메뉴 건너뛰기




Volumn 64, Issue 3, 2006, Pages 575-586

YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction

Author keywords

Machine learning; Proteins; Structural bioinformatics1; Support vector machines

Indexed keywords

ALGORITHM; ARTICLE; PREDICTION; PRIORITY JOURNAL; PROTEIN FOLDING; PROTEIN FUNCTION; PROTEIN SECONDARY STRUCTURE; PROTEIN TERTIARY STRUCTURE; SEQUENCE HOMOLOGY; STRUCTURAL BIOINFORMATICS;

EID: 33746267388     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.21036     Document Type: Article
Times cited : (66)

References (33)
  • 1
    • 0037661371 scopus 로고    scopus 로고
    • Benchmarking secondary structure prediction for fold recognition
    • McGuffin LJ, Jones DT. Benchmarking secondary structure prediction for fold recognition. Proteins Struct Funct Genet 2003;152:166-175.
    • (2003) Proteins Struct Funct Genet , vol.152 , pp. 166-175
    • McGuffin, L.J.1    Jones, D.T.2
  • 2
    • 0035782925 scopus 로고    scopus 로고
    • Review: Protein secondary structure prediction continues to rise
    • Rost B. Review: protein secondary structure prediction continues to rise. J Struct Biol 2001;134:204-218.
    • (2001) J Struct Biol , vol.134 , pp. 204-218
    • Rost, B.1
  • 3
    • 0031585987 scopus 로고    scopus 로고
    • Protein secondary structure prediction using local alignments
    • Salaniov AA, Solovyev W. Protein secondary structure prediction using local alignments. J Mol Biol 1997;268:31-36.
    • (1997) J Mol Biol , vol.268 , pp. 31-36
    • Salaniov, A.A.1    Solovyev, W.2
  • 4
    • 0030931336 scopus 로고    scopus 로고
    • Seventy-five percent accuracy in protein secondary structure prediction
    • Frishman D, Argos P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins Struct Funct Genet 1997; 27:329-335.
    • (1997) Proteins Struct Funct Genet , vol.27 , pp. 329-335
    • Frishman, D.1    Argos, P.2
  • 5
    • 1842817419 scopus 로고    scopus 로고
    • Profile-based nearest neighbor method for pattern recognition
    • Joo K, Lee J, Kim S, Kum I, Lee, J, Lee S. Profile-based nearest neighbor method for pattern recognition. J. Korean Phys Soc 2004;54:599-604.
    • (2004) J Korean Phys Soc , vol.54 , pp. 599-604
    • Joo, K.1    Lee, J.2    Kim, S.3    Kum, I.4    Lee, J.5    Lee, S.6
  • 6
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993;232:584-599.
    • (1993) J Mol Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 7
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matricies
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matricies. J Mol Biol 1999;292:195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 8
    • 0036467068 scopus 로고    scopus 로고
    • Alignments grow, secondary structure prediction improves
    • Przybylski D, Rost B. Alignments grow, secondary structure prediction improves. Proteins Struct Funct Genet 2002;46:197-205.
    • (2002) Proteins Struct Funct Genet , vol.46 , pp. 197-205
    • Przybylski, D.1    Rost, B.2
  • 9
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins Struct Funct Genet 2002;47:228-235.
    • (2002) Proteins Struct Funct Genet , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 10
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • Cuff JA, Barton GJ. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins Struct Funct Genet 1999;34:508-519.
    • (1999) Proteins Struct Funct Genet , vol.34 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 11
    • 17444397116 scopus 로고    scopus 로고
    • Porter: A new, accurate server for protein secondary structure prediction
    • Pollastri G, McLysaght A. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 2005;21: 1719-1720.
    • (2005) Bioinformatics , vol.21 , pp. 1719-1720
    • Pollastri, G.1    McLysaght, A.2
  • 12
    • 0035698737 scopus 로고    scopus 로고
    • EVA: Large-scale analysis of secondary structure prediction
    • Rost B, Eyrich VA. EVA: large-scale analysis of secondary structure prediction. Proteins Struct Funct Genet Suppl 2001;5:192-199.
    • (2001) Proteins Struct Funct Genet Suppl , vol.5 , pp. 192-199
    • Rost, B.1    Eyrich, V.A.2
  • 14
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 2001;308:397-407.
