메뉴 건너뛰기




Volumn 32, Issue 17, 2004, Pages 5059-5065

HYPROSP: A hybrid protein secondary structure prediction algorithm-a knowledge-based approach

Author keywords

[No Author keywords available]

Indexed keywords

HYBRID PROTEIN; PEPTIDE FRAGMENT;

EID: 4644354297     PISSN: 03051048     EISSN: None     Source Type: Journal    
DOI: 10.1093/nar/gkh836     Document Type: Article
Times cited : (25)

References (17)
  • 1
    • 0037661371 scopus 로고    scopus 로고
    • Benchmarking secondary structure prediction for fold recognition
    • McGuffin,L.J. and Jones,D.T. (2003) Benchmarking secondary structure prediction for fold recognition. Proteins, 52, 166-175.
    • (2003) Proteins , vol.52 , pp. 166-175
    • McGuffin, L.J.1    Jones, D.T.2
  • 2
    • 0033562880 scopus 로고    scopus 로고
    • New methods for accurate prediction of protein secondary structure
    • Chandonia,J.M. and Karplus,M. (1999) New methods for accurate prediction of protein secondary structure. Proteins, 35, 293-306.
    • (1999) Proteins , vol.35 , pp. 293-306
    • Chandonia, J.M.1    Karplus, M.2
  • 3
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • Cuff,J.A. and Barton,G.J. (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins, 34, 508-519.
    • (1999) Proteins , vol.34 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 4
    • 0034663597 scopus 로고    scopus 로고
    • Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff,J.A. and Barton,G.J. (1999) Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins, 40, 502-511.
    • (1999) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 6
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua,S. and Sun,Z. (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol., 308, 397-407.
    • (2001) J. Mol. Biol. , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 7
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones,D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 292 195-202.
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 8
    • 0032613203 scopus 로고    scopus 로고
    • Predicting protein structure using only sequence information
    • Karplus,K., Barrett,C., Cline,M., Diekhans,M., Grate,L. and Hughey,R. (1999) Predicting protein structure using only sequence information. Proteins, 3(Suppl.), 121-125.
    • (1999) Proteins , vol.3 , Issue.SUPPL. , pp. 121-125
    • Karplus, K.1    Barrett, C.2    Cline, M.3    Diekhans, M.4    Grate, L.5    Hughey, R.6
  • 9
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction by support vector machines and position-specific scoring matrices
    • Kim,H. and Park,H. (2003) Protein secondary structure prediction by support vector machines and position-specific scoring matrices. Protein Eng., 16, 553-560.
    • (2003) Protein Eng. , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 10
    • 0034044314 scopus 로고    scopus 로고
    • The PSIPRED protein structure prediction server
    • McGuffin,L.J., Bryson,K. and Jones,D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16, 404-405.
    • (2000) Bioinformatics , vol.16 , pp. 404-405
    • McGuffin, L.J.1    Bryson, K.2    Jones, D.T.3
  • 11
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian,N. and Sejnowski,T.J. (1988) Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol., 202, 865-884.
    • (1988) J. Mol. Biol. , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 12
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • Riis,S.K. and Krogh,A. (1996) Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J. Comput. Biol., 3, 163-183.
    • (1996) J. Comput. Biol. , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 13
    • 0027291015 scopus 로고
    • Prediction of secondary structure at better than 70% accuracy
    • Rost,B. and Sander,C. (1993) Prediction of secondary structure at better than 70% accuracy. J. Mol. Biol., 232, 584-599.
    • (1993) J. Mol. Biol. , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 14
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • Rost,B. and Sander,C. (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins, 19, 55-72.
    • (1994) Proteins , vol.19 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 15
    • 0035782925 scopus 로고    scopus 로고
    • Review: Protein secondary structure prediction continues to rise
    • Rost,B. (2001) Review: protein secondary structure prediction continues to rise. J. Struct. Biol., 134, 204-218.
    • (2001) J. Struct. Biol. , vol.134 , pp. 204-218
    • Rost, B.1
  • 16
    • 0030931336 scopus 로고    scopus 로고
    • Seventy-five percent accuracy in protein secondary structure prediction
    • Frishman,D. and Argos,P. (1997) Seventy-five percent accuracy in protein secondary structure prediction. Proteins, 27, 329-335.
    • (1997) Proteins , vol.27 , pp. 329-335
    • Frishman, D.1    Argos, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.