메뉴 건너뛰기




Volumn 59, Issue 3, 2005, Pages 467-475

Combining prediction of secondary structure and solvent accessibility in proteins

Author keywords

Classification; Neural networks; Protein structure prediction; Relative solvent accessibility; SABLE; Secondary structure

Indexed keywords

AMINO ACID; SOLVENT;

EID: 17844392864     PISSN: 08873585     EISSN: None     Source Type: Journal    
DOI: 10.1002/prot.20441     Document Type: Article
Times cited : (268)

References (38)
  • 1
    • 0035748996 scopus 로고    scopus 로고
    • Comparison of performance in successive CASP experiments
    • Venclovas C, Zemla A, Fidelis K, Moult J. Comparison of performance in successive CASP experiments. Proteins 2001;5:163-170.
    • (2001) Proteins , vol.5 , pp. 163-170
    • Venclovas, C.1    Zemla, A.2    Fidelis, K.3    Moult, J.4
  • 5
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 6
    • 0032438987 scopus 로고    scopus 로고
    • Hidden Markov models for detecting remote protein homologies
    • Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998;14,846-856.
    • (1998) Bioinformatics , vol.14 , pp. 846-856
    • Karplus, K.1    Barrett, C.2    Hughey, R.3
  • 8
    • 0034663597 scopus 로고    scopus 로고
    • Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 1999;40:502-511.
    • (1999) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 9
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 2002;47:228-235.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 10
    • 0034604368 scopus 로고    scopus 로고
    • HMMSTR: A hidden Markov model or local sequence-structure correlations in proteins
    • Bystroff C, Thorsson V, Baker D. HMMSTR: a hidden Markov model or local sequence-structure correlations in proteins. J Mol Biol 2000;301:173-190.
    • (2000) J Mol Biol , vol.301 , pp. 173-190
    • Bystroff, C.1    Thorsson, V.2    Baker, D.3
  • 11
    • 0035782925 scopus 로고    scopus 로고
    • Protein secondary structure prediction continues to rise
    • Rost B. Protein secondary structure prediction continues to rise. J Struct Biol 2001;134:204-218.
    • (2001) J Struct Biol , vol.134 , pp. 204-218
    • Rost, B.1
  • 12
    • 0036467068 scopus 로고    scopus 로고
    • Alignments grow, secondary structure prediction improves
    • Przybylski D, Rost B. Alignments grow, secondary structure prediction improves. Proteins 2002;46:197-205.
    • (2002) Proteins , vol.46 , pp. 197-205
    • Przybylski, D.1    Rost, B.2
  • 13
    • 0035018354 scopus 로고    scopus 로고
    • Environmental features are important in determining protein secondary structure
    • MacDonald JR, Johnson WC Jr. Environmental features are important in determining protein secondary structure. Protein Sci 2001;10:1172-1177.
    • (2001) Protein Sci , vol.10 , pp. 1172-1177
    • MacDonald, J.R.1    Johnson Jr., W.C.2
  • 14
    • 0030581145 scopus 로고    scopus 로고
    • The use of amino acid patterns of classified helices and strands in secondary structure prediction
    • Zhu ZY, Blundell TL. The use of amino acid patterns of classified helices and strands in secondary structure prediction. J Mol Biol 1996;260:261-276.
    • (1996) J Mol Biol , vol.260 , pp. 261-276
    • Zhu, Z.Y.1    Blundell, T.L.2
  • 15
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994;20:216-226.
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 16
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 2002;47:142-153.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 17
    • 0036303121 scopus 로고    scopus 로고
    • NETASA neural network based prediction of solvent accessibility
    • Ahmad S, Gromiha MM. NETASA: neural network based prediction of solvent accessibility. Bioinformatics 2002;18:819-824.
    • (2002) Bioinformatics , vol.18 , pp. 819-824
    • Ahmad, S.1    Gromiha, M.M.2
  • 18
    • 4043052866 scopus 로고    scopus 로고
    • Accurate prediction of solvent accessibility using neural networks based regression
    • Adamczak R, Porollo A, Meller J. Accurate prediction of solvent accessibility using neural networks based regression. Proteins 2004;56:753-767.
    • (2004) Proteins , vol.56 , pp. 753-767
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 19
    • 17844381893 scopus 로고    scopus 로고
    • Linear regression models for solvent accessibility prediction in proteins
    • Wagner M, Adamczak R, Porollo A, Meller J. Linear regression models for solvent accessibility prediction in proteins. J Comp Biol 2005;12:355-369.
    • (2005) J Comp Biol , vol.12 , pp. 355-369
    • Wagner, M.1    Adamczak, R.2    Porollo, A.3    Meller, J.4
  • 21
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 22
    • 0030801002 scopus 로고    scopus 로고
    • Gapped blast and psi-blast: A new generation of protein database search programs
    • Altschul SF, Madden TL, Schaffer AA. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402.
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.F.1    Madden, T.L.2    Schaffer, A.A.3
  • 24
    • 0035889689 scopus 로고    scopus 로고
    • Linear optimization and a double statistical filter for protein threading protocols
    • Meller J, Elber R. Linear optimization and a double statistical filter for protein threading protocols. Proteins 2001;45:241-261.
    • (2001) Proteins , vol.45 , pp. 241-261
    • Meller, J.1    Elber, R.2
  • 26
    • 0033081846 scopus 로고    scopus 로고
    • A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment
    • Zemla A, Venclovas C, Fidelis K, Rost B. A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 1999;34:220-223.
    • (1999) Proteins , vol.34 , pp. 220-223
    • Zemla, A.1    Venclovas, C.2    Fidelis, K.3    Rost, B.4
  • 27
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mo Biol 1993;232:584-599.
    • (1993) J Mo Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 29
    • 0033977982 scopus 로고    scopus 로고
    • EID: The Exon-Intron Database: An exhaustive database of protein-coding intron-containing genes
    • Saxonov S, Daizadeh I, Fedorov A, Gilbert W. EID: The Exon-Intron Database: an exhaustive database of protein-coding intron-containing genes. Nucleic Acids Res 2000;28:185-190.
    • (2000) Nucleic Acids Res , vol.28 , pp. 185-190
    • Saxonov, S.1    Daizadeh, I.2    Fedorov, A.3    Gilbert, W.4
  • 30
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman JL. Finding structure in time. Cognit Sci 1990;14:179-211.
    • (1990) Cognit Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 33
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • Sejnowski TJ, Hinton GE, Touretzky DS, editors. San Mateo, CA: Morgan Kaufmann
    • Fahlman SE. Faster-learning variations on back-propagation: an empirical study. In Sejnowski TJ, Hinton GE, Touretzky DS, editors. 1988 Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann; 1988.
    • (1988) 1988 Connectionist Models Summer School
    • Fahlman, S.E.1
  • 35
    • 0016772212 scopus 로고
    • Comparison of predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BM. Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975;405: 445-451.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 445-451
    • Matthews, B.M.1
  • 37
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 1999;11:937-946.
    • (1999) Bioinformatics , vol.11 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 38


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.