-
1
-
-
0030764671
-
Protein structural classes in five complete genomes
-
Frishmann, D., Mewes, H.W. Protein structural classes in five complete genomes. Nature Struct. Biol. 4:626-628, 1997.
-
(1997)
Nature Struct. Biol.
, vol.4
, pp. 626-628
-
-
Frishmann, D.1
Mewes, H.W.2
-
2
-
-
0028815464
-
Protein structure prediction: Recognition of primary, secondary, and tertiary structural features from amino acid sequence
-
Eisenhaber, F., Persson, B., Argos, P. Protein structure prediction: Recognition of primary, secondary, and tertiary structural features from amino acid sequence. Crit. Rev. Biochem. Mol. Biol. 30:1-94, 1995.
-
(1995)
Crit. Rev. Biochem. Mol. Biol.
, vol.30
, pp. 1-94
-
-
Eisenhaber, F.1
Persson, B.2
Argos, P.3
-
3
-
-
0027489387
-
Quantification of secondary-structure prediction improvement using multiple alignments
-
Levin, J.M., Pascarella, S., Argos, P., Gamier J. Quantification of secondary-structure prediction improvement using multiple alignments. Prot. Eng. 6:849-854, 1993.
-
(1993)
Prot. Eng.
, vol.6
, pp. 849-854
-
-
Levin, J.M.1
Pascarella, S.2
Argos, P.3
Gamier, J.4
-
4
-
-
0028300741
-
Combining evolutionary information and neural networks to predict protein secondary structure
-
Rost, B., Sander, C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55-72, 1994.
-
(1994)
Proteins
, vol.19
, pp. 55-72
-
-
Rost, B.1
Sander, C.2
-
5
-
-
0028825192
-
A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%
-
Mehta, P.K., Heringa, J., Argos, P. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci. 4:2517-2525, 1995.
-
(1995)
Protein Sci.
, vol.4
, pp. 2517-2525
-
-
Mehta, P.K.1
Heringa, J.2
Argos, P.3
-
6
-
-
0030931336
-
Seventy-five percent accuracy in protein secondary-structure prediction
-
Frishmann, D., Argos, P. Seventy-five percent accuracy in protein secondary-structure prediction. Proteins 27:329-335, 1997.
-
(1997)
Proteins
, vol.27
, pp. 329-335
-
-
Frishmann, D.1
Argos, P.2
-
7
-
-
0015222647
-
The interpretation of protein structures: Estimation of static accessibility
-
Lee, B., Richards, F.M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55:379-400, 1971.
-
(1971)
J. Mol. Biol.
, vol.55
, pp. 379-400
-
-
Lee, B.1
Richards, F.M.2
-
8
-
-
0025039476
-
Predicting surface exposure of amino acids from protein sequence
-
Holbrook, S.R., Muskal, S.M., Kim, S.-H. Predicting surface exposure of amino acids from protein sequence. Protein Eng. 3:659-665, 1990.
-
(1990)
Protein Eng.
, vol.3
, pp. 659-665
-
-
Holbrook, S.R.1
Muskal, S.M.2
Kim, S.-H.3
-
9
-
-
0028239337
-
Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes
-
Wako, H., Blundell, T.L. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes. J. Mol. Biol. 238:682-692, 1994.
-
(1994)
J. Mol. Biol.
, vol.238
, pp. 682-692
-
-
Wako, H.1
Blundell, T.L.2
-
10
-
-
0028109886
-
Conservation and prediction of solvent accessibility in protein families
-
Rost, B., Sander, C. Conservation and prediction of solvent accessibility in protein families. Proteins 20:216-226, 1994.
-
(1994)
Proteins
, vol.20
, pp. 216-226
-
-
Rost, B.1
Sander, C.2
-
11
-
-
0029885547
-
Predicting solvent accessibility: Higher accuracy using Bayesian statistics and optimized residue substitution classes
-
Thompson, M.J., Goldstein, R.A. Predicting solvent accessibility: Higher accuracy using Bayesian statistics and optimized residue substitution classes. Proteins 25:38-47, 1996.
