메뉴 건너뛰기




Volumn , Issue , 2010, Pages 45-74

Prediction of One-Dimensional Structural Properties Of Proteins by Integrated Neural Networks

Author keywords

Direct prediction of three dimensional structures from protein sequences, being challenging; Prediction of one dimensional structural properties of proteins by integrated neural networks; Protein structure prediction, challenging problems more accurate prediction of one dimensional structural properties

Indexed keywords


EID: 84878372856     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470882207.ch4     Document Type: Chapter
Times cited : (14)

References (222)
  • 1
    • 33847073796 scopus 로고    scopus 로고
    • Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training
    • O. Dor and Y. Zhou. Achieving 80% ten - fold cross - validated accuracy for secondary structure prediction by large - scale training. Proteins, 66: 838 - 845, 2007.
    • (2007) Proteins , vol.66 , pp. 838-845
    • Dor, O.1    Zhou, Y.2
  • 2
    • 34249914807 scopus 로고    scopus 로고
    • Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties
    • O. Dor and Y. Zhou. Real - SPINE: An integrated system of neural networks for real - value prediction of protein structural properties. Proteins, 68: 76 - 81, 2007.
    • (2007) Proteins , vol.68 , pp. 76-81
    • Dor, O.1    Zhou, Y.2
  • 3
    • 44949201613 scopus 로고    scopus 로고
    • Real-value prediction of backbone torsion angles
    • B. Xue, O. Dor, E. Faraggi, and Y. Zhou. Real - value prediction of backbone torsion angles. Proteins, 72: 427 - 433, 2008.
    • (2008) Proteins , vol.72 , pp. 427-433
    • Xue, B.1    Dor, O.2    Faraggi, E.3    Zhou, Y.4
  • 4
    • 77956536708 scopus 로고    scopus 로고
    • Improving the accuracy of predicting real-value backbone torsion angles and residue solvent accessibility by guided learning through two-layer neural networks
    • E. Faraggi, B. Xue, and Y. Zhou. Improving the accuracy of predicting real - value backbone torsion angles and residue solvent accessibility by guided learning through two - layer neural networks. Proteins, 74: 857 - 871, 2009.
    • (2009) Proteins , vol.74 , pp. 857-871
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 5
    • 33745101459 scopus 로고    scopus 로고
    • DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent accessibility, and recursive neural networks
    • J. Cheng, M.J. Sweredoski, and P. Baldi. DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent accessibility, and recursive neural networks. Data Mining and Knowledge Discovery, 13: 1 - 10, 2006.
    • (2006) Data Mining and Knowledge Discovery , vol.13 , pp. 1-10
    • Cheng, J.1    Sweredoski, M.J.2    Baldi, P.3
  • 6
    • 32144434539 scopus 로고    scopus 로고
    • SSEP-Domain: Protein domain prediction by alignment of secondary structure elements and profiles
    • J. E. Gewehr and R. Zimmer. SSEP - Domain: Protein domain prediction by alignment of secondary structure elements and profiles. Bioinformatics, 22: 181 - 187, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 181-187
    • Gewehr, J.E.1    Zimmer, R.2
  • 8
    • 24344503079 scopus 로고    scopus 로고
    • Protein fl exibility and rigidity predicted from sequence
    • A. Schlessinger and B. Rost. Protein fl exibility and rigidity predicted from sequence. Proteins, 61: 115 - 126, 2005.
    • (2005) Proteins , vol.61 , pp. 115-126
    • Schlessinger, A.1    Rost, B.2
  • 9
    • 13944277320 scopus 로고    scopus 로고
    • Prediction of protein B-factor profiles
    • Z. Yuan, T. L. Bailey, and R. D. Teasdale. Prediction of protein B - factor profiles. Proteins, 58: 905 - 912, 2005.
    • (2005) Proteins , vol.58 , pp. 905-912
    • Yuan, Z.1    Bailey, T.L.2    Teasdale, R.D.3
  • 11
    • 0034584899 scopus 로고    scopus 로고
    • Proteins that convert from alpha helix to beta sheet: Implications for folding and disease
    • M. Gross. Proteins that convert from alpha helix to beta sheet: Implications for folding and disease. Current Protein & Peptide Science, 1: 339 - 347, 2000.
    • (2000) Current Protein & Peptide Science , vol.1 , pp. 339-347
    • Gross, M.1
  • 12
    • 44949083561 scopus 로고    scopus 로고
    • Ordered conformational change in the protein backbone: Prediction of conformationally variable positions from sequence and low -resolution structural data
    • I. B. Kuznetsov. Ordered conformational change in the protein backbone: Prediction of conformationally variable positions from sequence and low -resolution structural data. Proteins, 72: 74 - 87, 2008.
    • (2008) Proteins , vol.72 , pp. 74-87
    • Kuznetsov, I.B.1
  • 13
    • 33748258328 scopus 로고    scopus 로고
    • A practical overview of protein disorder prediction methods
    • F. Ferron, S. Longhi, B. Canard, and D. Karlin. A practical overview of protein disorder prediction methods. Proteins, 65: 1 - 14, 2006.
    • (2006) Proteins , vol.65 , pp. 1-14
    • Ferron, F.1    Longhi, S.2    Canard, B.3    Karlin, D.4
  • 15
    • 34247640113 scopus 로고    scopus 로고
    • Predicting protein disorder and induced folding: From theoretical principles to practical applications
    • J. M. Bourhis, B. Canard, and S. Longhi. Predicting protein disorder and induced folding: From theoretical principles to practical applications. Current Protein & Peptide Science, 8: 135 - 149, 2007.
    • (2007) Current Protein & Peptide Science , vol.8 , pp. 135-149
    • Bourhis, J.M.1    Canard, B.2    Longhi, S.3
  • 17
    • 67650680261 scopus 로고    scopus 로고
    • A kernel framework for protein residue annotation
    • T. Theeramunkong, B. Kijsirikul, N. Cercone, and T.-B. Ho (Eds.), Bangkok, Thailand, April 27-30, 2009, Proceedings; Lecture Notes in Computer Science. Springer
    • H. Rangwala, C. Kauffman, and G. Karypis. A kernel framework for protein residue annotation. In T. Theeramunkong, B. Kijsirikul, N. Cercone, and T. - B. Ho (Eds.), Advances in Knowledge Discovery and Data Mining, 13th Pacific - Asia Conference, PAKDD 2009. Bangkok, Thailand, April 27 - 30, 2009, Proceedings; Lecture Notes in Computer Science, vol. 5476, pp. 439 - 451. Springer, 2009.
    • (2009) Advances in Knowledge Discovery and Data Mining, 13th Pacific-Asia Conference, PAKDD 2009 , vol.5476 , pp. 439-451
    • Rangwala, H.1    Kauffman, C.2    Karypis, G.3
  • 18
    • 10344224512 scopus 로고    scopus 로고
    • Relationship between local structural entropy and protein thermostabilty
    • C. - H. Chan, H. - K. Liang, N. - W. Hsi, M. - T. Ko, P. - C. Lyu, and J. - K. Hwang. Relationship between local structural entropy and protein thermostabilty. Proteins, 57: 684 - 691, 2004.
    • (2004) Proteins , vol.57 , pp. 684-691
    • Chan, C.-H.1    Liang, H.-K.2    Hsi, N.-W.3    Ko, M.-T.4    Lyu, P.-C.5    Hwang, J.-K.6
  • 19
    • 18844375632 scopus 로고    scopus 로고
    • Computation of conformational entropy from protein sequences using the machine-learning method-Application to the study of the relationship between structural conservation and local structural stability
    • S. W. Huang and J. K. Hwang. Computation of conformational entropy from protein sequences using the machine - learning method - Application to the study of the relationship between structural conservation and local structural stability. Proteins, 59: 802 - 809, 2005.
    • (2005) Proteins , vol.59 , pp. 802-809
    • Huang, S.W.1    Hwang, J.K.2
  • 20
    • 33747150197 scopus 로고    scopus 로고
    • Protein binding site prediction with an empirical scoring function
    • S. Liang, C. Zhang, S. Liu, and Y. Zhou. Protein binding site prediction with an empirical scoring function. Nucleic Acids Research, 34: 3698 - 3707, 2006.
    • (2006) Nucleic Acids Research , vol.34 , pp. 3698-3707
    • Liang, S.1    Zhang, C.2    Liu, S.3    Zhou, Y.4
  • 21
    • 48249145694 scopus 로고    scopus 로고
    • Computational identification of ubiquitylation sites from protein sequences
    • C.W. Tung and S.Y. Ho. Computational identification of ubiquitylation sites from protein sequences. BMC Bioinformatics, 9: 310, 2008.
    • (2008) BMC Bioinformatics , vol.9 , pp. 310
    • Tung, C.W.1    Ho, S.Y.2
  • 22
    • 40049091146 scopus 로고    scopus 로고
    • Prediction of protein functional residues from sequence by probability density estimation
    • J.D. Fischer, C.E. Mayer, and J. Soeding. Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics, 24: 613 - 620, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 613-620
    • Fischer, J.D.1    Mayer, C.E.2    Soeding, J.3
  • 23
    • 34047094501 scopus 로고    scopus 로고
    • DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins
    • S. Hwang, Z. Gou, and I.B. Kuznetsov. DP - Bind: a web server for sequence - based prediction of DNA - binding residues in DNA - binding proteins. Bioinformatics, 23: 634 - 636, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 634-636
    • Hwang, S.1    Gou, Z.2    Kuznetsov, I.B.3
  • 24
    • 25444524842 scopus 로고    scopus 로고
    • PSSM-based prediction of DNA binding sites in proteins
    • S. Ahmad and A. Sarai. PSSM - based prediction of DNA binding sites in proteins. BMC Bioinformatics, 6: 33, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 33
    • Ahmad, S.1    Sarai, A.2
  • 25
    • 10344242920 scopus 로고    scopus 로고
    • Sequence-based prediction of pathological mutations
    • C. Ferrer - Costa, M. Orozco, and X. de la Cruz. Sequence - based prediction of pathological mutations. Proteins, 57: 811 - 819, 2004.
