. Mandel - Gutfreund, and K. Karplus. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins, 51: 504 - 514, 2003.
-
(2003)
Proteins
, vol.51
, pp. 504-514
-
-
Karchin, R.1
Cline, M.2
Mandel-Gutfreund, Y.3
Karplus, K.4
-
155
-
-
3543101355
-
Protein backbone angle prediction with machine learning approaches
-
R. Kuang, C. S. Lesliei, and A. - S. Yang. Protein backbone angle prediction with machine learning approaches. Bioinformatics, 20: 1612 - 1621, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 1612-1621
-
-
Kuang, R.1
Lesliei, C.S.2
Yang, A.-S.3
-
156
-
-
54949103617
-
PREDICT -2ND: A tool for generalized protein local structure prediction
-
S. Katzman, C. Barrett, G. Thiltgen, R. Karchin, and K. Karplus. PREDICT -2ND: A tool for generalized protein local structure prediction. Bioinformatics, 24: 2453 - 2459, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. 2453-2459
-
-
Katzman, S.1
Barrett, C.2
Thiltgen, G.3
Karchin, R.4
Karplus, K.5
-
157
-
-
33646195908
-
Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information
-
J.N. Song, K. Burrage, Z. Yuan, and T. Huber. Prediction of cis/trans isomerization in proteins using PSI - BLAST profiles and secondary structure information. BMC Bioinformatics, 7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Song, J.N.1
Burrage, K.2
Yuan, Z.3
Huber, T.4
-
158
-
-
84986522918
-
ICM: A new method for structure modeling and design: Applications to docking and structure prediction from the distorted native conformation
-
R.A. Abagyan, M.M. Totrov, and D.A. Kuznetsov. ICM: A new method for structure modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15: 488 - 506, 1994.
-
(1994)
Journal of Computational Chemistry
, vol.15
, pp. 488-506
-
-
Abagyan, R.A.1
Totrov, M.M.2
Kuznetsov, D.A.3
-
159
-
-
0028070557
-
Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement
-
L.M. Rice and A.T. Brunger. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins, 19: 277 - 290, 1994.
-
(1994)
Proteins
, vol.19
, pp. 277-290
-
-
Rice, L.M.1
Brunger, A.T.2
-
160
-
-
0029065204
-
De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology
-
J.S. Evans, A.M. Mathiowetz, S.I. Chan, and W.A. Goddard III. De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology. Protein Science, 4: 1203 - 1216, 1995.
-
(1995)
Protein Science
, vol.4
, pp. 1203-1216
-
-
Evans, J.S.1
Mathiowetz, A.M.2
Chan, S.I.3
Goddard III, W.A.4
-
161
-
-
0026009212
-
Prediction of protein backbone conformation based on seven structure assignments
-
M.J. Rooman, J.P. Kocher, and S.J. Wodak. Prediction of protein backbone conformation based on seven structure assignments. Infl uence of local interactions. Journal of Molecular Biology, 221: 961 - 979, 1991.
-
(1991)
Infl uence of local interactions, Journal of Molecular Biology
, vol.221
, pp. 961-979
-
-
Rooman, M.J.1
Kocher, J.P.2
Wodak, S.J.3
-
162
-
-
0029063717
-
The complexity and accuracy of discrete state models of protein structure
-
B.H. Park and M. Levitt. The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology, 249: 493 - 507, 1995.
-
(1995)
Journal of Molecular Biology
, vol.249
, pp. 493-507
-
-
Park, B.H.1
Levitt, M.2
-
163
-
-
0030631230
-
Discrete representations of the protein C α chain
-
X.F. de la Cruz, M.W Mahoney, and B. Lee. Discrete representations of the protein C α chain. Folding & Design, 2: 223 - 234, 1997.
-
(1997)
Folding & Design
, vol.2
, pp. 223-234
-
-
de la Cruz, X.F.1
Mahoney, M.W.2
Lee, B.3
-
164
-
-
0034669774
-
Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks
-
A.G. de Brevern, C. Etchebest, and S. Hazout. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins, 41: 271 - 287, 2000.