    • (2001) J Mol Biol , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 15
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machine approach
    • Kim H, Park H. Protein secondary structure prediction based on an improved support vector machine approach. Protein Eng 2003;16:553-560.
    • (2003) Protein Eng , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 16
  • 17
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer svm and profiles
    • Guo J, Chen H, Sun Z, Lin Y. 2004. A novel method for protein secondary structure prediction using dual-layer svm and profiles. Proteins Struct Funct Genet 2004;54:738-743.
    • (2004) Proteins Struct Funct Genet , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, L.Y.4
  • 18
    • 10644246923 scopus 로고    scopus 로고
    • Improved protein secondary structure prediction using support vector machine and a new encoding scheme and an advanced tertiary classiffier
    • Hu H, Pan Y, Harrison R, Tai P. Improved protein secondary structure prediction using support vector machine and a new encoding scheme and an advanced tertiary classiffier. IEEE Trans NanoBiosci 2004;3:265-271.
    • (2004) IEEE Trans NanoBiosci , vol.3 , pp. 265-271
    • Hu, H.1    Pan, Y.2    Harrison, R.3    Tai, P.4
  • 20
    • 0026458378 scopus 로고
    • Amino acid subsitution matrices from protein blocks
    • Henikoff S, Henikoff JG. Amino acid subsitution matrices from protein blocks. Proc Natl Acad Sci USA 1992;89:10915-10919.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 10915-10919
    • Henikoff, S.1    Henikoff, J.G.2
  • 21
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 24
    • 0028064006 scopus 로고
    • Redefining the goals of protein secondary structure prediction
    • Rost B, Sander C, Schneider R. Redefining the goals of protein secondary structure prediction. J Mol Biol 1994;235:13-26.
    • (1994) J Mol Biol , vol.235 , pp. 13-26
    • Rost, B.1    Sander, C.2    Schneider, R.3
  • 25
    • 0033081846 scopus 로고    scopus 로고
    • A modified definition of sov, a segment-based measure for protein secondary structure prediction assessment
    • Semla A, Venclovas C, Fidelis K, Rost B. A modified definition of sov, a segment-based measure for protein secondary structure prediction assessment. Proteins Struct Funct Genet 1999;34:220-223.
    • (1999) Proteins Struct Funct Genet , vol.34 , pp. 220-223
    • Semla, A.1    Venclovas, C.2    Fidelis, K.3    Rost, B.4
  • 26
    • 0021902977 scopus 로고
    • The structure, function and evolution of cytochromes
    • Matthews FS. The structure, function and evolution of cytochromes. Prog Biophys Mol Biol 1975;45:1-56.
    • (1975) Prog Biophys Mol Biol , vol.45 , pp. 1-56
    • Matthews, F.S.1
  • 27
    • 0028961335 scopus 로고
    • Scop: A structural classification of proteins database for the investigation of sequences and structures
    • Murzin AG, Brenner SE, Hubbard T, Chothia C. Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995;247:536-540.
    • (1995) J Mol Biol , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 31
    • 0032438987 scopus 로고    scopus 로고
    • Hidden markov models for detecting remote protein homologies
    • Karplus K, Barrett C, Hughey R. Hidden markov models for detecting remote protein homologies. Bioinformatics 1998;14:846-856.
    • (1998) Bioinformatics , vol.14 , pp. 846-856
    • Karplus, K.1    Barrett, C.2    Hughey, R.3
  • 32
    • 33746189427 scopus 로고    scopus 로고
    • Maximum feasibility approach for consensus classifiers: Applications to protein structure prediction
    • Porollo A, Adamczak R, Wagner M, Meller J. Maximum feasibility approach for consensus classifiers: applications to protein structure prediction. CIRAS 2003.
    • (2003) CIRAS
    • Porollo, A.1    Adamczak, R.2    Wagner, M.3    Meller, J.4
  • 33
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction method using hidden neural networks
    • Lin K, Simossis VA, Taylor WR, Heringa J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 2005;21:152-159.
    • (2005) Bioinformatics , vol.21 , pp. 152-159
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3    Heringa, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.