    • (2004) Proteins , vol.57 , pp. 811-819
    • Ferrer-Costa, C.1    Orozco, M.2    de la Cruz, X.3
  • 26
    • 49449087313 scopus 로고    scopus 로고
    • Predicting subcellular localization of mycobacterial proteins by using Chou ' s pseudo amino acid composition
    • H. Lin, H. Ding, F.B. Guo, A.Y. Zhang, and J. Huang. Predicting subcellular localization of mycobacterial proteins by using Chou ' s pseudo amino acid composition. Protein & Peptide Letters, 15: 739 - 744, 2008.
    • (2008) Protein & Peptide Letters , vol.15 , pp. 739-744
    • Lin, H.1    Ding, H.2    Guo, F.B.3    Zhang, A.Y.4    Huang, J.5
  • 27
    • 33646488342 scopus 로고    scopus 로고
    • Distinguishing protein-coding from non-coding RNAs through support vector machines
    • J. Liu, J. Gough, and B. Rost. Distinguishing protein - coding from non - coding RNAs through support vector machines. PLOS Genetics, 2: 529 - 536, 2006.
    • (2006) PLOS Genetics , vol.2 , pp. 529-536
    • Liu, J.1    Gough, J.2    Rost, B.3
  • 28
    • 33746950964 scopus 로고    scopus 로고
    • Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties
    • N.V. Petrova and C.H. Wu. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. BMC Bioinformatics, 7: 312, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 312
    • Petrova, N.V.1    Wu, C.H.2
  • 29
    • 53749083563 scopus 로고    scopus 로고
    • Accurate sequence-based prediction of catalytic residues
    • T. Zhang, H. Zhang, K. Chen, S. Shen, J. Ruan, and L. Kurgan. Accurate sequence - based prediction of catalytic residues. Bioinformatics, 24: 2329 - 2338, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 2329-2338
    • Zhang, T.1    Zhang, H.2    Chen, K.3    Shen, S.4    Ruan, J.5    Kurgan, L.6
  • 30
    • 35648948885 scopus 로고    scopus 로고
    • Computational protein function prediction: Are we making progress?
    • A. Godzik, M. Jambon, and I. Friedberg. Computational protein function prediction: Are we making progress? Cellular & Molecular Life Sciences, 64: 2505 - 2511, 2007.
    • (2007) Cellular & Molecular Life Sciences , vol.64 , pp. 2505-2511
    • Godzik, A.1    Jambon, M.2    Friedberg, I.3
  • 31
    • 20744453541 scopus 로고    scopus 로고
    • Biological applications of support vector machines
    • Z.R. Yang. Biological applications of support vector machines. Briefings in Bioinformatics, 5: 328 - 338, 2004.
    • (2004) Briefings in Bioinformatics , vol.5 , pp. 328-338
    • Yang, Z.R.1
  • 32
    • 36748998785 scopus 로고    scopus 로고
    • Assessment of predictions submitted for the CASP7 function prediction category
    • G. Lopez, A. Rojas, M. Tress, and A. Valencia. Assessment of predictions submitted for the CASP7 function prediction category. Proteins, 69 (8): 165 - 174, 2007.
    • (2007) Proteins , vol.69 , Issue.8 , pp. 165-174
    • Lopez, G.1    Rojas, A.2    Tress, M.3    Valencia, A.4
  • 33
    • 0004053611 scopus 로고
    • New York: John Wiley & Sons, Inc.
    • D. Voet and J.G. Voet. Biochemistry. New York: John Wiley & Sons, Inc., 1995.
    • (1995) Biochemistry
    • Voet, D.1    Voet, J.G.2
  • 34
    • 0020997912 scopus 로고
    • Dictionary of protein structure: pattern recognition of hydrogen-bonded and geometrical features
    • W. Kabsch and C. Sander. Dictionary of protein structure: pattern recognition of hydrogen - bonded and geometrical features. Biopolymers, 22: 2577 - 2637, 1983.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 35
  • 36
    • 0000573263 scopus 로고
    • Configurations of the polypeptide chains with favored orientations around single bonds: Two new pleated sheets
    • L. Pauling and R.B. Corey. Configurations of the polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proceedings of the National Academy of Science U S A, 37: 729 - 740, 1951.
    • (1951) Proceedings of the National Academy of Science U S A , vol.37 , pp. 729-740
    • Pauling, L.1    Corey, R.B.2
  • 37
    • 0000628210 scopus 로고
    • Role of proline in polypeptide chain configuration of proteins
    • A.G. Szent - Gyorgyi and C. Cohen. Role of proline in polypeptide chain configuration of proteins. Science, 126: 697 - 698, 1957.
    • (1957) Science , vol.126 , pp. 697-698
    • Szent-Gyorgyi, A.G.1    Cohen, C.2
  • 39
    • 36949066642 scopus 로고
    • Structure of Haemoglobin: A Three-Dimensional Fourier Synthesis at 5 5 Å. Resolution
    • M.F. Perutz, M.G. Rossmann, A.F. Cullis, G. Muirhead, G. Will, and A.T North. Structure of Haemoglobin: A Three - Dimensional Fourier Synthesis at 5.5 Å. Resolution. Nature, 185: 416 - 422, 1960.
    • (1960) Nature , vol.185 , pp. 416-422
    • Perutz, M.F.1    Rossmann, M.G.2    Cullis, A.F.3    Muirhead, G.4    Will, G.5    North, A.T.6
  • 40
    • 0039891755 scopus 로고
    • Structural studies of ribonuclease III. A model for the secondary and tertiary structure
    • H.A. Scheraga. Structural studies of ribonuclease III. A model for the secondary and tertiary structure. Journal of the American Chemical Society, 82: 3847 - 3852, 1960.
    • (1960) Journal of the American Chemical Society , vol.82 , pp. 3847-3852
    • Scheraga, H.A.1
  • 41
    • 0015243875 scopus 로고
    • Statistical analysis of the correlation among amino acid residues in helical, β-structural and non-regular regions of globular proteins
    • A.V. Finkelstein and O.B. Ptitsyn. Statistical analysis of the correlation among amino acid residues in helical, β - structural and non - regular regions of globular proteins. Journal of Molecular Biology, 62: 613 - 624, 1971.
    • (1971) Journal of Molecular Biology , vol.62 , pp. 613-624
    • Finkelstein, A.V.1    Ptitsyn, O.B.2
  • 42
    • 0015987426 scopus 로고
    • Prediction of protein conformation
    • P.Y. Chou and U.D. Fasman. Prediction of protein conformation. Biochemistry, 13: 211 - 215, 1974.
    • (1974) Biochemistry , vol.13 , pp. 211-215
    • Chou, P.Y.1    Fasman, U.D.2
  • 43
    • 0015621284 scopus 로고
    • The infl uence of nearest-neighbor amino acids on the conformation of the middle amino acid in proteins: Comparison of predicted and experimental determination of β-sheets in concanavalin A
    • E.A. Kabat and T.T. Wu. The infl uence of nearest - neighbor amino acids on the conformation of the middle amino acid in proteins: Comparison of predicted and experimental determination of β - sheets in concanavalin A. Proceedings of the National Academy of Science U S A, 70: 1473 - 1477, 1973.
    • (1973) Proceedings of the National Academy of Science U S A , vol.70 , pp. 1473-1477
    • Kabat, E.A.1    Wu, T.T.2
  • 44
    • 0017166105 scopus 로고
    • Status of empirical methods for the prediction of protein backbone topography
    • F.R. Maxfield and H.A. Scheraga. Status of empirical methods for the prediction of protein backbone topography. Biochemistry, 15: 5138 - 5153, 1976.
    • (1976) Biochemistry , vol.15 , pp. 5138-5153
    • Maxfield, F.R.1    Scheraga, H.A.2
  • 46
    • 0026629597 scopus 로고
    • Use of conditional probabilities for determining relationships between amino acid sequence and protein secondary structure
    • G.E. Arnold, A.K. Dunker, S.J. Johns, and R.J. Douthart. Use of conditional probabilities for determining relationships between amino acid sequence and protein secondary structure. Proteins, 12: 382 - 399, 1992.
    • (1992) Proteins , vol.12 , pp. 382-399
    • Arnold, G.E.1    Dunker, A.K.2    Johns, S.J.3    Douthart, R.J.4
  • 47
    • 0023660653 scopus 로고
    • Prediction of protein secondary structure and active-sites using the alignment of homologous sequences
    • M.J. Zvelebil, G.J. Barton, W.R. Taylor, and M.J E. Sternberg. Prediction of protein secondary structure and active - sites using the alignment of homologous sequences. Journal of Molecular Biology, 195: 957 - 961, 1987.
    • (1987) Journal of Molecular Biology , vol.195 , pp. 957-961
    • Zvelebil, M.J.1    Barton, G.J.2    Taylor, W.R.3    Sternberg, M.J.E.4
  • 48
    • 0035782925 scopus 로고    scopus 로고
    • Review: Protein secondary structure prediction continues to rise
    • B. Rost. Review: Protein secondary structure prediction continues to rise. Journal of Structural Biology, 134: 204 - 218, 2001.
    • (2001) Journal of Structural Biology , vol.134 , pp. 204-218
    • Rost, B.1
  • 49
    • 3543143812 scopus 로고    scopus 로고
    • Integrating secondary structure prediction and multiple sequence alignment
    • V.A. Simossis and J. Heringa. Integrating secondary structure prediction and multiple sequence alignment. Current Protein and Peptide Science, 5: 1 - 15, 2004.
    • (2004) Current Protein and Peptide Science , vol.5 , pp. 1-15
    • Simossis, V.A.1    Heringa, J.2
  • 50
    • 0034334542 scopus 로고    scopus 로고
    • Computational methods for protein secondary structure prediction using multiple sequence alignments
    • J. Heringa. Computational methods for protein secondary structure prediction using multiple sequence alignments. Current Protein and Peptide Science, 1: 273 - 301, 2000.