-
(2000)
Proteins
, vol.41
, pp. 271-287
-
-
de Brevern, A.G.1
Etchebest, C.2
Hazout, S.3
-
166
-
-
33748528618
-
Genetic algorithms for protein conformation sampling and optimization in a discrete backbone dihedral angle space
-
Y. Yang and H. Liu. Genetic algorithms for protein conformation sampling and optimization in a discrete backbone dihedral angle space. Journal Computational Chemistry, 27: 1593 - 1602, 2006.
-
(2006)
Journal Computational Chemistry
, vol.27
, pp. 1593-1602
-
-
Yang, Y.1
Liu, H.2
-
167
-
-
0032555696
-
Prediction of local structure in proteins using a library of sequence-structure motifs
-
C. Bystroff and D. Baker. Prediction of local structure in proteins using a library of sequence - structure motifs. Journal of Molecular Biology, 281: 565 - 577, 1998.
-
(1998)
Journal of Molecular Biology
, vol.281
, pp. 565-577
-
-
Bystroff, C.1
Baker, D.2
-
168
-
-
0034604368
-
HMMSTR: A hidden Markov model for local sequence-structure correlations in proteins
-
C. Bystroff, V. Thorsson, and D. Baker. HMMSTR: A hidden Markov model for local sequence - structure correlations in proteins. Journal of Molecular Biology, 301: 173 - 190, 2000.
-
(2000)
Journal of Molecular Biology
, vol.301
, pp. 173-190
-
-
Bystroff, C.1
Thorsson, V.2
Baker, D.3
-
169
-
-
10044280765
-
Local backbone structure prediction of proteins
-
A.G. de Brevern, C. Benros, R. Gautier, H. Valadie, S. Hazout, and C. Etchebest. Local backbone structure prediction of proteins. In Silico Biology, 4: 31, 2004.
-
(2004)
In Silico Biology
, vol.4
, pp. 31
-
-
de Brevern, A.G.1
Benros, C.2
Gautier, R.3
Valadie, H.4
Hazout, S.5
Etchebest, C.6
-
170
-
-
18844454820
-
A structural alphabet for local protein structures: Improved prediction methods
-
C. Etchebest, C. Benros, S. Hazout, and A.G. de Brevern. A structural alphabet for local protein structures: Improved prediction methods. Proteins, 59: 810 - 827, 2005.
-
(2005)
Proteins
, vol.59
, pp. 810-827
-
-
Etchebest, C.1
Benros, C.2
Hazout, S.3
de Brevern, A.G.4
-
171
-
-
33144460796
-
Local protein structure prediction using discriminative models
-
O. Sander, I. Sommer, and T. Lengauer. Local protein structure prediction using discriminative models. BMC Bioinformatics, 7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Sander, O.1
Sommer, I.2
Lengauer, T.3
-
172
-
-
33644840330
-
Assessing a novel approach for predicting local 3D protein structures from sequence
-
C. Benros, A.G. de Brevern, C. Etchebest, and S. Hazout. Assessing a novel approach for predicting local 3D protein structures from sequence. Proteins, 62: 865 - 880, 2006.
-
(2006)
Proteins
, vol.62
, pp. 865-880
-
-
Benros, C.1
de Brevern, A.G.2
Etchebest, C.3
Hazout, S.4
-
173
-
-
33947526348
-
" Pinning strategy ": A novel approach for predicting the backbone structure in terms of protein blocks from sequence
-
A.G. De Brevern, C. Etchebest, C. Benros, and S. Hazout. " Pinning strategy ": A novel approach for predicting the backbone structure in terms of protein blocks from sequence. Journal of Biosciences, 32: 51 - 70, 2007.
