메뉴 건너뛰기




Volumn 18, Issue 8, 2005, Pages 1029-1039

Learning protein secondary structure from sequential and relational data

Author keywords

Protein contact maps; Protein secondary structure prediction; Recursive neural networks; Relational learning

Indexed keywords

GRAPH THEORY; INTEGRATION; KNOWLEDGE ACQUISITION; NEURAL NETWORKS; PROTEINS;

EID: 26944482741     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2005.07.001     Document Type: Article
Times cited : (31)

References (44)
  • 3
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • C. Anfinsen Principles that govern the folding of protein chains Science 181 1973 223 230
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, C.1
  • 4
    • 0029916911 scopus 로고    scopus 로고
    • The Swiss-Prot protein sequence data bank and its new supplement TrEMBL
    • A. Bairoch, and R. Apweiler The Swiss-Prot protein sequence data bank and its new supplement TrEMBL Nucleic Acids Research 24 1996 21 25
    • (1996) Nucleic Acids Research , vol.24 , pp. 21-25
    • Bairoch, A.1    Apweiler, R.2
  • 5
    • 0035812694 scopus 로고    scopus 로고
    • Protein structure prediction and structural genomics
    • D. Baker, and A. Sali Protein structure prediction and structural genomics Science 294 2001 93 96
    • (2001) Science , vol.294 , pp. 93-96
    • Baker, D.1    Sali, A.2
  • 7
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure predicton
    • P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri Exploiting the past and the future in protein secondary structure predicton Bioinformatics 15 1999 937 946
    • (1999) Bioinformatics , vol.15 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 8
    • 2542420004 scopus 로고    scopus 로고
    • The principled design of large-scale recursive neural network architectures - Dag-rnns and the protein structure prediction problem
    • P. Baldi, and G. Pollastri The principled design of large-scale recursive neural network architectures - dag-rnns and the protein structure prediction problem Journal of Machine Learning Research 4 Sep 2003 575 602
    • (2003) Journal of Machine Learning Research , vol.4 , Issue.SEP , pp. 575-602
    • Baldi, P.1    Pollastri, G.2
  • 10
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi Learning long-term dependencies with gradient descent is difficult IEEE Transactions on Neural Networks 5 2 1994 157 166
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 13
    • 0033878122 scopus 로고    scopus 로고
    • Application of cascade correlation networks for structures to chemistry
    • A. Bianucci, A. Micheli, A. Sperduti, and A. Starita Application of cascade correlation networks for structures to chemistry Applied Intelligence 12 2000 117 146
    • (2000) Applied Intelligence , vol.12 , pp. 117-146
    • Bianucci, A.1    Micheli, A.2    Sperduti, A.3    Starita, A.4
  • 14
    • 10744226366 scopus 로고    scopus 로고
    • Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation
    • P. Bradley, D. Chivian, J. Meiler, K. Misura, C. Rohl, and W. Schief Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation Proteins 53 S6 2003 457 468
    • (2003) Proteins , vol.53 , Issue.S6 , pp. 457-468
    • Bradley, P.1    Chivian, D.2    Meiler, J.3    Misura, K.4    Rohl, C.5    Schief, W.6
  • 15
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • J.A. Cuff, and G.J. Barton Application of multiple sequence alignment profiles to improve protein secondary structure prediction Proteins 40 2000 502 511
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 16
    • 84951778046 scopus 로고    scopus 로고
    • Machine learning for sequential data: A review
    • T.G. Dietterich Machine learning for sequential data: A review Lecture Notes in Computer Science 2396 2002 15 31
    • (2002) Lecture Notes in Computer Science , vol.2396 , pp. 15-31
    • Dietterich, T.G.1
  • 17
    • 0035663988 scopus 로고    scopus 로고
    • Prediction of contact maps with neural networks and correlated mutations
    • P. Fariselli, O. Olmea, A. Valencia, and R. Casadio Prediction of contact maps with neural networks and correlated mutations Protein Engineering 14 2001 835 843
    • (2001) Protein Engineering , vol.14 , pp. 835-843
    • Fariselli, P.1    Olmea, O.2    Valencia, A.3    Casadio, R.4
  • 21
    • 0028205447 scopus 로고
    • Enlarged representative set of protein structures
    • U. Hobohm, and C. Sander Enlarged representative set of protein structures Protein Science 3 1994 522 524
    • (1994) Protein Science , vol.3 , pp. 522-524
    • Hobohm, U.1    Sander, C.2
  • 23
    • 0141741840 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
    • J. Kolen S.C. Kremer Wiley-IEEE Press New York
    • S. Hochreiter, J. Schmidhuber, P. Frasconi, and Y. Bengio Gradient flow in recurrent nets: The difficulty of learning long-term dependencies J. Kolen S.C. Kremer A field guide to dynamical recurrent networks 2001 Wiley-IEEE Press New York
    • (2001) A Field Guide to Dynamical Recurrent Networks
    • Hochreiter, S.1    Schmidhuber, J.2    Frasconi, P.3    Bengio, Y.4
  • 24
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • D. Jones Protein secondary structure prediction based on position-specific scoring matrices Journal of Molecular Biology 292 1999 195 202