    • (2000) Current Protein and Peptide Science , vol.1 , pp. 273-301
    • Heringa, J.1
  • 51
    • 71549152918 scopus 로고    scopus 로고
    • Machine learning techniques for protein secondary structure prediction: An overview and evaluation
    • P.D. Yoo, B.B. Zhou, and A.Y. Zomaya. Machine learning techniques for protein secondary structure prediction: An overview and evaluation. Current Bioinformatics, 3: 74 - 86, 2008.
    • (2008) Current Bioinformatics , vol.3 , pp. 74-86
    • Yoo, P.D.1    Zhou, B.B.2    Zomaya, A.Y.3
  • 52
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach
    • S. Hua and Z. Sun. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Journal of Molecular Biology, 308 (2): 397 - 407, 2001.
    • (2001) Journal of Molecular Biology , vol.308 , Issue.2 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 53
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • J.J. Ward, L.J. McGuffin, B.F. Buxton, and D.T. Jones. Secondary structure prediction with support vector machines. Bioinformatics, 19: 1650 - 1655, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 54
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • H. Kim and H. Park. Protein secondary structure prediction based on an improved support vector machines approach. Protein Engineering, 16: 553 - 560, 2003.
    • (2003) Protein Engineering , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 55
    • 10644246923 scopus 로고    scopus 로고
    • Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier
    • H.J. Hu, Y. Pan, R. Harrison, and P.C. Tai. Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Transactions on Nanobioscience, 3: 265 - 271, 2004.
    • (2004) IEEE Transactions on Nanobioscience , vol.3 , pp. 265-271
    • Hu, H.J.1    Pan, Y.2    Harrison, R.3    Tai, P.C.4
  • 56
    • 33644690605 scopus 로고    scopus 로고
    • Predicting protein secondary structure by a support vector machine based on a new coding scheme
    • L.H. Wang, Y.F. Li, J. Liu, and H.B. Zhou. Predicting protein secondary structure by a support vector machine based on a new coding scheme. Genome Informatics, 15: 181 - 190, 2004.
    • (2004) Genome Informatics , vol.15 , pp. 181-190
    • Wang, L.H.1    Li, Y.F.2    Liu, J.3    Zhou, H.B.4
  • 57
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • J. Guo, H. Chen, Z.R. Sun, and Y.L. Lin. A novel method for protein secondary structure prediction using dual - layer SVM and profiles. Proteins, 54: 738 - 743, 2004.
    • (2004) Proteins , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.R.3    Lin, Y.L.4
  • 58
    • 33746267388 scopus 로고    scopus 로고
    • YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction
    • G. Karypis. YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction. Proteins, 64: 575 - 586, 2006.
    • (2006) Proteins , vol.64 , pp. 575-586
    • Karypis, G.1
  • 60
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian and T.J. Sejnowski. Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202: 865 - 884, 1988.
    • (1988) Journal of Molecular Biology , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 61
    • 0027169638 scopus 로고
    • Improved prediction of protein secondary structure by use of sequence profiles and neural networks
    • B. Rost and C. Sander. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proceedings of the National Academy of Science U S A, 90: 7558 - 7562, 1993.
    • (1993) Proceedings of the National Academy of Science U S A , vol.90 , pp. 7558-7562
    • Rost, B.1    Sander, C.2
  • 62
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • D.T. Jones. Protein secondary structure prediction based on position - specific scoring matrices. Journal of Molecular Biology, 292: 195 - 202, 1999.
    • (1999) Journal of Molecular Biology , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 63
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • J.A. Cuff and G.J. Barton. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins, 40: 502 - 511, 2000.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 64
    • 0033562880 scopus 로고    scopus 로고
    • New methods for accurate prediction of protein secondary structure
    • G.M. Chandonia and M. Karplus. New methods for accurate prediction of protein secondary structure. Proteins, 35: 293 - 306, 1999.
    • (1999) Proteins , vol.35 , pp. 293-306
    • Chandonia, G.M.1    Karplus, M.2
  • 66
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins, 47: 228 - 235, 2002.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 67
    • 17444397116 scopus 로고    scopus 로고
    • Porter: A new, accurate server for protein secondary structure prediction
    • G. Pollastri and A. McLysaght. Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics, 21: 1719 - 1720, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1719-1720
    • Pollastri, G.1    McLysaght, A.2
  • 68
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction method using hidden neural networks
    • K. Lin, V.A. Simossis, W.R. Taylor, and J. Heringa. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics, 21: 152 - 159, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 152-159
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3    Heringa, J.4
  • 70
    • 33750725700 scopus 로고    scopus 로고
    • Prediction of protein Secondary Structure using nonlinear method
    • I. King and J. Wang, and L. Chan, and D.L. Wang (Eds.), Berlin and Heidelberg: Springer
    • S. Botelho, G. Simas, and P. Silveira. Prediction of protein Secondary Structure using nonlinear method. In I. King and J. Wang, and L. Chan, and D.L. Wang (Eds.), Neural Information Processing, Part 3, Proceedings; Lecture Notes in Computer Science, vol. 4234, pp. 40 - 47. Berlin and Heidelberg: Springer, 2006.
    • (2006) Neural Information Processing, Part 3, Proceedings; Lecture Notes in Computer Science , vol.4234 , pp. 40-47
    • Botelho, S.1    Simas, G.2    Silveira, P.3
  • 71
    • 0026771388 scopus 로고
    • Hybrid system for protein secondary structure prediction
    • X. Zhang, J.P. Mesirov, and D.L. Waltz. Hybrid system for protein secondary structure prediction. Journal of Molecular Biology, 225: 1049 - 1063, 1992.
    • (1992) Journal of Molecular Biology , vol.225 , pp. 1049-1063
    • Zhang, X.1    Mesirov, J.P.2    Waltz, D.L.3
  • 72
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • B. Rost and C. Sander. Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232: 584 - 599, 1993.
    • (1993) Journal of Molecular Biology , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 75
    • 0042379959 scopus 로고    scopus 로고
    • Simple consensus procedures are effective and sufficient in secondary structure prediction
    • M. Albrecht, S.C.E. Tosatto, T. Lengauer, and G. Valle. Simple consensus procedures are effective and sufficient in secondary structure prediction. Protein Engineering, 16: 459 - 462, 2003.
    • (2003) Protein Engineering , vol.16 , pp. 459-462
    • Albrecht, M.1    Tosatto, S.C.E.2    Lengauer, T.3    Valle, G.4
  • 76
    • 7444267810 scopus 로고    scopus 로고
    • A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction
    • A. Cappelli and F. Turini (Eds.), Berlin and Heidelberg: Springer
    • A. Ceroni, P. Frasconi, A. Passerini, and A. Vullo. A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction. In A. Cappelli and F. Turini (Eds.), AIIA 2003: Advances in Artificial Intelligence, Proceedings; Lecture Notes in Artificial Intelligence, vol. 2829, pp. 142 - 153. Berlin and Heidelberg: Springer, 2003.
    • (2003) AIIA 2003 Advances in Artificial Intelligence, Proceedings; Lecture Notes in Artificial Intelligence , vol.2829 , pp. 142-153
    • Ceroni, A.1    Frasconi, P.2    Passerini, A.3    Vullo, A.4
  • 78
    • 0742271712 scopus 로고    scopus 로고
    • Combining protein secondary structure prediction models with ensemble methods of optimal complexity
    • Y. Guermeur, G. Pollastri, A. Elisseeff, D. Zelus, H. Paugam - Moisy, and P. Baldi. Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing, 56: 305 - 327, 2004.
    • (2004) Neurocomputing , vol.56 , pp. 305-327
    • Guermeur, Y.1    Pollastri, G.2    Elisseeff, A.3    Zelus, D.4    Paugam-Moisy, H.5    Baldi, P.6
  • 79
    • 33745304218 scopus 로고    scopus 로고
    • Protein secondary structure classifiers fusion using OWA
    • J.L. Oliveira and V. Maojo, and F. Martin Sanchez and A.S. Pereira (Eds.), Berlin and Heidelberg: Springer
    • M. Kazemian, B. Moshiri, H. Nikbakht, and C. Lucas. Protein secondary structure classifiers fusion using OWA. In J.L. Oliveira and V. Maojo, and F. Martin Sanchez and A.S. Pereira (Eds.), Biological and Medical Data Analysis, Proceedings; Lecture Notes in Computer Science, vol. 3745, pp. 338 - 345. Berlin and Heidelberg: Springer, 2005.
    • (2005) Biological and Medical Data Analysis, Proceedings; Lecture Notes in Computer Science , vol.3745 , pp. 338-345
    • Kazemian, M.1    Moshiri, B.2    Nikbakht, H.3    Lucas, C.4
  • 80
    • 25144432549 scopus 로고    scopus 로고
    • Hyprosp II-A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence
    • H.N. Lin, J.M. Chang, K.P. Wu, T.Y. Sung, and W.L. Hsu. Hyprosp II - A knowledge - based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics, 21: 3227 - 3233, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3227-3233
    • Lin, H.N.1    Chang, J.M.2    Wu, K.P.3    Sung, T.Y.4    Hsu, W.L.5
  • 81
    • 45749117507 scopus 로고    scopus 로고
    • Efficient ensemble schemes for protein secondary structure prediction
    • K. - H. Liu, J. - F. Xia, and X. Li. Efficient ensemble schemes for protein secondary structure prediction. Protein and Peptide Letters, 15: 488 - 493, 2008.
    • (2008) Protein and Peptide Letters , vol.15 , pp. 488-493
    • Liu, K.-H.1    Xia, J.-F.2    Li, X.3
  • 83
    • 33745259286 scopus 로고    scopus 로고
    • Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
    • Z. Aydin, Y. Altunbasak, and M. Borodovsky. Protein secondary structure prediction for a single - sequence using hidden semi - Markov models. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Aydin, Z.1    Altunbasak, Y.2    Borodovsky, M.3
  • 84
    • 34347382743 scopus 로고    scopus 로고
    • Bayesian protein secondary structure prediction with near-optimal segmentations
    • Z. Aydin, Y. Altunbasak, and H. Erdogan. Bayesian protein secondary structure prediction with near - optimal segmentations. IEEE Transactions on Signal Processing, 55: 3512 - 3525, 2007.