-
(2007)
Journal of Biosciences
, vol.32
, pp. 51-70
-
-
De Brevern, A.G.1
Etchebest, C.2
Benros, C.3
Hazout, S.4
-
174
-
-
33845366830
-
Support vector machines for prediction of dihedral angle regions
-
O. Zimmermann and U.H.E. Hansmann. Support vector machines for prediction of dihedral angle regions. Bioinformatics, 22: 3009 - 3015, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 3009-3015
-
-
Zimmermann, O.1
Hansmann, U.H.E.2
-
175
-
-
54249084066
-
LOCUSTRA: Accurate prediction of local protein structure using a two-layer support vector machine approach
-
O. Zimmermann and U.H.E. Hansmann. LOCUSTRA: Accurate prediction of local protein structure using a two - layer support vector machine approach. Journal of Chemical Information and Modeling, 48: 1903 - 1908, 2008.
-
(2008)
Journal of Chemical Information and Modeling
, vol.48
, pp. 1903-1908
-
-
Zimmermann, O.1
Hansmann, U.H.E.2
-
176
-
-
44949123664
-
Analysis and prediction of protein local structure based on structure alphabets
-
Q. Dong, X. Wang, L. Lin, and Y. Wang. Analysis and prediction of protein local structure based on structure alphabets. Proteins, 72: 163 - 172, 2008.
-
(2008)
Proteins
, vol.72
, pp. 163-172
-
-
Dong, Q.1
Wang, X.2
Lin, L.3
Wang, Y.4
-
177
-
-
48249155051
-
A generative, probabilistic model of local protein structure
-
W. Boomsma, K.V. Mardia, C.C. Taylor, J. Ferkinghoff - Borg, A. Krogh, and T. Hamelryck. A generative, probabilistic model of local protein structure. Proceedings of the National Academy of Science U S A, 105 (26): 8932 - 8937.
-
Proceedings of the National Academy of Science U S A
, vol.105
, Issue.26
, pp. 8932-8937
-
-
Boomsma, W.1
Mardia, K.V.2
Taylor, C.C.3
Ferkinghoff-Borg, J.4
Krogh, A.5
Hamelryck, T.6
-
178
-
-
46449123146
-
MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information
-
S. Wu and Y. Zhang. MUSTER: Improving protein sequence profile - profile alignments by using multiple sources of structure information. Proteins, 72: 547 - 556, 2008.
-
(2008)
Proteins
, vol.72
, pp. 547-556
-
-
Wu, S.1
Zhang, Y.2
-
179
-
-
48449085801
-
SP 5: Improving protein fold recognition by using predicted torsion angles and profile-based gap penalty
-
W. Zhang, S. Liu, and Y. Zhou. SP 5: Improving protein fold recognition by using predicted torsion angles and profile - based gap penalty. PLoS ONE, 6: e2325, 2008.
-
(2008)
PLoS ONE
, vol.6
-
-
Zhang, W.1
Liu, S.2
Zhou, Y.3
-
180
-
-
32544461476
-
Improved pairwise alignments of proteins in the twilight zone using local structure predictions
-
Y.M. Huang and C. Bystroff. Improved pairwise alignments of proteins in the twilight zone using local structure predictions. Bioinformatics, 22: 413 - 422, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 413-422
-
-
Huang, Y.M.1
Bystroff, C.2
-
181
-
-
0025729007
-
A nuclear magnetic resonance study of the hydrogen -exchange behavior of lysozyme in crystals and solution
-
T.G. Pedersen, B.W. Sigurskjold, K.V. Andersen, M. Kjaer, F.M. Poulsen, C.M. Dobson, and C. Redfield. A nuclear magnetic resonance study of the hydrogen -exchange behavior of lysozyme in crystals and solution. Journal of Molecular Biology, 218: 413 - 426, 1991.
