메뉴 건너뛰기




Volumn 57, Issue 3, 2004, Pages 558-564

Prediction of protein accessible surface areas by support vector regression

Author keywords

Accessible surface area; Machine learning; Protein sequence analysis; Protein structure prediction; Solvent accessibility; Support vector

Indexed keywords

AMINO ACID; ARGININE; CYSTEINE; SOLVENT;

EID: 6344258643     PISSN: 08873585     EISSN: None     Source Type: Journal    
DOI: 10.1002/prot.20234     Document Type: Article
Times cited : (95)

References (23)
  • 1
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994;20:216-226.
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 2
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000;40:502-511.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 3
    • 0025039476 scopus 로고
    • Predicting surface exposure of amino-acids from protein-sequence
    • Holbrook SR, Muskal SM, Kim SH. Predicting surface exposure of amino-acids from protein-sequence. Protein Eng 1990;3:659-665.
    • (1990) Protein Eng , vol.3 , pp. 659-665
    • Holbrook, S.R.1    Muskal, S.M.2    Kim, S.H.3
  • 4
    • 0036303121 scopus 로고    scopus 로고
    • NETASA: Neural network based prediction of solvent accessibility
    • Ahmad S, Gromiha MM. NETASA: neural network based prediction of solvent accessibility. Bioinformatics 2002;18:819-824.
    • (2002) Bioinformatics , vol.18 , pp. 819-824
    • Ahmad, S.1    Gromiha, M.M.2
  • 5
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 2002;47:142-153.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 6
    • 0037103004 scopus 로고    scopus 로고
    • Prediction of protein solvent accessibility using support vector machines
    • Yuan Z, Burrage K, Mattick JS. Prediction of protein solvent accessibility using support vector machines. Proteins 2002;48:566-570.
    • (2002) Proteins , vol.48 , pp. 566-570
    • Yuan, Z.1    Burrage, K.2    Mattick, J.S.3
  • 7
    • 1442310611 scopus 로고    scopus 로고
    • Improvement in prediction of solvent accessibility by probability profiles
    • Gianese G, Bossa F, Pascarella S. Improvement in prediction of solvent accessibility by probability profiles. Protein Eng 2003;16: 987-992.
    • (2003) Protein Eng , vol.16 , pp. 987-992
    • Gianese, G.1    Bossa, F.2    Pascarella, S.3
  • 8
    • 0029885547 scopus 로고    scopus 로고
    • Predicting solvent accessibility: Higher accuracy using Bayesian statistics and optimized residue substitution classes
    • Thompson MJ, Goldstein RA. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes. Proteins 1996;25:38-47.
    • (1996) Proteins , vol.25 , pp. 38-47
    • Thompson, M.J.1    Goldstein, R.A.2
  • 9
    • 0033768867 scopus 로고    scopus 로고
    • Predicting residue solvent accessibility from protein sequence by considering the sequence environment
    • Carugo O. Predicting residue solvent accessibility from protein sequence by considering the sequence environment. Protein Eng 2000;13:607-609.
    • (2000) Protein Eng , vol.13 , pp. 607-609
    • Carugo, O.1
  • 10
  • 11
    • 0035189668 scopus 로고    scopus 로고
    • New method for accurate prediction of solvent accessibility from protein sequence
    • Li X, Pan XM. New method for accurate prediction of solvent accessibility from protein sequence. Proteins 2001;42:1-5.
    • (2001) Proteins , vol.42 , pp. 1-5
    • Li, X.1    Pan, X.M.2
  • 12
    • 1042268067 scopus 로고    scopus 로고
    • Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor
    • Kim H, Park H. Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Proteins 2004;54:557-562.
    • (2004) Proteins , vol.54 , pp. 557-562
    • Kim, H.1    Park, H.2
  • 13
    • 0037340834 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility from amino acid sequence
    • Ahmad S, Gromiha MM, Sarai A. Real value prediction of solvent accessibility from amino acid sequence. Proteins 2003;50:629-635.
    • (2003) Proteins , vol.50 , pp. 629-635
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 14
    • 0036700020 scopus 로고    scopus 로고
    • Quantifying the accessible surface area of protein residues in their local environment
    • Samanta U, Bahadur RP, Chakrabarti P. Quantifying the accessible surface area of protein residues in their local environment. Protein Eng 2002;15:659-667.
    • (2002) Protein Eng , vol.15 , pp. 659-667
    • Samanta, U.1    Bahadur, R.P.2    Chakrabarti, P.3
  • 15
    • 0038309560 scopus 로고    scopus 로고
    • Analysis of accessible surface of residues in proteins
    • Lins L, Thomas A, Brasseur R. Analysis of accessible surface of residues in proteins. Protein Sci 2003;12:1406-1417.
    • (2003) Protein Sci , vol.12 , pp. 1406-1417
    • Lins, L.1    Thomas, A.2    Brasseur, R.3
  • 17
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • NC-TR-1998-030
    • Smola A, Scholkopf B. A tutorial on support vector regression. NeuroCOLT Technical Report, NC-TR-1998-030, http://www. neurcolt.com; 1998.
    • (1998) NeuroCOLT Technical Report
    • Smola, A.1    Scholkopf, B.2
  • 18
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B, Burges C, Smola A, editors. Cambridge, MA: MIT Press;
    • Joachims T. Making large-scale SVM learning practical. In: Schölkopf B, Burges C, Smola A, editors. Advances in kernel methods - support vector learning. Cambridge, MA: MIT Press; 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 19
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure - Pattern-recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure - pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 20
    • 0037250308 scopus 로고    scopus 로고
    • PDB-REPRDB: A database of representative protein chains from the Protein Data Bank (PDB) in 2003
    • Noguchi T, Akiyama Y. PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003. Nucleic Acids Res 2003;31:492-493.
    • (2003) Nucleic Acids Res , vol.31 , pp. 492-493
    • Noguchi, T.1    Akiyama, Y.2
  • 22
    • 0348047626 scopus 로고    scopus 로고
    • Enriching the sequence substitution matrix by structural information
    • Teodorescu O, Galor T, Pillardy J, Elber R. Enriching the sequence substitution matrix by structural information. Proteins 2004;54:41-48.
    • (2004) Proteins , vol.54 , pp. 41-48
    • Teodorescu, O.1    Galor, T.2    Pillardy, J.3    Elber, R.4
  • 23
    • 0032548904 scopus 로고    scopus 로고
    • Adaptation of protein surfaces to subcellular location
    • Andrade MA, O'Donoghue SI, Rost B. Adaptation of protein surfaces to subcellular location. J Mol Biol 1998;276:517-525.
    • (1998) J Mol Biol , vol.276 , pp. 517-525
    • Andrade, M.A.1    O'Donoghue, S.I.2    Rost, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.