    • (2007) IEEE Transactions on Signal Processing , vol.55 , pp. 3512-3525
    • Aydin, Z.1    Altunbasak, Y.2    Erdogan, H.3
  • 85
    • 40549143077 scopus 로고    scopus 로고
    • A dynamic Bayesian network approach to protein secondary structure prediction
    • X. - Q. Yao, H. Zhu, and Z. - S. She. A dynamic Bayesian network approach to protein secondary structure prediction. BMC Bioinformatics, 9, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Yao, X.-Q.1    Zhu, H.2    She, Z.-S.3
  • 86
    • 0035874145 scopus 로고    scopus 로고
    • Multiple linear regression for protein secondary structure prediction
    • X.M. Pan. Multiple linear regression for protein secondary structure prediction. Proteins, 43: 256 - 259, 2001.
    • (2001) Proteins , vol.43 , pp. 256-259
    • Pan, X.M.1
  • 87
    • 27544490615 scopus 로고    scopus 로고
    • Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method
    • S. Qin, Y. He, and X.M. Pan. Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method. Proteins, 61: 473 - 480, 2005.
    • (2005) Proteins , vol.61 , pp. 473-480
    • Qin, S.1    He, Y.2    Pan, X.M.3
  • 88
    • 20844452070 scopus 로고    scopus 로고
    • Prediction of protein solvent accessibility using fuzzy k-nearest neighbor method
    • J. Sim, S.Y. Kim, and J. Lee. Prediction of protein solvent accessibility using fuzzy k - nearest neighbor method. Bioinformatics, 21: 2844 - 2849, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 2844-2849
    • Sim, J.1    Kim, S.Y.2    Lee, J.3
  • 89
    • 20444408014 scopus 로고    scopus 로고
    • Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm
    • M. Sadeghi, S. Parto, S. Arab, and B. Ranjbar. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm. FEBS Letters, 579: 3397 - 3400, 2005.
    • (2005) FEBS Letters , vol.579 , pp. 3397-3400
    • Sadeghi, M.1    Parto, S.2    Arab, S.3    Ranjbar, B.4
  • 91
    • 0142153209 scopus 로고    scopus 로고
    • Prediction of protein secondary structure with a reliability score estimated by local sequence clustering
    • F. Jiang. Prediction of protein secondary structure with a reliability score estimated by local sequence clustering. Protein Engineering, 16: 651 - 657, 2003.
    • (2003) Protein Engineering , vol.16 , pp. 651-657
    • Jiang, F.1
  • 92
    • 30744445963 scopus 로고    scopus 로고
    • Cluster-based local modeling approach to protein secondary structure prediction
    • S.H. Doong and C.Y. Yeh. Cluster - based local modeling approach to protein secondary structure prediction. Journal of Computational and Theoretical Nanoscience, 2: 551 - 560, 2005.
    • (2005) Journal of Computational and Theoretical Nanoscience , vol.2 , pp. 551-560
    • Doong, S.H.1    Yeh, C.Y.2
  • 93
  • 94
    • 33750382309 scopus 로고    scopus 로고
    • Weighted quality estimates in machine learning
    • L. Budagyan and R. Abagyan. Weighted quality estimates in machine learning. Bioinformatics, 22: 2597 - 2603, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2597-2603
    • Budagyan, L.1    Abagyan, R.2
  • 95
    • 29544444684 scopus 로고    scopus 로고
    • Bidirectional segmented-memory recurrent neural network for protein secondary structure prediction
    • J. Chen and N.S. Chaudhari. Bidirectional segmented - memory recurrent neural network for protein secondary structure prediction. Soft Computing, 10: 315 - 324, 2006.
    • (2006) Soft Computing , vol.10 , pp. 315-324
    • Chen, J.1    Chaudhari, N.S.2
  • 96
    • 2542420004 scopus 로고    scopus 로고
    • The principled design of large-scale recursive neural network architectures-DAG-RNNs and the protein structure prediction problem
    • P. Baldi and G. Pollastri. The principled design of large - scale recursive neural network architectures - DAG - RNNs and the protein structure prediction problem. Journal of Machine Learning Research, 4: 575 - 602, 2004.
    • (2004) Journal of Machine Learning Research , vol.4 , pp. 575-602
    • Baldi, P.1    Pollastri, G.2
  • 97
    • 4644354297 scopus 로고    scopus 로고
    • HYPROSP: A hybrid protein secondary structure prediction algorithm-a knowledge-based approach
    • K.P. Wu, H.N. Lin, J.M. Chang, T.Y. Sung, and W.L. Hsu. HYPROSP: A hybrid protein secondary structure prediction algorithm - a knowledge - based approach. Nucleic Acids Research, 32: 5059 - 5065, 2004.
    • (2004) Nucleic Acids Research , vol.32 , pp. 5059-5065
    • Wu, K.P.1    Lin, H.N.2    Chang, J.M.3    Sung, T.Y.4    Hsu, W.L.5
  • 98
    • 33747586510 scopus 로고    scopus 로고
    • Improving the accuracy of protein secondary structure prediction using structural alignment
    • S. Montgomerie, S. Sundararaj, W.J. Gallin, and D.S. Wishart. Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Montgomerie, S.1    Sundararaj, S.2    Gallin, W.J.3    Wishart, D.S.4
  • 99
    • 33846249595 scopus 로고    scopus 로고
    • MUPRED: A tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction
    • R. Bondugula and D. Xu. MUPRED: A tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction. Proteins, 66: 664 - 670, 2007.
    • (2007) Proteins , vol.66 , pp. 664-670
    • Bondugula, R.1    Xu, D.2
  • 100
    • 34547127137 scopus 로고    scopus 로고
    • Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information
    • G. Pollastri, A.J.M. Martin, C. Mooney, and A. Vullo. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics, 8: 201, 2007.
    • (2007) BMC Bioinformatics , vol.8 , pp. 201
    • Pollastri, G.1    Martin, A.J.M.2    Mooney, C.3    Vullo, A.4
  • 101
    • 35748978197 scopus 로고    scopus 로고
    • Consensus data mining (CDM) protein secondary structure prediction server: Combining GOR V and fragment database mining (FDM)
    • H. Cheng, T.Z. Sen, R.L. Jernigan, and A. Kloczkowski. Consensus data mining (CDM) protein secondary structure prediction server: Combining GOR V and fragment database mining (FDM). Bioinformatics, 23: 2628 - 2630, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 2628-2630
    • Cheng, H.1    Sen, T.Z.2    Jernigan, R.L.3    Kloczkowski, A.4
  • 102
    • 4043050047 scopus 로고    scopus 로고
    • Combining evolutionary and structural information for local protein structure prediction
    • J.M. Pei and N.V. Grishin. Combining evolutionary and structural information for local protein structure prediction. Proteins, 56: 782 - 794, 2004.
    • (2004) Proteins , vol.56 , pp. 782-794
    • Pei, J.M.1    Grishin, N.V.2
  • 103
    • 0037312528 scopus 로고    scopus 로고
    • A pentapeptide-based method for protein secondary structure prediction
    • A. Figureau, M.A. Soto, and J. Toha. A pentapeptide - based method for protein secondary structure prediction. Protein Engineering, 16: 103 - 107, 2003.
    • (2003) Protein Engineering , vol.16 , pp. 103-107
    • Figureau, A.1    Soto, M.A.2    Toha, J.3
  • 105
    • 27144524966 scopus 로고    scopus 로고
    • Protein secondary structure prediction using sequence profile and conserved domain profile
    • D.S. Huang and X. P. Zhang, and G.B. Huang (Eds.), Berlin and Heidelberg: Springer
    • S.K. Woo, C.B. Park, and S.W. Lee. Protein secondary structure prediction using sequence profile and conserved domain profile. In D.S. Huang and X. P. Zhang, and G.B. Huang (Eds.), Advances in Intelligent Computing, Part 2, Proceedings; Lecture Notes in Computer Science, vol. 3645, pp. 1 - 10. Berlin and Heidelberg: Springer, 2005.
    • (2005) Advances in Intelligent Computing, Part 2, Proceedings; Lecture Notes in Computer Science , vol.3645 , pp. 1-10
    • Woo, S.K.1    Park, C.B.2    Lee, S.W.3
  • 106
    • 33750402176 scopus 로고    scopus 로고
    • A new representation for protein secondary structure prediction based on frequent patterns
    • F. Birzele and S. Kramer. A new representation for protein secondary structure prediction based on frequent patterns. Bioinformatics, 22: 2628 - 2634, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2628-2634
    • Birzele, F.1    Kramer, S.2
  • 107
    • 17844373552 scopus 로고    scopus 로고
    • Protein secondary structure prediction with dihedral angles
    • M.J. Wood and J.D. Hirst. Protein secondary structure prediction with dihedral angles. Proteins, 59: 476 - 481, 2005.
    • (2005) Proteins , vol.59 , pp. 476-481
    • Wood, M.J.1    Hirst, J.D.2
  • 108
    • 39049179145 scopus 로고    scopus 로고
    • Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction
    • C. Mooney, A. Vullo, and G. Pollastri. Protein structural motif prediction in multidimensional phi - psi space leads to improved secondary structure prediction. J. Computational Biology, 13: 1489 - 1502, 2006.
    • (2006) J. Computational Biology , vol.13 , pp. 1489-1502
    • Mooney, C.1    Vullo, A.2    Pollastri, G.3
  • 110
    • 52649111134 scopus 로고    scopus 로고
    • Impact of residue accessible surface area on the prediction of protein secondary structures
    • A. Momen - Roknabadi, M. Sadeghi, H. Pezeshk, and S. - A. Marashi. Impact of residue accessible surface area on the prediction of protein secondary structures. BMC Bioinformatics, 9, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Momen-Roknabadi, A.1    Sadeghi, M.2    Pezeshk, H.3    Marashi, S.-A.4
  • 113
    • 0034630136 scopus 로고    scopus 로고
    • Enhanced prediction accuracy of protein secondary structure using hydrogen exchange Fourier transform infrared spectroscopy
    • B.I. Baello, P. Pancoska, and T.A. Keiderling. Enhanced prediction accuracy of protein secondary structure using hydrogen exchange Fourier transform infrared spectroscopy. Analytical Biochemistry, 280: 46 - 57, 2000.