-
(1991)
Journal of Molecular Biology
, vol.218
, pp. 413-426
-
-
Pedersen, T.G.1
Sigurskjold, B.W.2
Andersen, K.V.3
Kjaer, M.4
Poulsen, F.M.5
Dobson, C.M.6
Redfield, C.7
-
182
-
-
0033565815
-
Residue depth: a novel parameter for the analysis of protein structure and stability
-
S. Chakravarty and R. Varadarajan. Residue depth: a novel parameter for the analysis of protein structure and stability. Structure with Folding and Design, 15: 723 - 732, 1999.
-
(1999)
Structure with Folding and Design
, vol.15
, pp. 723-732
-
-
Chakravarty, S.1
Varadarajan, R.2
-
183
-
-
0036568293
-
Prediction of coordination number and relative solvent accessibility in proteins
-
G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio. Prediction of coordination number and relative solvent accessibility in proteins. Proteins, 47: 142 - 153, 2002.
-
(2002)
Proteins
, vol.47
, pp. 142-153
-
-
Pollastri, G.1
Baldi, P.2
Fariselli, P.3
Casadio, R.4
-
184
-
-
14644400399
-
An amino acid has two sides: A new 2D measure provides a different view of solvent exposure
-
T. Hamelryck. An amino acid has two sides: A new 2D measure provides a different view of solvent exposure. Proteins, 59: 38 - 48, 2005.
-
(2005)
Proteins
, vol.59
, pp. 38-48
-
-
Hamelryck, T.1
-
185
-
-
41349105501
-
Prediction of recursive convex hull class assignments for protein residues
-
M. Stout, J. Bacardit, J.D. Hirst, and N. Krasnogor. Prediction of recursive convex hull class assignments for protein residues. Bioinformatics, 24: 916 - 923, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. 916-923
-
-
Stout, M.1
Bacardit, J.2
Hirst, J.D.3
Krasnogor, N.4
-
186
-
-
37849034569
-
Quantifying the relationship of protein burying depth and sequence
-
Z. Yuan and Z.X. Wang. Quantifying the relationship of protein burying depth and sequence. Proteins, 70: 509 - 516, 2008.
-
(2008)
Proteins
, vol.70
, pp. 509-516
-
-
Yuan, Z.1
Wang, Z.X.2
-
187
-
-
54049091165
-
Sequence based residue depth prediction using evolutionary information and predicted secondary structure
-
H. Zhang, T. Zhang, K. Chen, S. Shen, J. Ruan, and L. Kurgan. Sequence based residue depth prediction using evolutionary information and predicted secondary structure. BMC Bioinformatics, 9, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Zhang, H.1
Zhang, T.2
Chen, K.3
Shen, S.4
Ruan, J.5
Kurgan, L.6
-
188
-
-
0035102734
-
RCNPRED: Prediction of the residue co-ordination numbers in proteins
-
P. Fariselli and R. Casadio. RCNPRED: Prediction of the residue co - ordination numbers in proteins. Bioinformatics, 17: 202 - 203, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 202-203
-
-
Fariselli, P.1
Casadio, R.2
-
189
-
-
0038702154
-
Q(9), a content-balancing accuracy index to evaluate algorithms of protein secondary structure prediction
-
C.T. Zhang and R. Zhang. Q(9), a content - balancing accuracy index to evaluate algorithms of protein secondary structure prediction. International Journal of Biochemistry & Cell Biology, 35: 1256 - 1262, 2003.
-
(2003)
International Journal of Biochemistry & Cell Biology
, vol.35
, pp. 1256-1262
-
-
Zhang, C.T.1
Zhang, R.2
-
190
-
-
33749357045
-
CRNPRED: Highly accurate prediction of one -dimensional protein structures by large-scale critical random networks
-
A.R. Kinjo and K. Nishikawa. CRNPRED: Highly accurate prediction of one -dimensional protein structures by large - scale critical random networks. BMC Bioinformatics, 7: 401, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 401
-
-
Kinjo, A.R.1
Nishikawa, K.2
-
191
-
-
33748468024
-
Potential for assessing quality of protein structure based on contact number prediction
-
T. Ishida, S. Nakamura, and K. Shimizu. Potential for assessing quality of protein structure based on contact number prediction. Proteins, 64: 940 - 947, 2006.