    • (1999) Journal of Molecular Biology , vol.292 , pp. 195-202
    • Jones, D.1
  • 25
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • W. Kabsch, and C. Sander Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features Biopolymers 22 1983 2577 2637
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 26
    • 0032438987 scopus 로고    scopus 로고
    • Hidden markov models for detecting remote protein homologies
    • K. Karplus, C. Barrett, and R. Hughey Hidden markov models for detecting remote protein homologies Bioinformatics 14 1998 846 856
    • (1998) Bioinformatics , vol.14 , pp. 846-856
    • Karplus, K.1    Barrett, C.2    Hughey, R.3
  • 28
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • San Francisco, CA: Morgan Kaufmann.
    • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of 18th international conference on machine learning (pp. 282-289). San Francisco, CA: Morgan Kaufmann.
    • (2001) Proceedings of 18th International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 31
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • C. Micchelli, and M. Pontil On learning vector-valued functions Neural Computation 17 2005 177 204
    • (2005) Neural Computation , vol.17 , pp. 177-204
    • Micchelli, C.1    Pontil, M.2
  • 32
    • 0041719954 scopus 로고    scopus 로고
    • Prediction of contact maps by giohmms and recurrent neural networks using lateral propagation from all four cardinal corners
    • G. Pollastri, and P. Baldi Prediction of contact maps by giohmms and recurrent neural networks using lateral propagation from all four cardinal corners Bioinformatics 18 Suppl. 1 2002 S62 S70
    • (2002) Bioinformatics , vol.18 , Issue.1 SUPPL.
    • Pollastri, G.1    Baldi, P.2
  • 34
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio Prediction of coordination number and relative solvent accessibility in proteins Proteins 47 2002 142 153
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 35
    • 84898952905 scopus 로고    scopus 로고
    • Prediction of protein topologies using GIOHMMs and GRNNs
    • S. Becker S. Thrun K. Obermayer MIT Press Cambridge, MA
    • G. Pollastri, P. Baldi, A. Vullo, and P. Frasconi Prediction of protein topologies using GIOHMMs and GRNNs S. Becker S. Thrun K. Obermayer Advances in neural information processing systems vol. 15 2003 MIT Press Cambridge, MA
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Pollastri, G.1    Baldi, P.2    Vullo, A.3    Frasconi, P.4
  • 36
    • 32744472972 scopus 로고    scopus 로고
    • Porter: A new, accurate server for protein secondary structure prediction
    • (in press).
    • Pollastri, G., & McLysaght, A. (in press). Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics.
    • Bioinformatics
    • Pollastri, G.1    McLysaght, A.2
  • 37
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • G. Pollastri, D. Przybylski, B. Rost, and P. Baldi Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles Proteins 47 2 2002 228 235
    • (2002) Proteins , vol.47 , Issue.2 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 38
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian, and T.J. Sejnowski Predicting the secondary structure of globular proteins using neural network models Journal of Molecular Biology 202 1988 865 884
    • (1988) Journal of Molecular Biology , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 39
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • S.K. Riis, and A. Krogh Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments Journal of Computational Biology 3 1996 163 183
    • (1996) Journal of Computational Biology , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 41
    • 0038392958 scopus 로고    scopus 로고
    • Learning first-pass structural attachment preferences with dynamic grammars and recursive neural networks
    • P. Sturt, F. Costa, V. Lombardo, and P. Frasconi Learning first-pass structural attachment preferences with dynamic grammars and recursive neural networks Cognition 88 2 2003 133 169
    • (2003) Cognition , vol.88 , Issue.2 , pp. 133-169
    • Sturt, P.1    Costa, F.2    Lombardo, V.3    Frasconi, P.4
  • 42
    • 0030627407 scopus 로고    scopus 로고
    • Recovery of protein structure from contact maps
    • M. Vendruscolo, E. Kussel, and E. Domany Recovery of protein structure from contact maps Folding & Design 2 1997 295 306
    • (1997) Folding & Design , vol.2 , pp. 295-306
    • Vendruscolo, M.1    Kussel, E.2    Domany, E.3
  • 43
    • 1842455284 scopus 로고    scopus 로고
    • Disulfide connectivity prediction using recursive neural networks and evolutionary information
    • A. Vullo, and P. Frasconi Disulfide connectivity prediction using recursive neural networks and evolutionary information Bioinformatics 20 5 2004 653 659
    • (2004) Bioinformatics , vol.20 , Issue.5 , pp. 653-659
    • Vullo, A.1    Frasconi, P.2
  • 44
    • 0033081846 scopus 로고    scopus 로고
    • A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment
    • A. Zemla, C. Venclovas, K. Fidelis, and B. Rost A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment Proteins 34 2 1999 220 223
    • (1999) Proteins , vol.34 , Issue.2 , pp. 220-223
    • Zemla, A.1    Venclovas, C.2    Fidelis, K.3    Rost, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.