    • (2000) Analytical Biochemistry , vol.280 , pp. 46-57
    • Baello, B.I.1    Pancoska, P.2    Keiderling, T.A.3
  • 114
    • 0041358781 scopus 로고    scopus 로고
    • Neuro-fuzzy structural classification of proteins for improved protein secondary structure prediction
    • J.A. Hering, P.R. Innocent, and P.I. Haris. Neuro - fuzzy structural classification of proteins for improved protein secondary structure prediction. Proteomics, 3: 1464 - 1475, 2003.
    • (2003) Proteomics , vol.3 , pp. 1464-1475
    • Hering, J.A.1    Innocent, P.R.2    Haris, P.I.3
  • 115
    • 39749114995 scopus 로고    scopus 로고
    • Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations
    • J.G. Lees and R.W. Janes. Combining sequence - based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations. BMC Bioinformatics, 9, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Lees, J.G.1    Janes, R.W.2
  • 116
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension reduced amino acid parameter representations by artificial neural networks
    • J. Meiler, M. Muller, A. Zeidler, and F. Schmaschke. Generation and evaluation of dimension reduced amino acid parameter representations by artificial neural networks. Journal of Molecular Modeling, 7: 360 - 369, 2001.
    • (2001) Journal of Molecular Modeling , vol.7 , pp. 360-369
    • Meiler, J.1    Muller, M.2    Zeidler, A.3    Schmaschke, F.4
  • 117
    • 0031871068 scopus 로고    scopus 로고
    • Chameleon sequences in the PDB
    • M. Mezei. Chameleon sequences in the PDB. Protein Engineering, 11: 411 - 414, 1998.
    • (1998) Protein Engineering , vol.11 , pp. 411-414
    • Mezei, M.1
  • 118
    • 19544391613 scopus 로고    scopus 로고
    • Rapid assessment of contact-dependent secondary structure propensity: Relevance to amyloidogenic sequences
    • S. Yoon and W.J. Welsh. Rapid assessment of contact - dependent secondary structure propensity: Relevance to amyloidogenic sequences. Proteins, 60: 110 - 117, 2005.
    • (2005) Proteins , vol.60 , pp. 110-117
    • Yoon, S.1    Welsh, W.J.2
  • 119
    • 33644655386 scopus 로고    scopus 로고
    • Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures
    • M. Boden, Z. Yuan, and T.L. Bailey. Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Boden, M.1    Yuan, Z.2    Bailey, T.L.3
  • 120
    • 34948846599 scopus 로고    scopus 로고
    • PreSSAPro: A software for the prediction of secondary structure by amino acid properties
    • S. Costantini, G. Colonna, and A.M. Facchiano. PreSSAPro: A software for the prediction of secondary structure by amino acid properties. Computational Biology and Chemistry, 31: 389 - 392, 2007.
    • (2007) Computational Biology and Chemistry , vol.31 , pp. 389-392
    • Costantini, S.1    Colonna, G.2    Facchiano, A.M.3
  • 121
    • 34247223063 scopus 로고    scopus 로고
    • Analysis of chameleon sequences and their implications in biological processes
    • J. - T. Guo, J.W. Jaromczyk, and Y. Xu. Analysis of chameleon sequences and their implications in biological processes. Proteins, 67: 548 - 558, 2007.
    • (2007) Proteins , vol.67 , pp. 548-558
    • Guo, J.-T.1    Jaromczyk, J.W.2    Xu, Y.3
  • 122
    • 0034563423 scopus 로고    scopus 로고
    • Predictions of protein segments with the same aminoacid sequence and different secondary structure: A benchmark for predictive methods
    • I. Jacoboni, P.L. Martelli, P. Fariselli, M. Compiani, and R. Casadio. Predictions of protein segments with the same aminoacid sequence and different secondary structure: A benchmark for predictive methods. Proteins, 41: 535 - 544, 2000.
    • (2000) Proteins , vol.41 , pp. 535-544
    • Jacoboni, I.1    Martelli, P.L.2    Fariselli, P.3    Compiani, M.4    Casadio, R.5
  • 123
    • 37349000392 scopus 로고    scopus 로고
    • Beta-sheet capping: Signals that initiate and terminate beta-sheet formation
    • F. FarzadFard, N. Gharaei, H. Pezeshk, and S. - A. Marashi. Beta - sheet capping: Signals that initiate and terminate beta - sheet formation. Journal of Structural Biology, 161: 101 - 110, 2008.
    • (2008) Journal of Structural Biology , vol.161 , pp. 101-110
    • FarzadFard, F.1    Gharaei, N.2    Pezeshk, H.3    Marashi, S.-A.4
  • 124
    • 4544369672 scopus 로고    scopus 로고
    • Improved prediction for N-termini of alpha-helices using empirical information
    • C.L. Wilson, P.E. Boardman, A.J. Doig, and S.J. Hubbard. Improved prediction for N - termini of alpha - helices using empirical information. Proteins, 57: 322 - 330, 2004.
    • (2004) Proteins , vol.57 , pp. 322-330
    • Wilson, C.L.1    Boardman, P.E.2    Doig, A.J.3    Hubbard, S.J.4
  • 126
    • 23644456329 scopus 로고    scopus 로고
    • The effect of long-range interactions on the secondary structure formation of proteins
    • D. Kihara. The effect of long - range interactions on the secondary structure formation of proteins. Protein Science, 14: 1955 - 1963, 2005.
    • (2005) Protein Science , vol.14 , pp. 1955-1963
    • Kihara, D.1
  • 127
    • 0030957127 scopus 로고    scopus 로고
    • The role of long-range interactions in defining the secondary structure of proteins is overestimated
    • A. Fiser, Z. Dosztanyi, and I. Simon. The role of long - range interactions in defining the secondary structure of proteins is overestimated. Computer Applications in the Biosciences, 13: 297 - 301, 1997.
    • (1997) Computer Applications in the Biosciences , vol.13 , pp. 297-301
    • Fiser, A.1    Dosztanyi, Z.2    Simon, I.3
  • 128
    • 3543145933 scopus 로고    scopus 로고
    • Protein secondary structure: Entropy, correlations and prediction
    • G.E. Crooks and S.E. Brenner. Protein secondary structure: Entropy, correlations and prediction. Bioinformatics, 20: 1603 - 1611, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 1603-1611
    • Crooks, G.E.1    Brenner, S.E.2
  • 129
    • 10844233091 scopus 로고    scopus 로고
    • On the role of long-range dependencies in learning protein secondary structure
    • A. Ceroni and P. Frasconi. On the role of long - range dependencies in learning protein secondary structure. IEEE Proceedings on Neural Network, 3: 1899 - 1904, 2004.
    • (2004) IEEE Proceedings on Neural Network , vol.3 , pp. 1899-1904
    • Ceroni, A.1    Frasconi, P.2
  • 130
    • 26944482741 scopus 로고    scopus 로고
    • Learning protein secondary structure from sequential and relational data
    • A. Ceroni, P. Frasconi, and G. Pollastri. Learning protein secondary structure from sequential and relational data. Neural Networks, 18: 1029 - 1039, 2005.
    • (2005) Neural Networks , vol.18 , pp. 1029-1039
    • Ceroni, A.1    Frasconi, P.2    Pollastri, G.3
  • 132
    • 0029619259 scopus 로고
    • Knowledge-based protein secondary structure assignment
    • D. Frishman and P. Argos. Knowledge - based protein secondary structure assignment. Proteins, 23: 566 - 579, 1995.
    • (1995) Proteins , vol.23 , pp. 566-579
    • Frishman, D.1    Argos, P.2
  • 133
    • 0023927904 scopus 로고
    • Identification of structural motifs from protein coordinate data: Secondary structure and first level supersecondary structure
    • F.M. Richards and C.E. Kundrot. Identification of structural motifs from protein coordinate data: Secondary structure and first level supersecondary structure. Proteins, 3: 71 - 84, 1988.
    • (1988) Proteins , vol.3 , pp. 71-84
    • Richards, F.M.1    Kundrot, C.E.2
  • 136
    • 0024821134 scopus 로고
    • Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis
    • H. Sklenar, C. Etchebest, and R. Lavery. Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins, 6: 46 - 60, 1989.
    • (1989) Proteins , vol.6 , pp. 46-60
    • Sklenar, H.1    Etchebest, C.2    Lavery, R.3
  • 137
    • 0033562619 scopus 로고    scopus 로고
    • Assigning secondary structure from protein coordinate data
    • S.M. King and W.C. Johnson. Assigning secondary structure from protein coordinate data. Proteins, 3: 313 - 320, 1999.
    • (1999) Proteins , vol.3 , pp. 313-320
    • King, S.M.1    Johnson, W.C.2
  • 138
    • 0036276409 scopus 로고    scopus 로고
    • Occurrence, conformational features and amino acid propensities for the pi-helix
    • M.N. Fodje and S. Al - Karadaghi. Occurrence, conformational features and amino acid propensities for the pi - helix. Protein Engineering, 15: 353 - 358, 2002.
    • (2002) Protein Engineering , vol.15 , pp. 353-358
    • Fodje, M.N.1    Al-Karadaghi, S.2
  • 139
    • 33947315642 scopus 로고    scopus 로고
    • Secondary structure assignment that accurately refl ects physical and evolutionary characteristics
    • M.V. Cubellis, F. Cailliez, and S.C. Lovell. Secondary structure assignment that accurately refl ects physical and evolutionary characteristics. BMC Bioinformatics, 6: S8, 2005.