-
(2006)
Proteins
, vol.64
, pp. 940-947
-
-
Ishida, T.1
Nakamura, S.2
Shimizu, K.3
-
192
-
-
46249133956
-
HSEpred: Predict half-sphere exposure from protein sequences
-
J. Song, H. Tan, K. Takemoto, and T. Akutsu. HSEpred: Predict half - sphere exposure from protein sequences. Bioinformatics, 24: 1489 - 1497, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. 1489-1497
-
-
Song, J.1
Tan, H.2
Takemoto, K.3
Akutsu, T.4
-
193
-
-
0025039476
-
Predicting surface exposure of amino acids from protein sequence
-
S.R. Hobrook, S.M. Mushal, and S.H. Kim. Predicting surface exposure of amino acids from protein sequence. Protein Engineering, 3: 659 - 665, 1990.
-
(1990)
Protein Engineering
, vol.3
, pp. 659-665
-
-
Hobrook, S.R.1
Mushal, S.M.2
Kim, S.H.3
-
194
-
-
0028109886
-
Conservation and prediction of solvent accessibility in protein families
-
B. Rost and C. Sander. Conservation and prediction of solvent accessibility in protein families. Proteins, 20: 216 - 226, 1994.
-
(1994)
Proteins
, vol.20
, pp. 216-226
-
-
Rost, B.1
Sander, C.2
-
196
-
-
0032147008
-
Easy method to predict solvent accessibility from multiple protein sequence alignments
-
S. Pascarella, R. De Persio, F. Bossa, and P. Argos. Easy method to predict solvent accessibility from multiple protein sequence alignments. Proteins, 32: 190 - 199, 1999.
-
(1999)
Proteins
, vol.32
, pp. 190-199
-
-
Pascarella, S.1
De Persio, R.2
Bossa, F.3
Argos, P.4
-
197
-
-
0035189668
-
New method for accurate prediction of solvent accessibility from protein sequence
-
X. Li and X. Pan. New method for accurate prediction of solvent accessibility from protein sequence. Proteins, 42: 1 - 5, 2001.
-
(2001)
Proteins
, vol.42
, pp. 1-5
-
-
Li, X.1
Pan, X.2
-
198
-
-
0036303121
-
NETASA: Neural network based prediction of solvent accessibility
-
S. Ahmad and M.M. Gromiha. NETASA: Neural network based prediction of solvent accessibility. Bioinformatics, 18: 819 - 824, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 819-824
-
-
Ahmad, S.1
Gromiha, M.M.2
-
199
-
-
26444473604
-
Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
-
A. Garg, H. Kaur, and G.P.S. Raghava. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins, 61: 318 - 324, 2005.
-
(2005)
Proteins
, vol.61
, pp. 318-324
-
-
Garg, A.1
Kaur, H.2
Raghava, G.P.S.3
-
200
-
-
15544379998
-
Solvent accessibility in native and isolated domain environments: general features and implications to interface predictability
-
M.F. Raih, S. Ahmad, R. Zheng, and R. Mohamed. Solvent accessibility in native and isolated domain environments: general features and implications to interface predictability. Biophysical Chemistry, 114: 63 - 69, 2005.
-
(2005)
Biophysical Chemistry
, vol.114
, pp. 63-69
-
-
Raih, M.F.1
Ahmad, S.2
Zheng, R.3
Mohamed, R.4
-
201
-
-
0037103004
-
Prediction of protein solvent accessibility using support vector machines
-
Z. Yuan, K. Burrage, and J.S. Mattick. Prediction of protein solvent accessibility using support vector machines. Proteins, 48: 566 - 570, 2002.