-
(1996)
Proteins
, vol.25
, pp. 38-47
-
-
Thompson, M.J.1
Goldstein, R.A.2
-
12
-
-
0023645034
-
Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins
-
Cornette, J.L., Cease, K.B., Margalit, H., Spouge, J.L., Berzofsky, J.A., DeLisi, C. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195:659-685, 1987.
-
(1987)
J. Mol. Biol.
, vol.195
, pp. 659-685
-
-
Cornette, J.L.1
Cease, K.B.2
Margalit, H.3
Spouge, J.L.4
Berzofsky, J.A.5
DeLisi, C.6
-
13
-
-
0029918306
-
A databank (3D_ali) collecting related protein sequences and structures
-
Pascarella, S., Milpetz, F., Argos, P. A databank (3D_ali) collecting related protein sequences and structures. Protein Eng. 9:349-351, 1996.
-
(1996)
Protein Eng.
, vol.9
, pp. 349-351
-
-
Pascarella, S.1
Milpetz, F.2
Argos, P.3
-
14
-
-
0020997912
-
Dictionary of protein secondary structure: Pattern recognition of hydrogen bonded and geometrical features
-
Kabsch, W., Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22:2577-2637, 1983.
-
(1983)
Biopolymers
, vol.22
, pp. 2577-2637
-
-
Kabsch, W.1
Sander, C.2
-
15
-
-
0017187836
-
The nature of the accessible and buried surface in proteins
-
Chothia, C. The nature of the accessible and buried surface in proteins. J. Mol. Biol. 105:1-14, 1976.
-
(1976)
J. Mol. Biol.
, vol.105
, pp. 1-14
-
-
Chothia, C.1
-
16
-
-
0028019234
-
Navigating the Brookhaven protein databank
-
Walsh, L.L. Navigating the Brookhaven protein databank. Computer Appl. Biosci. 10:551-557, 1994.
-
(1994)
Computer Appl. Biosci.
, vol.10
, pp. 551-557
-
-
Walsh, L.L.1
-
17
-
-
0026030641
-
Database of homology-derived structures and the structural meaning of sequence alignment
-
Sander, C., Schneider, R. Database of homology-derived structures and the structural meaning of sequence alignment. Proteins 9:56-68, 1991.
-
(1991)
Proteins
, vol.9
, pp. 56-68
-
-
Sander, C.1
Schneider, R.2
-
18
-
-
0028081403
-
Structural features can be unconserved in proteins with similar folds
-
Russel, R.B., Burton, G.J. Structural features can be unconserved in proteins with similar folds. J. Mol. Biol. 244:332-350, 1994.
-
(1994)
J. Mol. Biol.
, vol.244
, pp. 332-350
-
-
Russel, R.B.1
Burton, G.J.2
-
19
-
-
0029980527
-
Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions
-
Dandekar, T., Argos, P. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions. J. Mol. Biol. 256:645-660, 1996.
-
(1996)
J. Mol. Biol.
, vol.256
, pp. 645-660
-
-
Dandekar, T.1
Argos, P.2
-
20
-
-
0028297304
-
Folding the mainchain of small proteins with the genetic algorithm
-
Dandekar, T., Argos, P. Folding the mainchain of small proteins with the genetic algorithm. J. Mol. Biol. 236:844-861, 1994.
-
(1994)
J. Mol. Biol.
, vol.236
, pp. 844-861
-
-
Dandekar, T.1
Argos, P.2
-
21
-
-
0023645203
-
Interior and surface of monomeric proteins
-
Miller, S., Janin, J., Lesk, A.M., Chothia, C. Interior and surface of monomeric proteins. J. Mol. Biol, 196:641-656, 1987.
-
(1987)
J. Mol. Biol
, vol.196
, pp. 641-656
-
-
Miller, S.1
Janin, J.2
Lesk, A.M.3
Chothia, C.4
|