    • (2005) BMC Bioinformatics , vol.6
    • Cubellis, M.V.1    Cailliez, F.2    Lovell, S.C.3
  • 140
    • 2442596233 scopus 로고    scopus 로고
    • Protein secondary structure assignment through Voronoi tessellation
    • F. Dupuis, J.F. Sadoc, and J.P. Mornon. Protein secondary structure assignment through Voronoi tessellation. Proteins, 55: 519 - 528, 2004.
    • (2004) Proteins , vol.55 , pp. 519-528
    • Dupuis, F.1    Sadoc, J.F.2    Mornon, J.P.3
  • 142
    • 0027207221 scopus 로고
    • Comparison of three algorithms for the assignment of secondary structure in proteins: The advantages of a consensus assignment
    • N. Colloc'h, C. Etchebest, E. Thoreau, B. Henrissat, and J. - P. Mornon. Comparison of three algorithms for the assignment of secondary structure in proteins: The advantages of a consensus assignment. Protein Engineering, 6: 377 - 382, 1993.
    • (1993) Protein Engineering , vol.6 , pp. 377-382
    • Colloc'h, N.1    Etchebest, C.2    Thoreau, E.3    Henrissat, B.4    Mornon, J.-P.5
  • 146
    • 40549104155 scopus 로고    scopus 로고
    • Assessing secondary-structure assignment of protein structures by using pairwise sequence-alignment benchmarks
    • W. Zhang, K. Dunker, and Y. Zhou. Assessing secondary - structure assignment of protein structures by using pairwise sequence - alignment benchmarks. Proteins, 71: 61 - 67, 2008.
    • (2008) Proteins , vol.71 , pp. 61-67
    • Zhang, W.1    Dunker, K.2    Zhou, Y.3
  • 147
    • 18844414326 scopus 로고    scopus 로고
    • High accuracy prediction of beta-turns and their types using propensities and multiple alignments
    • P.F.J. Fuchs and A.J.P. Alix. High accuracy prediction of beta - turns and their types using propensities and multiple alignments. Proteins, 59: 828 - 839, 2005.
    • (2005) Proteins , vol.59 , pp. 828-839
    • Fuchs, P.F.J.1    Alix, A.J.P.2
  • 148
    • 33748259637 scopus 로고    scopus 로고
    • Better prediction of the location of alpha-turns in proteins with support vector machine
    • Y. Wang, Z. Xue, and J. Xu. Better prediction of the location of alpha - turns in proteins with support vector machine. Proteins, 65: 49 - 54, 2006.
    • (2006) Proteins , vol.65 , pp. 49-54
    • Wang, Y.1    Xue, Z.2    Xu, J.3
  • 149
    • 49149096763 scopus 로고    scopus 로고
    • Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLE-BRNN)
    • A. Kirschner and D. Frishman. Prediction of beta - turns and beta - turn types by a novel bidirectional Elman - type recurrent neural network with multiple output layers (MOLE - BRNN). Gene, 422: 22 - 29, 2008.
    • (2008) Gene , vol.422 , pp. 22-29
    • Kirschner, A.1    Frishman, D.2
  • 150
    • 1442349113 scopus 로고    scopus 로고
    • Prediction of alpha-turns in proteins using PSI -BLAST profiles and secondary structure information
    • H. Kaur and G.P.S. Raghava. Prediction of alpha - turns in proteins using PSI -BLAST profiles and secondary structure information. Proteins, 55: 83 - 90, 2004.
    • (2004) Proteins , vol.55 , pp. 83-90
    • Kaur, H.1    Raghava, G.P.S.2
  • 152
    • 0025881751 scopus 로고
    • Infl uence of the local amino acid sequence upon the zones of the torsional angles phi and psi adopted by residues in proteins
    • J.F. Gibrat, B. Robson, and J. Garnier. Infl uence of the local amino acid sequence upon the zones of the torsional angles phi and psi adopted by residues in proteins. Biochemistry, 30: 1578 - 1586, 1991.
    • (1991) Biochemistry , vol.30 , pp. 1578-1586
    • Gibrat, J.F.1    Robson, B.2    Garnier, J.3
  • 153
    • 0027407722 scopus 로고
    • Estimation and use of protein backbone angle probabilities
    • H.S. Kang, N.A. Kurochkina, and B. Lee. Estimation and use of protein backbone angle probabilities. Journal of Molecular Biology, 229: 448 - 460, 1993.
    • (1993) Journal of Molecular Biology , vol.229 , pp. 448-460
    • Kang, H.S.1    Kurochkina, N.A.2    Lee, B.3
  • 154
    • 0038278386 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry
    • R. Karchin, M. Cline, Y. Mandel - Gutfreund, and K. Karplus. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins, 51: 504 - 514, 2003.
    • (2003) Proteins , vol.51 , pp. 504-514
    • Karchin, R.1    Cline, M.2    Mandel-Gutfreund, Y.3    Karplus, K.4
  • 155
    • 3543101355 scopus 로고    scopus 로고
    • Protein backbone angle prediction with machine learning approaches
    • R. Kuang, C. S. Lesliei, and A. - S. Yang. Protein backbone angle prediction with machine learning approaches. Bioinformatics, 20: 1612 - 1621, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 1612-1621
    • Kuang, R.1    Lesliei, C.S.2    Yang, A.-S.3
  • 156
    • 54949103617 scopus 로고    scopus 로고
    • PREDICT -2ND: A tool for generalized protein local structure prediction
    • S. Katzman, C. Barrett, G. Thiltgen, R. Karchin, and K. Karplus. PREDICT -2ND: A tool for generalized protein local structure prediction. Bioinformatics, 24: 2453 - 2459, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 2453-2459
    • Katzman, S.1    Barrett, C.2    Thiltgen, G.3    Karchin, R.4    Karplus, K.5
  • 157
    • 33646195908 scopus 로고    scopus 로고
    • Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information
    • J.N. Song, K. Burrage, Z. Yuan, and T. Huber. Prediction of cis/trans isomerization in proteins using PSI - BLAST profiles and secondary structure information. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Song, J.N.1    Burrage, K.2    Yuan, Z.3    Huber, T.4
  • 158
    • 84986522918 scopus 로고
    • ICM: A new method for structure modeling and design: Applications to docking and structure prediction from the distorted native conformation
    • R.A. Abagyan, M.M. Totrov, and D.A. Kuznetsov. ICM: A new method for structure modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15: 488 - 506, 1994.
    • (1994) Journal of Computational Chemistry , vol.15 , pp. 488-506
    • Abagyan, R.A.1    Totrov, M.M.2    Kuznetsov, D.A.3
  • 159
    • 0028070557 scopus 로고
    • Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement
    • L.M. Rice and A.T. Brunger. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins, 19: 277 - 290, 1994.
    • (1994) Proteins , vol.19 , pp. 277-290
    • Rice, L.M.1    Brunger, A.T.2
  • 160
    • 0029065204 scopus 로고
    • De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology
    • J.S. Evans, A.M. Mathiowetz, S.I. Chan, and W.A. Goddard III. De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology. Protein Science, 4: 1203 - 1216, 1995.
    • (1995) Protein Science , vol.4 , pp. 1203-1216
    • Evans, J.S.1    Mathiowetz, A.M.2    Chan, S.I.3    Goddard III, W.A.4
  • 162
    • 0029063717 scopus 로고
    • The complexity and accuracy of discrete state models of protein structure
    • B.H. Park and M. Levitt. The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology, 249: 493 - 507, 1995.
    • (1995) Journal of Molecular Biology , vol.249 , pp. 493-507
    • Park, B.H.1    Levitt, M.2
  • 163
    • 0030631230 scopus 로고    scopus 로고
    • Discrete representations of the protein C α chain
    • X.F. de la Cruz, M.W Mahoney, and B. Lee. Discrete representations of the protein C α chain. Folding & Design, 2: 223 - 234, 1997.
    • (1997) Folding & Design , vol.2 , pp. 223-234
    • de la Cruz, X.F.1    Mahoney, M.W.2    Lee, B.3
  • 164
    • 0034669774 scopus 로고    scopus 로고
    • Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks
    • A.G. de Brevern, C. Etchebest, and S. Hazout. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins, 41: 271 - 287, 2000.
    • (2000) Proteins , vol.41 , pp. 271-287
    • de Brevern, A.G.1    Etchebest, C.2    Hazout, S.3
  • 165
    • 28044472257 scopus 로고    scopus 로고
    • Building native protein conformation from highly approximate backbone torsion angles
    • H. Gong, P.J. Fleming, and G.D. Rose. Building native protein conformation from highly approximate backbone torsion angles. Proceedings of the National Academy of Science U S A, 102: 16227 - 16232, 2005.
    • (2005) Proceedings of the National Academy of Science U S A , vol.102 , pp. 16227-16232
    • Gong, H.1    Fleming, P.J.2    Rose, G.D.3
  • 166
    • 33748528618 scopus 로고    scopus 로고
    • Genetic algorithms for protein conformation sampling and optimization in a discrete backbone dihedral angle space
    • Y. Yang and H. Liu. Genetic algorithms for protein conformation sampling and optimization in a discrete backbone dihedral angle space. Journal Computational Chemistry, 27: 1593 - 1602, 2006.
    • (2006) Journal Computational Chemistry , vol.27 , pp. 1593-1602
    • Yang, Y.1    Liu, H.2
  • 167
    • 0032555696 scopus 로고    scopus 로고
    • Prediction of local structure in proteins using a library of sequence-structure motifs
    • C. Bystroff and D. Baker. Prediction of local structure in proteins using a library of sequence - structure motifs. Journal of Molecular Biology, 281: 565 - 577, 1998.
    • (1998) Journal of Molecular Biology , vol.281 , pp. 565-577
    • Bystroff, C.1    Baker, D.2
  • 168
    • 0034604368 scopus 로고    scopus 로고
    • HMMSTR: A hidden Markov model for local sequence-structure correlations in proteins
    • C. Bystroff, V. Thorsson, and D. Baker. HMMSTR: A hidden Markov model for local sequence - structure correlations in proteins. Journal of Molecular Biology, 301: 173 - 190, 2000.