-
(2002)
Proteins
, vol.48
, pp. 566-570
-
-
Yuan, Z.1
Burrage, K.2
Mattick, J.S.3
-
202
-
-
6344258643
-
Prediction of protein accessible surface areas by support vector regression
-
Z. Yuan and B. Huang. Prediction of protein accessible surface areas by support vector regression. Proteins, 57: 558 - 564, 2004.
-
(2004)
Proteins
, vol.57
, pp. 558-564
-
-
Yuan, Z.1
Huang, B.2
-
203
-
-
1442310611
-
Improvement in prediction of solvent accessibility by probability profiles
-
G. Gianese, F. Bossa, and S. Pascarella. Improvement in prediction of solvent accessibility by probability profiles. Protein Engineering, 16: 987 - 992, 2003.
-
(2003)
Protein Engineering
, vol.16
, pp. 987-992
-
-
Gianese, G.1
Bossa, F.2
Pascarella, S.3
-
204
-
-
1042268067
-
Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor
-
H. Kim and H. Park. Prediction of protein relative solvent accessibility with support vector machines and long - range interaction 3D local descriptor. Proteins, 54: 557 - 562, 2004.
-
(2004)
Proteins
, vol.54
, pp. 557-562
-
-
Kim, H.1
Park, H.2
-
205
-
-
0037340834
-
Real value prediction of solvent accessibility from amino acid sequence
-
S. Ahmad, M.M. Gromiha, and A. Sarai. Real value prediction of solvent accessibility from amino acid sequence. Proteins, 50: 629 - 635, 2003.
-
(2003)
Proteins
, vol.50
, pp. 629-635
-
-
Ahmad, S.1
Gromiha, M.M.2
Sarai, A.3
-
206
-
-
4043052866
-
Accurate prediction of solvent accessibility using neural networks-based regression
-
R. Adamczak, A. Porollo, and J. Meller. Accurate prediction of solvent accessibility using neural networks - based regression. Proteins, 56: 753 - 767, 2004.
-
(2004)
Proteins
, vol.56
, pp. 753-767
-
-
Adamczak, R.1
Porollo, A.2
Meller, J.3
-
207
-
-
27544475311
-
Prediction and evolutionary information analysis of protein solvent accessibility using multiple linear regression
-
J. Wang, H. Lee, and S. Ahmad. Prediction and evolutionary information analysis of protein solvent accessibility using multiple linear regression. Proteins, 61: 481 - 491, 2005.
-
(2005)
Proteins
, vol.61
, pp. 481-491
-
-
Wang, J.1
Lee, H.2
Ahmad, S.3
-
208
-
-
33646864744
-
QBES: Predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization
-
Z. Xu, C. Zhang, S. Liu, and Y. Zhou. QBES: Predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization. Proteins, 63: 961 - 966, 2006.
-
(2006)
Proteins
, vol.63
, pp. 961-966
-
-
Xu, Z.1
Zhang, C.2
Liu, S.3
Zhou, Y.4
-
209
-
-
0035283141
-
Prediction of protein surface accessibility with information theory
-
H. Naderi - Manesh, M. Sadeghi, S. Arab, and A.A.M. Movahedi. Prediction of protein surface accessibility with information theory. Proteins, 42: 452 - 459, 2001.
-
(2001)
Proteins
, vol.42
, pp. 452-459
-
-
Naderi-Manesh, H.1
Sadeghi, M.2
Arab, S.3
Movahedi, A.A.M.4
-
210
-
-
34447506573
-
Fold recognition by concurrent use of solvent accessibility and residue depth
-
S. Liu, C. Zhang, S. Liang, and Y. Zhou. Fold recognition by concurrent use of solvent accessibility and residue depth. Proteins, 68: 636 - 645, 2007.
-
(2007)
Proteins
, vol.68
, pp. 636-645
-
-
Liu, S.1
Zhang, C.2
Liang, S.3
Zhou, Y.4
-
211
-
-
20144377620
-
Prediction of solvent accessibility and sites of deleterious mutations from protein sequence
-
H.L. Chen and H.X. Zhou. Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Research, 33: 3193 - 3199, 2005.