    • (2000) Journal of Molecular Biology , vol.301 , pp. 173-190
    • Bystroff, C.1    Thorsson, V.2    Baker, D.3
  • 170
    • 18844454820 scopus 로고    scopus 로고
    • A structural alphabet for local protein structures: Improved prediction methods
    • C. Etchebest, C. Benros, S. Hazout, and A.G. de Brevern. A structural alphabet for local protein structures: Improved prediction methods. Proteins, 59: 810 - 827, 2005.
    • (2005) Proteins , vol.59 , pp. 810-827
    • Etchebest, C.1    Benros, C.2    Hazout, S.3    de Brevern, A.G.4
  • 171
    • 33144460796 scopus 로고    scopus 로고
    • Local protein structure prediction using discriminative models
    • O. Sander, I. Sommer, and T. Lengauer. Local protein structure prediction using discriminative models. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Sander, O.1    Sommer, I.2    Lengauer, T.3
  • 172
    • 33644840330 scopus 로고    scopus 로고
    • Assessing a novel approach for predicting local 3D protein structures from sequence
    • C. Benros, A.G. de Brevern, C. Etchebest, and S. Hazout. Assessing a novel approach for predicting local 3D protein structures from sequence. Proteins, 62: 865 - 880, 2006.
    • (2006) Proteins , vol.62 , pp. 865-880
    • Benros, C.1    de Brevern, A.G.2    Etchebest, C.3    Hazout, S.4
  • 173
    • 33947526348 scopus 로고    scopus 로고
    • " Pinning strategy ": A novel approach for predicting the backbone structure in terms of protein blocks from sequence
    • A.G. De Brevern, C. Etchebest, C. Benros, and S. Hazout. " Pinning strategy ": A novel approach for predicting the backbone structure in terms of protein blocks from sequence. Journal of Biosciences, 32: 51 - 70, 2007.
    • (2007) Journal of Biosciences , vol.32 , pp. 51-70
    • De Brevern, A.G.1    Etchebest, C.2    Benros, C.3    Hazout, S.4
  • 174
    • 33845366830 scopus 로고    scopus 로고
    • Support vector machines for prediction of dihedral angle regions
    • O. Zimmermann and U.H.E. Hansmann. Support vector machines for prediction of dihedral angle regions. Bioinformatics, 22: 3009 - 3015, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 3009-3015
    • Zimmermann, O.1    Hansmann, U.H.E.2
  • 175
    • 54249084066 scopus 로고    scopus 로고
    • LOCUSTRA: Accurate prediction of local protein structure using a two-layer support vector machine approach
    • O. Zimmermann and U.H.E. Hansmann. LOCUSTRA: Accurate prediction of local protein structure using a two - layer support vector machine approach. Journal of Chemical Information and Modeling, 48: 1903 - 1908, 2008.
    • (2008) Journal of Chemical Information and Modeling , vol.48 , pp. 1903-1908
    • Zimmermann, O.1    Hansmann, U.H.E.2
  • 176
    • 44949123664 scopus 로고    scopus 로고
    • Analysis and prediction of protein local structure based on structure alphabets
    • Q. Dong, X. Wang, L. Lin, and Y. Wang. Analysis and prediction of protein local structure based on structure alphabets. Proteins, 72: 163 - 172, 2008.
    • (2008) Proteins , vol.72 , pp. 163-172
    • Dong, Q.1    Wang, X.2    Lin, L.3    Wang, Y.4
  • 178
    • 46449123146 scopus 로고    scopus 로고
    • MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information
    • S. Wu and Y. Zhang. MUSTER: Improving protein sequence profile - profile alignments by using multiple sources of structure information. Proteins, 72: 547 - 556, 2008.
    • (2008) Proteins , vol.72 , pp. 547-556
    • Wu, S.1    Zhang, Y.2
  • 179
    • 48449085801 scopus 로고    scopus 로고
    • SP 5: Improving protein fold recognition by using predicted torsion angles and profile-based gap penalty
    • W. Zhang, S. Liu, and Y. Zhou. SP 5: Improving protein fold recognition by using predicted torsion angles and profile - based gap penalty. PLoS ONE, 6: e2325, 2008.
    • (2008) PLoS ONE , vol.6
    • Zhang, W.1    Liu, S.2    Zhou, Y.3
  • 180
    • 32544461476 scopus 로고    scopus 로고
    • Improved pairwise alignments of proteins in the twilight zone using local structure predictions
    • Y.M. Huang and C. Bystroff. Improved pairwise alignments of proteins in the twilight zone using local structure predictions. Bioinformatics, 22: 413 - 422, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 413-422
    • Huang, Y.M.1    Bystroff, C.2
  • 182
    • 0033565815 scopus 로고    scopus 로고
    • Residue depth: a novel parameter for the analysis of protein structure and stability
    • S. Chakravarty and R. Varadarajan. Residue depth: a novel parameter for the analysis of protein structure and stability. Structure with Folding and Design, 15: 723 - 732, 1999.
    • (1999) Structure with Folding and Design , vol.15 , pp. 723-732
    • Chakravarty, S.1    Varadarajan, R.2
  • 183
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio. Prediction of coordination number and relative solvent accessibility in proteins. Proteins, 47: 142 - 153, 2002.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 184
    • 14644400399 scopus 로고    scopus 로고
    • An amino acid has two sides: A new 2D measure provides a different view of solvent exposure
    • T. Hamelryck. An amino acid has two sides: A new 2D measure provides a different view of solvent exposure. Proteins, 59: 38 - 48, 2005.
    • (2005) Proteins , vol.59 , pp. 38-48
    • Hamelryck, T.1
  • 185
    • 41349105501 scopus 로고    scopus 로고
    • Prediction of recursive convex hull class assignments for protein residues
    • M. Stout, J. Bacardit, J.D. Hirst, and N. Krasnogor. Prediction of recursive convex hull class assignments for protein residues. Bioinformatics, 24: 916 - 923, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 916-923
    • Stout, M.1    Bacardit, J.2    Hirst, J.D.3    Krasnogor, N.4
  • 186
    • 37849034569 scopus 로고    scopus 로고
    • Quantifying the relationship of protein burying depth and sequence
    • Z. Yuan and Z.X. Wang. Quantifying the relationship of protein burying depth and sequence. Proteins, 70: 509 - 516, 2008.
    • (2008) Proteins , vol.70 , pp. 509-516
    • Yuan, Z.1    Wang, Z.X.2
  • 187
    • 54049091165 scopus 로고    scopus 로고
    • Sequence based residue depth prediction using evolutionary information and predicted secondary structure
    • H. Zhang, T. Zhang, K. Chen, S. Shen, J. Ruan, and L. Kurgan. Sequence based residue depth prediction using evolutionary information and predicted secondary structure. BMC Bioinformatics, 9, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Zhang, H.1    Zhang, T.2    Chen, K.3    Shen, S.4    Ruan, J.5    Kurgan, L.6
  • 188
    • 0035102734 scopus 로고    scopus 로고
    • RCNPRED: Prediction of the residue co-ordination numbers in proteins
    • P. Fariselli and R. Casadio. RCNPRED: Prediction of the residue co - ordination numbers in proteins. Bioinformatics, 17: 202 - 203, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 202-203
    • Fariselli, P.1    Casadio, R.2
  • 189
    • 0038702154 scopus 로고    scopus 로고
    • Q(9), a content-balancing accuracy index to evaluate algorithms of protein secondary structure prediction
    • C.T. Zhang and R. Zhang. Q(9), a content - balancing accuracy index to evaluate algorithms of protein secondary structure prediction. International Journal of Biochemistry & Cell Biology, 35: 1256 - 1262, 2003.
    • (2003) International Journal of Biochemistry & Cell Biology , vol.35 , pp. 1256-1262
    • Zhang, C.T.1    Zhang, R.2
  • 190
    • 33749357045 scopus 로고    scopus 로고
    • CRNPRED: Highly accurate prediction of one -dimensional protein structures by large-scale critical random networks
    • A.R. Kinjo and K. Nishikawa. CRNPRED: Highly accurate prediction of one -dimensional protein structures by large - scale critical random networks. BMC Bioinformatics, 7: 401, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 401
    • Kinjo, A.R.1    Nishikawa, K.2
  • 191
    • 33748468024 scopus 로고    scopus 로고
    • Potential for assessing quality of protein structure based on contact number prediction
    • T. Ishida, S. Nakamura, and K. Shimizu. Potential for assessing quality of protein structure based on contact number prediction. Proteins, 64: 940 - 947, 2006.
    • (2006) Proteins , vol.64 , pp. 940-947
    • Ishida, T.1    Nakamura, S.2    Shimizu, K.3
  • 192
    • 46249133956 scopus 로고    scopus 로고
    • HSEpred: Predict half-sphere exposure from protein sequences
    • J. Song, H. Tan, K. Takemoto, and T. Akutsu. HSEpred: Predict half - sphere exposure from protein sequences. Bioinformatics, 24: 1489 - 1497, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 1489-1497
    • Song, J.1    Tan, H.2    Takemoto, K.3    Akutsu, T.4
  • 193
    • 0025039476 scopus 로고
    • Predicting surface exposure of amino acids from protein sequence
    • S.R. Hobrook, S.M. Mushal, and S.H. Kim. Predicting surface exposure of amino acids from protein sequence. Protein Engineering, 3: 659 - 665, 1990.
    • (1990) Protein Engineering , vol.3 , pp. 659-665
    • Hobrook, S.R.1    Mushal, S.M.2    Kim, S.H.3
  • 194
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • B. Rost and C. Sander. Conservation and prediction of solvent accessibility in protein families. Proteins, 20: 216 - 226, 1994.
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 195
    • 0040942592 scopus 로고    scopus 로고
    • Prediction of solvent accessibility of amino acid residues: critical aspects
    • M.H. Mucchielli - Giorgi, P. Tuffery, and S. Hazout. Prediction of solvent accessibility of amino acid residues: critical aspects. Theoretical Chemistry Accounts, 101: 186 - 193, 1999.
    • (1999) Theoretical Chemistry Accounts , vol.101 , pp. 186-193
    • Mucchielli-Giorgi, M.H.1    Tuffery, P.2    Hazout, S.3
  • 196
    • 0032147008 scopus 로고    scopus 로고
    • Easy method to predict solvent accessibility from multiple protein sequence alignments
    • S. Pascarella, R. De Persio, F. Bossa, and P. Argos. Easy method to predict solvent accessibility from multiple protein sequence alignments. Proteins, 32: 190 - 199, 1999.
    • (1999) Proteins , vol.32 , pp. 190-199
    • Pascarella, S.1    De Persio, R.2    Bossa, F.3    Argos, P.4
  • 197
    • 0035189668 scopus 로고    scopus 로고
    • New method for accurate prediction of solvent accessibility from protein sequence
    • X. Li and X. Pan. New method for accurate prediction of solvent accessibility from protein sequence. Proteins, 42: 1 - 5, 2001.
    • (2001) Proteins , vol.42 , pp. 1-5
    • Li, X.1    Pan, X.2
  • 198
    • 0036303121 scopus 로고    scopus 로고
    • NETASA: Neural network based prediction of solvent accessibility
    • S. Ahmad and M.M. Gromiha. NETASA: Neural network based prediction of solvent accessibility. Bioinformatics, 18: 819 - 824, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 819-824
    • Ahmad, S.1    Gromiha, M.M.2
  • 199
    • 26444473604 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
    • A. Garg, H. Kaur, and G.P.S. Raghava. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins, 61: 318 - 324, 2005.
    • (2005) Proteins , vol.61 , pp. 318-324
    • Garg, A.1    Kaur, H.2    Raghava, G.P.S.3
  • 200
    • 15544379998 scopus 로고    scopus 로고
    • Solvent accessibility in native and isolated domain environments: general features and implications to interface predictability
    • M.F. Raih, S. Ahmad, R. Zheng, and R. Mohamed. Solvent accessibility in native and isolated domain environments: general features and implications to interface predictability. Biophysical Chemistry, 114: 63 - 69, 2005.
    • (2005) Biophysical Chemistry , vol.114 , pp. 63-69
    • Raih, M.F.1    Ahmad, S.2    Zheng, R.3    Mohamed, R.4
  • 201
    • 0037103004 scopus 로고    scopus 로고
    • Prediction of protein solvent accessibility using support vector machines
    • Z. Yuan, K. Burrage, and J.S. Mattick. Prediction of protein solvent accessibility using support vector machines. Proteins, 48: 566 - 570, 2002.
    • (2002) Proteins , vol.48 , pp. 566-570
    • Yuan, Z.1    Burrage, K.2    Mattick, J.S.3
  • 202
    • 6344258643 scopus 로고    scopus 로고
    • Prediction of protein accessible surface areas by support vector regression
    • Z. Yuan and B. Huang. Prediction of protein accessible surface areas by support vector regression. Proteins, 57: 558 - 564, 2004.
    • (2004) Proteins , vol.57 , pp. 558-564
    • Yuan, Z.1    Huang, B.2
  • 203
    • 1442310611 scopus 로고    scopus 로고
    • Improvement in prediction of solvent accessibility by probability profiles
    • G. Gianese, F. Bossa, and S. Pascarella. Improvement in prediction of solvent accessibility by probability profiles. Protein Engineering, 16: 987 - 992, 2003.
    • (2003) Protein Engineering , vol.16 , pp. 987-992
    • Gianese, G.1    Bossa, F.2    Pascarella, S.3
  • 204
    • 1042268067 scopus 로고    scopus 로고
    • Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor
    • H. Kim and H. Park. Prediction of protein relative solvent accessibility with support vector machines and long - range interaction 3D local descriptor. Proteins, 54: 557 - 562, 2004.
    • (2004) Proteins , vol.54 , pp. 557-562
    • Kim, H.1    Park, H.2
  • 205
    • 0037340834 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility from amino acid sequence
    • S. Ahmad, M.M. Gromiha, and A. Sarai. Real value prediction of solvent accessibility from amino acid sequence. Proteins, 50: 629 - 635, 2003.
    • (2003) Proteins , vol.50 , pp. 629-635
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 206
    • 4043052866 scopus 로고    scopus 로고
    • Accurate prediction of solvent accessibility using neural networks-based regression
    • R. Adamczak, A. Porollo, and J. Meller. Accurate prediction of solvent accessibility using neural networks - based regression. Proteins, 56: 753 - 767, 2004.
    • (2004) Proteins , vol.56 , pp. 753-767
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 207
    • 27544475311 scopus 로고    scopus 로고
    • Prediction and evolutionary information analysis of protein solvent accessibility using multiple linear regression
    • J. Wang, H. Lee, and S. Ahmad. Prediction and evolutionary information analysis of protein solvent accessibility using multiple linear regression. Proteins, 61: 481 - 491, 2005.
    • (2005) Proteins , vol.61 , pp. 481-491
    • Wang, J.1    Lee, H.2    Ahmad, S.3
  • 208
    • 33646864744 scopus 로고    scopus 로고
    • QBES: Predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization
    • Z. Xu, C. Zhang, S. Liu, and Y. Zhou. QBES: Predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization. Proteins, 63: 961 - 966, 2006.
    • (2006) Proteins , vol.63 , pp. 961-966
    • Xu, Z.1    Zhang, C.2    Liu, S.3    Zhou, Y.4
  • 209
    • 0035283141 scopus 로고    scopus 로고
    • Prediction of protein surface accessibility with information theory
    • H. Naderi - Manesh, M. Sadeghi, S. Arab, and A.A.M. Movahedi. Prediction of protein surface accessibility with information theory. Proteins, 42: 452 - 459, 2001.
    • (2001) Proteins , vol.42 , pp. 452-459
    • Naderi-Manesh, H.1    Sadeghi, M.2    Arab, S.3    Movahedi, A.A.M.4
  • 210
    • 34447506573 scopus 로고    scopus 로고
    • Fold recognition by concurrent use of solvent accessibility and residue depth
    • S. Liu, C. Zhang, S. Liang, and Y. Zhou. Fold recognition by concurrent use of solvent accessibility and residue depth. Proteins, 68: 636 - 645, 2007.
    • (2007) Proteins , vol.68 , pp. 636-645
    • Liu, S.1    Zhang, C.2    Liang, S.3    Zhou, Y.4
  • 211
    • 20144377620 scopus 로고    scopus 로고
    • Prediction of solvent accessibility and sites of deleterious mutations from protein sequence
    • H.L. Chen and H.X. Zhou. Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Research, 33: 3193 - 3199, 2005.
    • (2005) Nucleic Acids Research , vol.33 , pp. 3193-3199
    • Chen, H.L.1    Zhou, H.X.2
  • 212
    • 33644837197 scopus 로고    scopus 로고
    • SSALN: An alignment algorithm using structure-dependent substitution matrices and gap penalties learned from structurally aligned protein pairs
    • J. Qiu and R. Elber. SSALN: An alignment algorithm using structure - dependent substitution matrices and gap penalties learned from structurally aligned protein pairs. Proteins, 62: 881 - 891, 2006.
    • (2006) Proteins , vol.62 , pp. 881-891
    • Qiu, J.1    Elber, R.2
  • 213
    • 17844392864 scopus 로고    scopus 로고
    • Combining prediction of secondary structure and solvent accessibility in proteins
    • R. Adamczak, A. Porollo, and J. Meller. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins, 59: 467 - 475, 2005.
    • (2005) Proteins , vol.59 , pp. 467-475
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 214
    • 0344033683 scopus 로고    scopus 로고
    • A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function
    • V.G. Krishnan and D.R. Westhead. A comparative study of machine - learning methods to predict the effects of single nucleotide polymorphisms on protein function. Bioinformatics, 19: 2199 - 2209, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 2199-2209
    • Krishnan, V.G.1    Westhead, D.R.2
  • 215
    • 33745862379 scopus 로고    scopus 로고
    • Predicting deleterious nsSNPs: an analysis of sequence and structural attributes
    • R.J. Dobson, P.B. Munroe, M.J. Caulfield, and M.A.S. Saqi. Predicting deleterious nsSNPs: an analysis of sequence and structural attributes. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Dobson, R.J.1    Munroe, P.B.2    Caulfield, M.J.3    Saqi, M.A.S.4
  • 216
    • 53749105617 scopus 로고    scopus 로고
    • SNAP predicts effect of mutations on protein function
    • Y. Bromberg, G. Yachdav, and B. Rost. SNAP predicts effect of mutations on protein function. Bioinformatics, 24: 2397 - 2398, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 2397-2398
    • Bromberg, Y.1    Yachdav, G.2    Rost, B.3
  • 217
    • 0038356582 scopus 로고    scopus 로고
    • Predicted protein-protein interaction sites from local sequence information
    • Y. Ofran and B. Rost. Predicted protein - protein interaction sites from local sequence information. FEBS Letters, 544: 236 - 239, 2003.
    • (2003) FEBS Letters , vol.544 , pp. 236-239
    • Ofran, Y.1    Rost, B.2
  • 218
    • 33846200437 scopus 로고    scopus 로고
    • Prediction-based fingerprints of protein-protein interactions
    • A. Porollo and J. Meller. Prediction - based fingerprints of protein - protein interactions. Proteins, 66: 630 - 645, 2007.
    • (2007) Proteins , vol.66 , pp. 630-645
    • Porollo, A.1    Meller, J.2
  • 219
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: a protein sequence culling server
    • G. Wang and R.L. Jr. Dunbrack. PISCES: a protein sequence culling server. Bioinformatics, 19: 1589 - 1591, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1589-1591
    • Wang, G.1    Dunbrack, R.L.2
  • 220
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by backpropagating errors. Nature, 323: 533 - 536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 222
    • 70350738241 scopus 로고    scopus 로고
    • Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
    • E. Faraggi, Y. Yang, S. Zhang, and Y. Zhou. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment - free protein structure prediction. Structure, 17: 1515 - 1527, 2009.
    • (2009) Structure , vol.17 , pp. 1515-1527
    • Faraggi, E.1    Yang, Y.2    Zhang, S.3    Zhou, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.