-
(2005)
Nucleic Acids Research
, vol.33
, pp. 3193-3199
-
-
Chen, H.L.1
Zhou, H.X.2
-
212
-
-
33644837197
-
SSALN: An alignment algorithm using structure-dependent substitution matrices and gap penalties learned from structurally aligned protein pairs
-
J. Qiu and R. Elber. SSALN: An alignment algorithm using structure - dependent substitution matrices and gap penalties learned from structurally aligned protein pairs. Proteins, 62: 881 - 891, 2006.
-
(2006)
Proteins
, vol.62
, pp. 881-891
-
-
Qiu, J.1
Elber, R.2
-
213
-
-
17844392864
-
Combining prediction of secondary structure and solvent accessibility in proteins
-
R. Adamczak, A. Porollo, and J. Meller. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins, 59: 467 - 475, 2005.
-
(2005)
Proteins
, vol.59
, pp. 467-475
-
-
Adamczak, R.1
Porollo, A.2
Meller, J.3
-
214
-
-
0344033683
-
A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function
-
V.G. Krishnan and D.R. Westhead. A comparative study of machine - learning methods to predict the effects of single nucleotide polymorphisms on protein function. Bioinformatics, 19: 2199 - 2209, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 2199-2209
-
-
Krishnan, V.G.1
Westhead, D.R.2
-
215
-
-
33745862379
-
Predicting deleterious nsSNPs: an analysis of sequence and structural attributes
-
R.J. Dobson, P.B. Munroe, M.J. Caulfield, and M.A.S. Saqi. Predicting deleterious nsSNPs: an analysis of sequence and structural attributes. BMC Bioinformatics, 7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Dobson, R.J.1
Munroe, P.B.2
Caulfield, M.J.3
Saqi, M.A.S.4
-
216
-
-
53749105617
-
SNAP predicts effect of mutations on protein function
-
Y. Bromberg, G. Yachdav, and B. Rost. SNAP predicts effect of mutations on protein function. Bioinformatics, 24: 2397 - 2398, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. 2397-2398
-
-
Bromberg, Y.1
Yachdav, G.2
Rost, B.3
-
217
-
-
0038356582
-
Predicted protein-protein interaction sites from local sequence information
-
Y. Ofran and B. Rost. Predicted protein - protein interaction sites from local sequence information. FEBS Letters, 544: 236 - 239, 2003.
-
(2003)
FEBS Letters
, vol.544
, pp. 236-239
-
-
Ofran, Y.1
Rost, B.2
-
218
-
-
33846200437
-
Prediction-based fingerprints of protein-protein interactions
-
A. Porollo and J. Meller. Prediction - based fingerprints of protein - protein interactions. Proteins, 66: 630 - 645, 2007.
-
(2007)
Proteins
, vol.66
, pp. 630-645
-
-
Porollo, A.1
Meller, J.2
-
219
-
-
0043180474
-
PISCES: a protein sequence culling server
-
G. Wang and R.L. Jr. Dunbrack. PISCES: a protein sequence culling server. Bioinformatics, 19: 1589 - 1591, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 1589-1591
-
-
Wang, G.1
Dunbrack, R.L.2
-
220
-
-
0022471098
-
Learning representations by backpropagating errors
-
D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by backpropagating errors. Nature, 323: 533 - 536, 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
221
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. Gapped BLAST and PSI - BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25: 3389 - 3402, 1997.
-
(1997)
Nucleic Acids Research
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
Madden, T.L.2
Schäffer, A.A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.J.7
-
222
-
-
70350738241
-
Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
-
E. Faraggi, Y. Yang, S. Zhang, and Y. Zhou. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment - free protein structure prediction. Structure, 17: 1515 - 1527, 2009.
-
(2009)
Structure
, vol.17
, pp. 1515-1527
-
-
Faraggi, E.1
Yang, Y.2
Zhang, S.3
Zhou, Y.4
|